Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Icariin Attenuates Human Renal Tubular Epithelial Cell Senescence by Targeting PAK2 via miR-23b-3p

Author(s): Suqin Zhang*, Yanbin Li and Qiuyue Wang

Volume 25, Issue 17, 2024

Published on: 16 February, 2024

Page: [2278 - 2289] Pages: 12

DOI: 10.2174/0113892010276372231129105022

Price: $65

Abstract

Background: Renal tubular epithelial cells (RTECs) senescence is crucial in kidney diseases. Icariin is shown to have protective effects against renal fibrosis, acute kidney injury, and proteinuria. We aimed to explore the role of icariin in protecting RTECs from senescence and the underlying mechanism involved.

Methods: An in vitro model of RTEC senescence was established by incubating HK-2 cells with urine exosomes from patients with diabetic kidney disease. Stimulated cells were treated with icariin at various doses to evaluate the compound's therapeutic effects. After RNA transfection, cell cycle arrest and senescence, flow cytometry, and SA-β-Gal staining were analyzed. At the same time, quantitative real-time PCR examined microRNA expression. Biochemical assays.

Results: Urine exosomes induced senescence and cell cycle arrest in the G1 stage in HK-2 cells, which were inhibited by icariin. Urine exosome stimulation up-regulated miR-23b-3p expression, which in turn suppressed PAK2 expression. Significantly, the induced and inhibited miR- 23b-3p expressions weakened and augmented the resistance of cells against urine exosome stimulation, respectively, while PAK2 overexpression provided additional protection. Icariin suppressed miR-23b-3p expression, and miR-23b-3p induction blocked the effects of icariin and promoted RTEC senescence.

Conclusion: miR-23b-3p and PAK2 form a signaling axis that regulates RTEC senescence upon urine exosome stimulation. Icariin can increase the resistance of RTECs against senescence via miR-23b-3p/PAK2. Our findings shed light on the mechanism of the clinical effects of icariin on renal diseases, which can be exploited to develop effective drugs targeting RTEC senescence in the future.

[1]
Chen, B.H.; Lu, X.Q.; Liang, X.H.; Wang, P. Serpin E1 mediates the induction of renal tubular degeneration and premature senescence upon diabetic insult. Sci. Rep., 2023, 13(1), 16210.
[http://dx.doi.org/10.1038/s41598-023-43411-4] [PMID: 37758806]
[2]
Wang, D.; Yin, L.; Chen, R.; Tan, W.; Liang, L.; Xiang, J.; Zhang, H.; Zhou, X.; Deng, H.; Guo, B.; Wang, Y. Senescent renal tubular epithelial cells activate fibroblasts by secreting Shh to promote the progression of diabetic kidney disease. Front. Med., 2023, 9, 1018298.
[http://dx.doi.org/10.3389/fmed.2022.1018298] [PMID: 36760880]
[3]
Shen, S.; Ji, C.; Wei, K. Cellular senescence and regulated cell death of tubular epithelial cells in diabetic kidney disease. Front. Endocrinol., 2022, 13, 924299.
[http://dx.doi.org/10.3389/fendo.2022.924299] [PMID: 35837297]
[4]
Jia, C.; Ke-Hong, C.; Fei, X.; Huan-Zi, D.; Jie, Y.; Li-Ming, W.; Xiao-Yue, W.; Jian-Guo, Z.; Ya-Ni, H. Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy. Kidney Int., 2020, 98(3), 645-662.
[http://dx.doi.org/10.1016/j.kint.2020.03.026] [PMID: 32739204]
[5]
Tang, Y.; Jacobi, A.; Vater, C.; Zou, L.; Zou, X.; Stiehler, M. Icariin promotes angiogenic differentiation and prevents oxidative stress-induced autophagy in endothelial progenitor cells. Stem Cells, 2015, 33(6), 1863-1877.
[http://dx.doi.org/10.1002/stem.2005] [PMID: 25787271]
[6]
Li, H.; Zhang, X.; Zhu, X.; Qi, X.; Lin, K.; Cheng, L. The effects of icariin on enhancing motor recovery through attenuating pro-inflammatory factors and oxidative stress via mitochondrial apoptotic pathway in the mice model of spinal cord injury. Front. Physiol., 2018, 9, 1617.
[http://dx.doi.org/10.3389/fphys.2018.01617] [PMID: 30505282]
[7]
Fang, J.; Zhang, Y. Icariin, an anti-atherosclerotic drug from chinese medicinal herb horny goat weed. Front. Pharmacol., 2017, 8, 734.
[http://dx.doi.org/10.3389/fphar.2017.00734] [PMID: 29075193]
[8]
Tan, H.L.; Chan, K.G.; Pusparajah, P.; Saokaew, S.; Duangjai, A.; Lee, L.H.; Goh, B.H. Anti-cancer properties of the naturally occurring aphrodisiacs: Icariin and its derivatives. Front. Pharmacol., 2016, 7, 191.
[http://dx.doi.org/10.3389/fphar.2016.00191] [PMID: 27445824]
[9]
Yang, A.; Yu, C.; Lu, Q.; Li, H.; Li, Z.; He, C. Mechanism of action of icariin in bone marrow mesenchymal stem cells. Stem Cells Int., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/5747298] [PMID: 31089330]
[10]
Chen, M.; Hao, J.; Yang, Q.; Li, G. Effects of icariin on reproductive functions in male rats. Molecules, 2014, 19(7), 9502-9514.
[http://dx.doi.org/10.3390/molecules19079502] [PMID: 24995929]
[11]
Jia, G.; Zhang, Y.; Li, W.; Dai, H. Neuroprotective role of icariin in experimental spinal cord injury via its antioxidant, anti-neuroinflammatory and anti-apoptotic properties. Mol. Med. Rep., 2019, 20(4), 3433-3439.
[http://dx.doi.org/10.3892/mmr.2019.10537] [PMID: 31432160]
[12]
Zhang, W.; Yuan, W.; Xu, N.; Li, J.; Chang, W. Icariin improves acute kidney injury and proteinuria in a rat model of pregnancy-induced hypertension. Mol. Med. Rep., 2017, 16(5), 7398-7404.
[http://dx.doi.org/10.3892/mmr.2017.7513] [PMID: 28944832]
[13]
Chen, H.A.; Chen, C.M.; Guan, S.S.; Chiang, C.K.; Wu, C.T.; Liu, S.H. The antifibrotic and anti-inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model. Phytomedicine, 2019, 59, 152917.
[http://dx.doi.org/10.1016/j.phymed.2019.152917] [PMID: 30978648]
[14]
Xie, C.; Liu, L.; Wang, Z.; Xie, H.; Feng, Y.; Suo, J.; Wang, M.; Shang, W.; Feng, G. Icariin improves sepsis-induced mortality and acute kidney injury. Pharmacology, 2018, 102(3-4), 196-205.
[http://dx.doi.org/10.1159/000487955] [PMID: 30099451]
[15]
Zhang, Y.; Li, M.; Han, X. Icariin affects cell cycle progression and proliferation of human retinal pigment epithelial cells via enhancing expression of H19. PeerJ, 2020, 8, e8830.
[http://dx.doi.org/10.7717/peerj.8830] [PMID: 32219038]
[16]
Sonoda, H.; Lee, B.R.; Park, K.H.; Nihalani, D.; Yoon, J.H.; Ikeda, M.; Kwon, S.H. miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci. Rep., 2019, 9(1), 4692.
[http://dx.doi.org/10.1038/s41598-019-40747-8] [PMID: 30886169]
[17]
Street, J.M.; Koritzinsky, E.H.; Glispie, D.M.; Star, R.A.; Yuen, P.S.T. Urine exosomes. Adv. Clin. Chem., 2017, 78, 103-122.
[http://dx.doi.org/10.1016/bs.acc.2016.07.003] [PMID: 28057185]
[18]
Chen, W.; Ruan, Y.; Zhao, S.; Ning, J.; Rao, T.; Yu, W.; Zhou, X.; Liu, C.; Qi, Y.; Cheng, F. MicroRNA-205 inhibits the apoptosis of renal tubular epithelial cells via the PTEN/Akt pathway in renal ischemia-reperfusion injury. Am. J. Transl. Res., 2019, 11(12), 7364-7375.
[PMID: 31934284]
[19]
Zheng, G.H.; Wen, X.; Wang, Y.J.; Han, X.R.; Shan, Q.; Li, W.; Zhao, T.; Wu, D.M.; Lu, J.; Zheng, Y.L. Retracted: MicroRNA‐381‐induced down‐regulation of CXCR4 promotes the proliferation of renal tubular epithelial cells in rat models of renal ischemia reperfusion injury. J. Cell. Biochem., 2018, 119(4), 3149-3161.
[http://dx.doi.org/10.1002/jcb.26466] [PMID: 29073721]
[20]
Lv, L.L.; Feng, Y.; Wu, M.; Wang, B.; Li, Z.L.; Zhong, X.; Wu, W.J.; Chen, J.; Ni, H.F.; Tang, T.T.; Tang, R.N.; Lan, H.Y.; Liu, B.C. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ., 2020, 27(1), 210-226.
[http://dx.doi.org/10.1038/s41418-019-0349-y] [PMID: 31097789]
[21]
Zhou, W.; Xu, J.; Wang, C.; Shi, D.; Yan, Q. miR‐23b‐3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J. Cell. Biochem., 2019, 120(12), 19635-19646.
[http://dx.doi.org/10.1002/jcb.29270] [PMID: 31338869]
[22]
Zaman, M.S.; Thamminana, S.; Shahryari, V.; Chiyomaru, T.; Deng, G.; Saini, S.; Majid, S.; Fukuhara, S.; Chang, I.; Arora, S.; Hirata, H.; Ueno, K.; Singh, K.; Tanaka, Y.; Dahiya, R. Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One, 2012, 7(11), e50203.
[http://dx.doi.org/10.1371/journal.pone.0050203] [PMID: 23189187]
[23]
Urbanelli, L.; Buratta, S.; Sagini, K.; Tancini, B.; Emiliani, C. Extracellular vesicles as new players in cellular senescence. Int. J. Mol. Sci., 2016, 17(9), 1408.
[http://dx.doi.org/10.3390/ijms17091408] [PMID: 27571072]
[24]
Tu, G.; Zhang, Y.; Ma, J.; Hou, J.; Hao, G.; Su, Y.; Luo, J.; Sheng, L.; Luo, Z. Extracellular vesicles derived from CD4+ T cells carry DGKK to promote sepsis-induced lung injury by regulating oxidative stress and inflammation. Cell. Mol. Biol. Lett., 2023, 28(1), 24.
[http://dx.doi.org/10.1186/s11658-023-00435-y] [PMID: 36959535]
[25]
Lu, Y.; Liu, D.; Feng, Q.; Liu, Z. Diabetic nephropathy: Perspective on extracellular vesicles. Front. Immunol., 2020, 11, 943.
[http://dx.doi.org/10.3389/fimmu.2020.00943] [PMID: 32582146]
[26]
Ryan, M.J.; Johnson, G.; Kirk, J.; Fuerstenberg, S.M.; Zager, R.A.; Torok-Storb, B. HK-2: An immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int., 1994, 45(1), 48-57.
[http://dx.doi.org/10.1038/ki.1994.6] [PMID: 8127021]
[27]
Debacq-Chainiaux, F.; Erusalimsky, J.D.; Campisi, J.; Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc., 2009, 4(12), 1798-1806.
[http://dx.doi.org/10.1038/nprot.2009.191] [PMID: 20010931]
[28]
Röck, K.; Tigges, J.; Sass, S.; Schütze, A.; Florea, A.M.; Fender, A.C.; Theis, F.J.; Krutmann, J.; Boege, F.; Fritsche, E.; Reifenberger, G.; Fischer, J.W. miR-23a-3p causes cellular senescence by targeting hyaluronan synthase 2: Possible implication for skin aging. J. Invest. Dermatol., 2015, 135(2), 369-377.
[http://dx.doi.org/10.1038/jid.2014.422] [PMID: 25264594]
[29]
Mensà, E.; Guescini, M.; Giuliani, A.; Bacalini, M.G.; Ramini, D.; Corleone, G.; Ferracin, M.; Fulgenzi, G.; Graciotti, L.; Prattichizzo, F.; Sorci, L.; Battistelli, M.; Monsurrò, V.; Bonfigli, A.R.; Cardelli, M.; Recchioni, R.; Marcheselli, F.; Latini, S.; Maggio, S.; Fanelli, M.; Amatori, S.; Storci, G.; Ceriello, A.; Stocchi, V.; De Luca, M.; Magnani, L.; Rippo, M.R.; Procopio, A.D.; Sala, C.; Budimir, I.; Bassi, C.; Negrini, M.; Garagnani, P.; Franceschi, C.; Sabbatinelli, J.; Bonafè, M.; Olivieri, F.; Olivieri, F. Small extracellular vesicles deliver miR‐21 and miR‐217 as pro‐senescence effectors to endothelial cells. J. Extracell. Vesicles, 2020, 9(1), 1725285.
[http://dx.doi.org/10.1080/20013078.2020.1725285] [PMID: 32158519]
[30]
Markopoulos, G.S.; Roupakia, E.; Tokamani, M.; Vartholomatos, G.; Tzavaras, T.; Hatziapostolou, M.; Fackelmayer, F.O.; Sandaltzopoulos, R.; Polytarchou, C.; Kolettas, E. Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts. Exp. Gerontol., 2017, 96, 110-122.
[http://dx.doi.org/10.1016/j.exger.2017.06.017] [PMID: 28658612]
[31]
Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[32]
Lee, J.S.; Mo, Y.; Gan, H.; Burgess, R.J.; Baker, D.J.; van Deursen, J.M.; Zhang, Z. Pak2 kinase promotes cellular senescence and organismal aging. Proc. Natl. Acad. Sci., 2019, 116(27), 13311-13319.
[http://dx.doi.org/10.1073/pnas.1903847116] [PMID: 31209047]
[33]
Yang, W.S.; Chang, J.W.; Han, N.J.; Lee, S.K.; Park, S.K. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-β1 up-regulation in proximal tubular epithelial cells. Exp. Cell Res., 2012, 318(15), 1867-1876.
[http://dx.doi.org/10.1016/j.yexcr.2012.05.016] [PMID: 22659134]
[34]
López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell, 2013, 153(6), 1194-1217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[35]
Docherty, M.H.; O’Sullivan, E.D.; Bonventre, J.V.; Ferenbach, D.A. Cellular senescence in the kidney. J. Am. Soc. Nephrol., 2019, 30(5), 726-736.
[http://dx.doi.org/10.1681/ASN.2018121251] [PMID: 31000567]
[36]
Lian, F.; Zhao, C.; Qu, J.; Lian, Y.; Cui, Y.; Shan, L.; Yan, J. Icariin attenuates titanium particle‐induced inhibition of osteogenic differentiation and matrix mineralization via miR‐21‐5p. Cell Biol. Int., 2018, 42(8), 931-939.
[http://dx.doi.org/10.1002/cbin.10957] [PMID: 29500883]
[37]
Sherr, C.J.; Beach, D.; Shapiro, G.I. Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov., 2016, 6(4), 353-367.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0894] [PMID: 26658964]
[38]
Au Yeung, C.L.; Tsang, T.Y.; Yau, P.L.; Kwok, T.T. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene, 2011, 30(21), 2401-2410.
[http://dx.doi.org/10.1038/onc.2010.613] [PMID: 21242962]
[39]
Zhang, Y.; Chen, D.; Zhang, G.; Wu, X.; Zhou, L.; Lin, Y.; Ding, J.; An, F.; Zhan, Q. MicroRNA 23b 3p promotes pancreatic cancer cell tumorigenesis and metastasis via the JAK/PI3K and Akt/NF κB signaling pathways. Oncol. Lett., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/ol.2020.12021] [PMID: 32934728]
[40]
Zhu, R.; Li, X.; Ma, Y. miR-23b-3p suppressing PGC1α promotes proliferation through reprogramming metabolism in osteosarcoma. Cell Death Dis., 2019, 10(6), 381.
[http://dx.doi.org/10.1038/s41419-019-1614-1] [PMID: 31097683]
[41]
Zhang, H.; Hao, Y.; Yang, J.; Zhou, Y.; Li, J.; Yin, S.; Sun, C.; Ma, M.; Huang, Y.; Xi, J.J. Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat. Commun., 2011, 2(1), 554.
[http://dx.doi.org/10.1038/ncomms1555] [PMID: 22109528]
[42]
Li, W.; Liu, Z.; Chen, L.; Zhou, L.; Yao, Y. MicroRNA-23b is an independent prognostic marker and suppresses ovarian cancer progression by targeting runt-related transcription factor-2. FEBS Lett., 2014, 588(9), 1608-1615.
[http://dx.doi.org/10.1016/j.febslet.2014.02.055] [PMID: 24613919]
[43]
Chiyomaru, T.; Seki, N.; Inoguchi, S.; Ishihara, T.; Mataki, H.; Matsushita, R.; Goto, Y.; Nishikawa, R.; Tatarano, S.; Itesako, T.; Nakagawa, M.; Enokida, H. Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. Int. J. Oncol., 2015, 46(2), 487-496.
[http://dx.doi.org/10.3892/ijo.2014.2752] [PMID: 25405368]
[44]
Binder, P.; Wang, S.; Radu, M.; Zin, M.; Collins, L.; Khan, S.; Li, Y.; Sekeres, K.; Humphreys, N.; Swanton, E.; Reid, A.; Pu, F.; Oceandy, D.; Guan, K.; Hille, S.S.; Frey, N.; Müller, O.J.; Cartwright, E.J.; Chernoff, J.; Wang, X.; Liu, W. Pak2 as a novel therapeutic target for cardioprotective endoplasmic reticulum stress response. Circ. Res., 2019, 124(5), 696-711.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312829] [PMID: 30620686]
[45]
Wang, Y.; Zeng, C.; Li, J.; Zhou, Z.; Ju, X.; Xia, S.; Li, Y.; Liu, A.; Teng, H.; Zhang, K.; Shi, L.; Bi, C.; Xie, W.; He, X.; Jia, Z.; Jiang, Y.; Cai, T.; Wu, J.; Xia, K.; Sun, Z.S.; Sun, Z.S. PAK2 haploinsufficiency results in synaptic cytoskeleton impairment and autism-related behavior. Cell Rep., 2018, 24(8), 2029-2041.
[http://dx.doi.org/10.1016/j.celrep.2018.07.061] [PMID: 30134165]
[46]
Phee, H.; Au-Yeung, B.B.; Pryshchep, O.; O’Hagan, K.L.; Fairbairn, S.G.; Radu, M.; Kosoff, R.; Mollenauer, M.; Cheng, D.; Chernoff, J.; Weiss, A. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation. eLife, 2014, 3, e02270.
[http://dx.doi.org/10.7554/eLife.02270] [PMID: 24843022]
[47]
Gupta, A.; Ajith, A.; Singh, S.; Panday, R.K.; Samaiya, A.; Shukla, S. PAK2–c-Myc–PKM2 axis plays an essential role in head and neck oncogenesis via regulating Warburg effect. Cell Death Dis., 2018, 9(8), 825.
[http://dx.doi.org/10.1038/s41419-018-0887-0] [PMID: 30068946]
[48]
Ran, M.; Weng, B.; Cao, R.; Li, Z.; Peng, F.; Luo, H.; Gao, H.; Chen, B. miR‐26a inhibits proliferation and promotes apoptosis in porcine immature Sertoli cells by targeting the PAK2 gene. Reprod. Domest. Anim., 2018, 53(6), 1375-1385.
[http://dx.doi.org/10.1111/rda.13254] [PMID: 30024056]
[49]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy