Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Traditional Chinese Medicine-based Treatment in Cardiovascular Disease: Potential Mechanisms of Action

Author(s): Lanlan Li, Yutong Ran, Jiao Wen, Yirui Lu, Shunmei Liu, Hong Li* and Min Cheng*

Volume 25, Issue 17, 2024

Published on: 12 February, 2024

Page: [2186 - 2199] Pages: 14

DOI: 10.2174/0113892010279151240116103917

Price: $65

Abstract

Cardiovascular Disease (CVD) is the leading cause of morbidity and death worldwide and has become a global public health problem. Traditional Chinese medicine (TCM) has been used in China to treat CVD and achieved promising results. Therefore, TCM has aroused significant interest among pharmacologists and medical practitioners. Previous research showed that TCM can regulate the occurrence and development of atherosclerosis (AS), ischemic heart disease, heart failure, myocardial injury, and myocardial fibrosis by inhibiting vascular endothelial injury, inflammation, oxidant stress, ischemia-reperfusion injury, and myocardial remodeling. It is well-known that TCM has the characteristics of multi-component, multi-pathway, and multitarget. Here, we systematically review the bioactive components, pharmacological effects, and clinical application of TCM in preventing and treating CVD.

[1]
Wang, T.; Wu, Z.; Sun, L.; Li, W.; Liu, G.; Tang, Y. A computational systems pharmacology approach to investigate molecular mechanisms of herbal formula tian-ma-gou-teng-yin for treatment of alzheimer’s disease. Front. Pharmacol., 2018, 9, 668.
[http://dx.doi.org/10.3389/fphar.2018.00668] [PMID: 29997503]
[2]
Xie, R.; Xia, Y.; Chen, Y.; Li, H.; Shang, H. The right extension statement for traditional chinese medicine: Development, recommendations, and explanation. Pharmacol. Res., 2020, 160, 105178.
[3]
Man, B.; Hu, C.; Yang, G.; Xiang, J.; Yang, S.; Ma, C. Berberine attenuates diabetic atherosclerosis via enhancing the interplay between KLF16 and PPARα in ApoE−/− mice. Biochem. Biophys. Res. Commun., 2022, 624, 59-67.
[http://dx.doi.org/10.1016/j.bbrc.2022.07.072] [PMID: 35933927]
[4]
Mannino, F.; Pallio, G.; Altavilla, D.; Squadrito, F.; Vermiglio, G.; Bitto, A.; Irrera, N. Atherosclerosis plaque reduction by lycopene is mediated by increased energy expenditure through ampk and pparα in apoe ko mice fed with a high fat diet. Biomolecules, 2022, 12(7), 973.
[http://dx.doi.org/10.3390/biom12070973] [PMID: 35883529]
[5]
Liang, P.; Liang, Q.; He, P.; Chen, X.; Xu, Y. Three polymethoxyflavones from the peel of citrus reticulata “chachi” inhibits oxidized low-density lipoprotein-induced macrophage-derived foam cell formation. Front. Cardiovasc. Med., 2022, 924551.
[http://dx.doi.org/10.3389/fcvm.2022.924551]
[6]
Wu, Y.; Chen, M.; Chen, Z.; Shu, J.; Zhang, L. Theaflavin-3,3-digallate from black tea inhibits neointima formation through suppression of the pdgfrβ pathway in vascular smooth muscle cells. Front. Pharmacol., 2022, 13, 861319.
[http://dx.doi.org/10.3389/fphar.2022.861319]
[7]
Ni, Y.; Zhang, J.; Zhu, W.; Duan, Y.; Bai, H.; Luan, C. Echinacoside inhibited cardiomyocyte pyroptosis and improved heart function of HF rats induced by isoproterenol via suppressing NADPH / ROS / ER stress. J. Cell. Mol. Med., 2022, 26(21), 5414-5425.
[http://dx.doi.org/10.1111/jcmm.17564] [PMID: 36201630]
[8]
Guo, H.; Zhu, M.; Yu, R.; Li, X.; Zhao, Q. Efficacy of chinese traditional patent medicines for heart failure with preserved ejection fraction: A bayesian network meta-analysis of 64 randomized controlled trials. Front. Cardiovasc. Med., 2023, 10, 1255940.
[http://dx.doi.org/10.3389/fcvm.2023.1255940]
[9]
Yang, Q.; Xu, Y.; Shen, L.; Pan, Y.; Huang, J.; Ma, Q.; Yu, C.; Chen, J.; Chen, Y.; Chen, M. Guanxinning tablet attenuates coronary atherosclerosis via regulating the gut microbiota and their metabolites in tibetan minipigs induced by a high-fat diet. J. Immunol. Res., 2022, 2022, 1-23.
[http://dx.doi.org/10.1155/2022/7128230] [PMID: 35935588]
[10]
Jiang, Q.; Chen, X.; Tian, X.; Zhang, J.; Xue, S.; Jiang, Y.; Liu, T.; Wang, X.; Sun, Q.; Hong, Y.; Li, C.; Guo, D.; Wang, Y.; Wang, Q. Tanshinone I inhibits doxorubicin-induced cardiotoxicity by regulating Nrf2 signaling pathway. Phytomedicine, 2022, 106, 154439.
[http://dx.doi.org/10.1016/j.phymed.2022.154439] [PMID: 36108374]
[11]
Liu, Y.; Yang, G.; Huo, S.; Wu, J.; Ren, P.; Cao, Y.; Gao, J.; Tong, L.; Min, D. Lutein suppresses ferroptosis of cardiac microvascular endothelial cells via positive regulation of IRF in cardiac hypertrophy. Eur. J. Pharmacol., 2023, 959, 176081.
[http://dx.doi.org/10.1016/j.ejphar.2023.176081] [PMID: 37797674]
[12]
Jiaying, Z.; Xiangxiang, W.; Xuefeng, L.I.; Yang, Y.; Yinghuan, D.; Yanbin, S.; Ping, X.; Mengru, Z.; Junnan, Z.; Miao, L.I.; Shuwen, Z.; Rui, Z.; Ying, T.; Hao, T.; Feifei, T. Shunxin decoction improves diastolic function in rats with heart failure with preserved ejection fraction induced by abdominal aorta constriction through cyclic guanosine monophosphate-dependent protein kinase signaling pathway. J. Tradit. Chin. Med., 2022, 42(5), 764-772.
[http://dx.doi.org/10.19852/j.cnki.jtcm.20220519.003] [PMID: 36083484]
[13]
Kotlyarov, S. Genetic and epigenetic regulation of lipoxygenase pathways and reverse cholesterol transport in atherogenesis. Genes, 2022, 13(8), 1474.
[http://dx.doi.org/10.3390/genes13081474] [PMID: 36011386]
[14]
Yu, W.; Ilyas, I.; Aktar, N.; Xu, S. A review on therapeutical potential of paeonol in atherosclerosis. Front. Pharmacol., 2022, 13, 950337.
[http://dx.doi.org/10.3389/fphar.2022.950337]
[15]
Hansson, G.K.; Libby, P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol., 2006, 6(7), 508-519.
[http://dx.doi.org/10.1038/nri1882] [PMID: 16778830]
[16]
Yu, B.; Zhao, S.; Huang, X. Oxidized low-density lipoprotein: A double-edged sword on atherosclerosis. Med. Hypotheses, 2007, 69(3), 553-556.
[http://dx.doi.org/10.1016/j.mehy.2007.01.043] [PMID: 17368957]
[17]
Han, X.; Wang, S.; Yang, X.; Li, T.; Zhao, H.; Zhou, L.; Zhao, L.; Bao, Y.; Meng, X. Analysis of plasma migration components in Patrinia villosa (Thunb.) Juss. effective parts by UPLC–Q‐TOF–MS. Biomed. Chromatogr., 2020, 34(1), e4701.
[http://dx.doi.org/10.1002/bmc.4701] [PMID: 31596954]
[18]
Zhang, A.; Ma, Z.; Kong, L.; Gao, H.; Sun, H.; Wang, X.; Yu, J.; Han, Y.; Yan, G.; Wang, X. High‐throughput lipidomics analysis to discover lipid biomarkers and profiles as potential targets for evaluating efficacy of Kai‐Xin‐San against APP/PS1 transgenic mice based on UPLC-Q/TOF-MS. Biomed. Chromatogr., 2020, 34(2), e4724.
[http://dx.doi.org/10.1002/bmc.4724] [PMID: 31755117]
[19]
Simayi, J.; Abulizi, A.; Nuermaimaiti, M.; Khan, N.; Hailati, S.; Han, M.; Talihati, Z.; Abudurousuli, K.; Maihemuti, N.; Nuer, M.; Zhou, W.; Wumaier, A. Uhplc-q-tof-ms/ms and network pharmacology analysis to reveal quality markers of xinjiang cydonia oblonga mill. For antiatherosclerosis. BioMed Res. Int., 2022, 2022, 1-25.
[http://dx.doi.org/10.1155/2022/4176235] [PMID: 35669732]
[20]
Bi, Y.; Han, X.; Lai, Y.; Fu, Y.; Li, K.; Zhang, W.; Wang, Q.; Jiang, X.; Zhou, Y.; Liang, H.; Fan, H. Systems pharmacological study based on UHPLC-Q-Orbitrap-HRMS, network pharmacology and experimental validation to explore the potential mechanisms of Danggui-Shaoyao-San against atherosclerosis. J. Ethnopharmacol., 2021, 278, 114278.
[http://dx.doi.org/10.1016/j.jep.2021.114278] [PMID: 34087397]
[21]
Qu, L.; Li, D.; Gao, X.; Li, Y.; Wu, J.; Zou, W. Di’ao xinxuekang capsule, a chinese medicinal product, decreases serum lipids levels in high-fat diet-fed apoe–/–mice by downregulating pcsk9. Front. Pharmacol., 2018, 10, 01170.
[http://dx.doi.org/10.3389/fphar.2018.01170]
[22]
Li, X.; Liu, S.; Qu, L.; Chen, Y.; Yuan, C.; Qin, A.; Liang, J.; Huang, Q.; Jiang, M.; Zou, W. Dioscin and diosgenin: Insights into their potential protective effects in cardiac diseases. J. Ethnopharmacol., 2021, 274, 114018.
[http://dx.doi.org/10.1016/j.jep.2021.114018] [PMID: 33716083]
[23]
Liang, J.; Li, W.; Liu, H.; Li, X.; Yuan, C.; Zou, W.; Qu, L. Di’ao xinxuekang capsule improves the anti-atherosclerotic effect of atorvastatin by downregulating the srebp2/pcsk9 signalling pathway. Front. Pharmacol., 2022, 13, 857092.
[http://dx.doi.org/10.3389/fphar.2022.857092] [PMID: 35571088]
[24]
Liang, P.L.; Chen, X.L.; Gong, M.J.; Xu, Y.; Tu, H.S.; Zhang, L.; Liao, B.; Qiu, X.H.; Zhang, J.; Huang, Z.H.; Xu, W. Guang Chen Pi (the pericarp of Citrus reticulata Blanco’s cultivars ‘Chachi’) inhibits macrophage-derived foam cell formation. J. Ethnopharmacol., 2022, 293, 115328.
[http://dx.doi.org/10.1016/j.jep.2022.115328] [PMID: 35489660]
[25]
Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based approaches in pharmacology. Mol. Inform., 2017, 36(10), 1700048.
[http://dx.doi.org/10.1002/minf.201700048] [PMID: 28692140]
[26]
Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Key topics in molecular docking for drug design. Int. J. Mol. Sci., 2019, 20(18), 4574.
[http://dx.doi.org/10.3390/ijms20184574] [PMID: 31540192]
[27]
Zhou, Z.; Chen, B.; Chen, S.; Lin, M.; Chen, Y.; Jin, S.; Chen, W.; Zhang, Y. Applications of network pharmacology in traditional chinese medicine research. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/1646905] [PMID: 32148533]
[28]
Sun, T.; Quan, W.; Peng, S.; Yang, D.; Liu, J.; He, C.; Chen, Y.; Hu, B.; Tuo, Q. Network pharmacology-based strategy combined with molecular docking and in vitro validation study to explore the underlying mechanism of huo luo xiao ling dan in treating atherosclerosis. Drug Des. Devel. Ther., 2022, 16, 1621-1645.
[http://dx.doi.org/10.2147/DDDT.S357483] [PMID: 35669282]
[29]
Cheng, Y.; Xiao, M.; Chen, J.; Wang, D.; Hu, Y.; Zhang, C.; Wang, T.; Fu, C.; Wu, Y.; Zhang, J. Quality assessment and Q-markers discovery of Tongsaimai tablet by integrating serum pharmacochemistry and network pharmacology for anti-atherosclerosis benefit. Chin. Med., 2022, 17(1), 103.
[http://dx.doi.org/10.1186/s13020-022-00658-9] [PMID: 36056398]
[30]
Pahwa, R.; Jialal, I. Atherosclerosis. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[31]
Yu, G.; Luo, Z.; Zhou, Y.; Zhang, L.; Wu, Y.; Ding, L.; Shi, Y. Uncovering the pharmacological mechanism of Carthamus tinctorius L. on cardiovascular disease by a systems pharmacology approach. Biomed. Pharmacother., 2019, 117, 109094.
[http://dx.doi.org/10.1016/j.biopha.2019.109094] [PMID: 31203131]
[32]
Wang, X.; Sharma, A.; Liu, Y.; Wang, X.; Kainth, R.; Kumari, D. Evaluation of flavonoid-rich fraction of portulaca grandiflora aerial part extract in atherogenic diet-induced atherosclerosis. Comb. Chem. High Throughput Screen., 2023.
[http://dx.doi.org/10.2174/0113862073267025230925062407]
[33]
Fu, X.; Sun, Z.; Long, Q.; Tan, W.; Ding, H. Glycosides from buyang huanwu decoction inhibit atherosclerotic inflammation via jak/stat signaling pathway. Phytomedicine, 2022, 105, 154385.
[34]
Li, Y.; Yang, J.M.; Cui, W.H.; Wang, J.K.; Chen, X.; Zhang, C.; Zhu, L.Z.; Luo, T. Prediction of active ingredients and mechanism of Siwei Jianbu decoction in the treatment of atherosclerosis by network pharmacology. Eur. Rev. Med. Pharmaco., 2022, 26(15), 5436-5446.
[http://dx.doi.org/10.26355/eurrev_202208_29412] [PMID: 35993639]
[35]
Gyöngyösi, M.; Winkler, J.; Ramos, I.; Do, Q.T.; Firat, H.; McDonald, K.; González, A.; Thum, T.; Díez, J.; Jaisser, F.; Pizard, A.; Zannad, F. Myocardial fibrosis: Biomedical research from bench to bedside. Eur. J. Heart Fail., 2017, 19(2), 177-191.
[http://dx.doi.org/10.1002/ejhf.696] [PMID: 28157267]
[36]
Wang, T.; Jiang, X.; Ruan, Y.; Zhuang, J.; Yin, Y. Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered, 2022, 13(5), 13767-13783.
[http://dx.doi.org/10.1080/21655979.2022.2084253] [PMID: 35726821]
[37]
Han, J.; Hou, J.; Liu, Y.; Liu, P.; Zhao, T.; Wang, X. Using network pharmacology to explore the mechanism of panax notoginseng in the treatment of myocardial fibrosis. J. Diabetes Res., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/8895950] [PMID: 35372585]
[38]
Shi, L.; Du, X.; Zuo, B.; Hu, J.; Cao, W. Qige huxin formula attenuates isoprenaline-induced cardiac fibrosis in mice via modulating gut microbiota and protecting intestinal integrity. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/2894659] [PMID: 35911163]
[39]
Wang, Y.; Zhao, X.; Gao, X.; Nie, X.; Yang, Y.; Fan, X. Development of fluorescence imaging-based assay for screening cardioprotective compounds from medicinal plants. Anal. Chim. Acta, 2011, 702(1), 87-94.
[http://dx.doi.org/10.1016/j.aca.2011.06.020] [PMID: 21819864]
[40]
Anwaier, G.; Xie, T.; Pan, C.; Li, A.; Yan, L. Qishenyiqi pill ameliorates cardiac fibrosis after pressure overload-induced cardiac hypertrophy by regulating fhl2 and the macrophage rp s19/tgf-β1 signaling pathway. Front. Pharmacol., 2022, 13, 918335.
[http://dx.doi.org/10.3389/fphar.2022.918335]
[41]
Frangogiannis, N.G. Cardiac fibrosis. Cardiovasc. Res., 2021, 117(6), 1450-1488.
[http://dx.doi.org/10.1093/cvr/cvaa324] [PMID: 33135058]
[42]
López, B.; Ravassa, S.; Moreno, M.U.; José, G.S.; Beaumont, J.; González, A.; Díez, J. Diffuse myocardial fibrosis: Mechanisms, diagnosis and therapeutic approaches. Nat. Rev. Cardiol., 2021, 18(7), 479-498.
[http://dx.doi.org/10.1038/s41569-020-00504-1] [PMID: 33568808]
[43]
Wahab, S.; Alsayari, A. Potential pharmacological applications of nigella seeds with a focus on nigella sativa and its constituents against chronic inflammatory diseases: Progress and future opportunities. Plants, 2023, 12(22), 3829.
[http://dx.doi.org/10.3390/plants12223829] [PMID: 38005726]
[44]
Liu, L.; Yao, L.; Wang, S.; Chen, Z.; Han, T.; Ma, P.; Jiang, L.; Yuan, C.; Li, J.; Ke, D.; Li, C.; Yamahara, J.; Li, Y.; Wang, J. 6‐gingerol improves ectopic lipid accumulation, mitochondrial dysfunction, and insulin resistance in skeletal muscle of ageing rats: Dual stimulation of the ampk/pgc‐1α signaling pathway via plasma adiponectin and muscular adipor1. Mol. Nutr. Food Res., 2019, 63(6), 1800649.
[http://dx.doi.org/10.1002/mnfr.201800649] [PMID: 30575271]
[45]
Nicoll, R.; Henein, M.Y. Ginger (Zingiber officinale Roscoe): A hot remedy for cardiovascular disease? Int. J. Cardiol., 2009, 131(3), 408-409.
[http://dx.doi.org/10.1016/j.ijcard.2007.07.107] [PMID: 18037515]
[46]
Han, X.; Zhang, Y.; Liang, Y.; Zhang, J.; Li, M.; Zhao, Z.; Zhang, X.; Xue, Y.; Zhang, Y.; Xiao, J.; Chu, L. 6‐Gingerol, an active pungent component of ginger, inhibits L‐type Ca 2+ current, contractility, and Ca 2+ transients in isolated rat ventricular myocytes. Food Sci. Nutr., 2019, 7(4), 1344-1352.
[http://dx.doi.org/10.1002/fsn3.968] [PMID: 31024707]
[47]
Han, X.; Liu, P.; Liu, M.; Wei, Z.; Fan, S.; Wang, X.; Sun, S.; Chu, L. [6]‐gingerol ameliorates iso‐induced myocardial fibrosis by reducing oxidative stress, inflammation, and apoptosis through inhibition of tlr4/mapks/nf‐κb pathway. Mol. Nutr. Food Res., 2020, 64(13), 2000003.
[http://dx.doi.org/10.1002/mnfr.202000003] [PMID: 32438504]
[48]
Zhang, Y.; Wang, D.; Wu, K.; Shao, X.; Diao, H.; Wang, Z.; Sun, M.; Huang, X.; Li, Y.; Tang, X.; Yan, M.; Guo, J. The traditional chinese medicine formula ftz protects against cardiac fibrosis by suppressing the tgfβ1-smad2/3 pathway. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/5642307] [PMID: 35497919]
[49]
Lei, W.; Chen, C.; Zhou, F.; Ma, Y.; Li, Y.; Zhang, H. Tanshinol alleviates ischemia-induced myocardial fibrosis via targeting ERK2 and disturbing the intermolecular autophosphorylation of ERK2Thr188. Biomed. Pharmacother., 2023, 168, 115729.
[http://dx.doi.org/10.1016/j.biopha.2023.115729] [PMID: 37862964]
[50]
Chen, Q.; Xu, Q.; Zhu, H.; Wang, J.; Sun, N.; Bian, H.; Li, Y.; Lin, C. Salvianolic acid B promotes angiogenesis and inhibits cardiomyocyte apoptosis by regulating autophagy in myocardial ischemia. Chin. Med., 2023, 18(1), 155.
[http://dx.doi.org/10.1186/s13020-023-00859-w] [PMID: 38017536]
[51]
Luo, H.; Fu, L.; Wang, X.; Yini, Xu.; Ling, Tao.; Shen, X. Salvianolic acid B ameliorates myocardial fibrosis in diabetic cardiomyopathy by deubiquitinating Smad7. Chin. Med., 2023, 18(1), 161.
[http://dx.doi.org/10.1186/s13020-023-00868-9] [PMID: 38072948]
[52]
Severino, P.; D’Amato, A.; Pucci, M.; Infusino, F.; Adamo, F.; Birtolo, L.I.; Netti, L.; Montefusco, G.; Chimenti, C.; Lavalle, C.; Maestrini, V.; Mancone, M.; Chilian, W.M.; Fedele, F. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int. J. Mol. Sci., 2020, 21(21), 8118.
[http://dx.doi.org/10.3390/ijms21218118] [PMID: 33143256]
[53]
Fan, Q.; Tao, R.; Zhang, H.; Xie, H.; Lu, L.; Wang, T.; Su, M.; Hu, J.; Zhang, Q.; Chen, Q.; Iwakura, Y.; Shen, W.; Zhang, R.; Yan, X. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration. Circulation, 2019, 139(5), 663-678.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.036044] [PMID: 30586706]
[54]
Turer, A.T.; Hill, J.A. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am. J. Cardiol., 2010, 106(3), 360-368.
[http://dx.doi.org/10.1016/j.amjcard.2010.03.032] [PMID: 20643246]
[55]
Wang, R.; Wang, M.; Zhou, J.; Wu, D.; Ye, J. Saponins in chinese herbal medicine exerts protection in myocardial ischemia-reperfusion injury: Possible mechanism and target analysis. Front. Pharmacol., 2021, 11, 570867.
[http://dx.doi.org/10.3389/fphar.2020.570867]
[56]
Luan, F.; Rao, Z.; Peng, L.; Lei, Z.; Zeng, J.; Peng, X.; Yang, R.; Liu, R.; Zeng, N. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway. Phytomedicine, 2022, 100, 154047.
[http://dx.doi.org/10.1016/j.phymed.2022.154047] [PMID: 35320770]
[57]
Lan, T.; Zeng, Q.; Jiang, W.; Liu, T.; Xu, W.; Yao, P.; Lu, W. Metabolism disorder promotes isoproterenol-induced myocardial injury in mice with high temperature and high humidity and high-fat diet. BMC Cardiovasc. Disord., 2022, 22(1), 133.
[http://dx.doi.org/10.1186/s12872-022-02583-z] [PMID: 35350989]
[58]
Han, Y.; Li, C.; Zhang, P.; Yang, X.; Min, J.; Wu, Q.; Xie, Y.; Jin, D.; Wang, Z.; Shao, F.; Quan, H. Protective effects of 5(S)-5-carboxystrictosidine on myocardial ischemia-reperfusion injury through activation of mitochondrial KATP channels. Eur. J. Pharmacol., 2022, 920, 174811.
[http://dx.doi.org/10.1016/j.ejphar.2022.174811] [PMID: 35182546]
[59]
Park, E.S.; Kang, D.H.; Yang, M.K.; Kang, J.C.; Jang, Y.C.; Park, J.S.; Kim, S.K.; Shin, H.S. Cordycepin, 3′-deoxyadenosine, prevents rat hearts from ischemia/reperfusion injury via activation of Akt/GSK-3β/p70S6K signaling pathway and HO-1 expression. Cardiovasc. Toxicol., 2014, 14(1), 1-9.
[http://dx.doi.org/10.1007/s12012-013-9232-0] [PMID: 24178833]
[60]
Xu, H.; Cheng, J.; He, F. Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway. J. Physiol. Biochem., 2022, 78(2), 401-413.
[http://dx.doi.org/10.1007/s13105-021-00816-x] [PMID: 35230668]
[61]
Imenshahidi, M.; Hosseinzadeh, H. Berberine and barberry (BERBERIS VULGARIS): A clinical review. Phytother. Res., 2019, 33(3), 504-523.
[http://dx.doi.org/10.1002/ptr.6252] [PMID: 30637820]
[62]
Chen, S.; Chen, Z.; Wang, Y.; Hao, W.; Yuan, Q.; Zhou, H.; Gao, C.; Wang, Y.; Wu, X.; Wang, S. Targeted delivery of Chinese herb pair-based berberine/tannin acid self-assemblies for the treatment of ulcerative colitis. J. Adv. Res., 2022, 40, 263-276.
[http://dx.doi.org/10.1016/j.jare.2021.11.017] [PMID: 36100331]
[63]
Jia, X.; Shao, W.; Tian, S. Berberine alleviates myocardial ischemia–reperfusion injury by inhibiting inflammatory response and oxidative stress: The key function of miR-26b-5p-mediated PTGS2/MAPK signal transduction. Pharm. Biol., 2022, 60(1), 652-663.
[http://dx.doi.org/10.1080/13880209.2022.2048029] [PMID: 35311466]
[64]
Tong, H.Y.; Dong, Y.; Huang, X.J.; Murtaza, G.; Huang, Y.J.; Sarfaraz Iqbal, M. Anshen buxin liuwei pill, a mongolian medicinal formula, could protect h2o2-induced h9c2 myocardial cell injury by suppressing apoptosis, calcium channel activation, and oxidative stress. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/5023654] [PMID: 35178104]
[65]
Li, Q.; Li, Z.; Liu, C.; Xu, M.; Li, T.; Wang, Y.; Feng, J.; Yin, X.; Du, X.; Lu, C. Maslinic acid ameliorates myocardial ischemia reperfusion injury-induced oxidative stress via activating nrf2 and inhibiting nf-κb pathways. Am. J. Chin. Med., 2023, 51(4), 929-951.
[http://dx.doi.org/10.1142/S0192415X2350043X] [PMID: 36974993]
[66]
Li, J.; Ma, X.; Yang, J.; Wang, L.; Huang, Y.; Zhu, Y. Lupeol alleviates myocardial ischemia-reperfusion injury in rats by regulating nf-κb and nrf2 pathways. Am. J. Chin. Med., 2022, 50(5), 1269-1280.
[http://dx.doi.org/10.1142/S0192415X22500525] [PMID: 35670060]
[67]
Chen, X.; Wang, Q.; Shao, M.; Ma, L.; Guo, D.; Wu, Y.; Gao, P.; Wang, X.; Li, W.; Li, C.; Wang, Y. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed. Pharmacother., 2019, 120, 109487.
[http://dx.doi.org/10.1016/j.biopha.2019.109487] [PMID: 31577975]
[68]
Zhang, Q.; Guo, D.; Wang, Y.; Wang, X.; Wang, Q. Danqi pill protects against heart failure post-acute myocardial infarction via hif-1α/pgc-1α mediated glucose metabolism pathway. Front. Pharmacol., 2020, 11, 00458.
[http://dx.doi.org/10.3389/fphar.2020.00458]
[69]
Zhang, X.; Qu, H.; Yang, T.; Liu, Q.; Zhou, H. Astragaloside iv attenuate mi-induced myocardial fibrosis and cardiac remodeling by inhibiting ros/caspase-1/gsdmd signaling pathway. Cell cycle, 2022, 1-14.
[http://dx.doi.org/10.1080/15384101.2022.2093598]
[70]
Tan, G.; Liao, W.; Dong, X.; Yang, G.; Zhu, Z.; Li, W.; Chai, Y.; Lou, Z. Metabonomic profiles delineate the effect of traditional Chinese medicine sini decoction on myocardial infarction in rats. PLoS One, 2012, 7(4), e34157.
[http://dx.doi.org/10.1371/journal.pone.0034157] [PMID: 22493681]
[71]
Liu, J.; Li, Q.; Yin, Y.; Liu, R.; Xu, H.; Bi, K. Ultra-fast LC-ESI-MS/MS method for the simultaneous determination of six highly toxic Aconitum alkaloids from Aconiti kusnezoffii radix in rat plasma and its application to a pharmacokinetic study. J. Sep. Sci., 2014, 37(1-2), 171-178.
[http://dx.doi.org/10.1002/jssc.201300775] [PMID: 24170571]
[72]
Chen, L.; Yan, L.; Zhang, W. Benzoylaconine improves mitochondrial function in oxygen-glucose deprivation and reperfusion-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis. Korean J. Physiol. Pharmacol., 2022, 26(5), 325-333.
[http://dx.doi.org/10.4196/kjpp.2022.26.5.325] [PMID: 36039733]
[73]
Gu, C.; Li, L.; Huang, Y.; Qian, D.; Liu, W.; Zhang, C.; Luo, Y.; Zhou, Z.; Kong, F.; Zhao, X.; Liu, H.; Gao, P.; Chen, J.; Yin, G. Salidroside ameliorates mitochondria-dependent neuronal apoptosis after spinal cord ischemia-reperfusion injury partially through inhibiting oxidative stress and promoting mitophagy. Oxid. Med. Cell. Longev., 2020, 2020, 1-22.
[http://dx.doi.org/10.1155/2020/3549704] [PMID: 32774670]
[74]
Chen, P.; Liu, J.; Ruan, H.; Zhang, M.; Wu, P.; Yimei, D.; Han, B. Protective effects of Salidroside on cardiac function in mice with myocardial infarction. Sci. Rep., 2019, 9(1), 18127.
[http://dx.doi.org/10.1038/s41598-019-54713-x] [PMID: 31792327]
[75]
Yan, T.; Li, X.; Nian, T.; Zhang, X.; He, B. Salidroside inhibits ischemia/reperfusion-induced myocardial apoptosis by targeting Mir-378a-3p via the Igf1r/Pi3k/Akt signaling pathway. Transplant. Proc., 2022, 54(7), 1970-1983.
[http://dx.doi.org/10.1016/j.transproceed.2022.05.017]
[76]
Yu, Y.W.; Liu, S.; Zhou, Y.Y.; Huang, K.Y.; Wu, B.S.; Lin, Z.H.; Zhu, C.X.; Xue, Y.J.; Ji, K.T. Shexiang Baoxin Pill attenuates myocardial ischemia/reperfusion injury by activating autophagy via modulating the ceRNA-Map3k8 pathway. Phytomedicine, 2022, 104, 154336.
[http://dx.doi.org/10.1016/j.phymed.2022.154336] [PMID: 35849969]
[77]
Shen, J.; Zhu, Y.; Yu, H.; Fan, Z.; Xiao, F.; Wu, P.; Zhang, Q.; Xiong, X.; Pan, J.; Zhan, R. Buyang Huanwu decoction increases angiopoietin-1 expression and promotes angiogenesis and functional outcome after focal cerebral ischemia. J. Zhejiang Univ. Sci. B, 2014, 15(3), 272-280.
[http://dx.doi.org/10.1631/jzus.B1300166] [PMID: 24599691]
[78]
Jinglong, T.; Weijuan, G.; Jun, L.; Tao, Q.; Hongbo, Z.; Shasha, L. The molecular and electrophysiological mechanism of Buyanghuanwu Decoction in learning and memory ability of vascular dementia rats. Brain Res. Bull., 2013, 99, 13-18.
[http://dx.doi.org/10.1016/j.brainresbull.2013.09.002] [PMID: 24070657]
[79]
Zhang, L.; Chen, L.; You, X.; Li, M.; Shi, H.; Sun, W.; Leng, Y.; Xue, Y.; Wang, H. Naoxintong capsule limits myocardial infarct expansion by inhibiting platelet activation through the ERK5 pathway. Phytomedicine, 2022, 98, 153953.
[http://dx.doi.org/10.1016/j.phymed.2022.153953] [PMID: 35092875]
[80]
Pan-Pan Hao, FJYC; Zhang, YZAY Traditional chinese medication for cardiovascular disease. Nat. Rev. Cardiol., 2015, 12(2), 115-122.
[http://dx.doi.org/10.1038/nrcardio.2014.177]
[81]
Zhang, M.; Guo, F.; Li, X.; Xian, M.; Wang, T.; Wu, H.; Wei, J.; Huang, Y.; Cui, X.; Wu, S.; Gong, M.; Yang, H. Yi-Xin-Shu capsule ameliorates cardiac hypertrophy by regulating RB/HDAC1/GATA4 signaling pathway based on proteomic and mass spectrometry image analysis. Phytomedicine, 2022, 103, 154185.
[http://dx.doi.org/10.1016/j.phymed.2022.154185] [PMID: 35679794]
[82]
Wang, T.; Guo, R.; Zhou, G.; Zhou, X.; Kou, Z.; Sui, F.; Li, C.; Tang, L.; Wang, Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: A review. J. Ethnopharmacol., 2016, 188, 234-258.
[http://dx.doi.org/10.1016/j.jep.2016.05.005] [PMID: 27154405]
[83]
Han, S.Y.; Li, H.X.; Ma, X.; Zhang, K.; Ma, Z.Z.; Jiang, Y.; Tu, P.F. Evaluation of the anti-myocardial ischemia effect of individual and combined extracts of Panax notoginseng and Carthamus tinctorius in rats. J. Ethnopharmacol., 2013, 145(3), 722-727.
[http://dx.doi.org/10.1016/j.jep.2012.11.036] [PMID: 23237935]
[84]
Xu, Y.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Panax notoginseng for inflammation-related chronic diseases: A review on the modulations of multiple pathways. Am. J. Chin. Med., 2018, 46(5), 971-996.
[http://dx.doi.org/10.1142/S0192415X18500519] [PMID: 29976083]
[85]
Yang, B.R.; Cheung, K.K.; Zhou, X.; Xie, R.F.; Cheng, P.P.; Wu, S.; Zhou, Z.Y.; Tang, J.Y.; Hoi, P.M.; Wang, Y.H.; Lee, S.M.Y. Amelioration of acute myocardial infarction by saponins from flower buds of Panax notoginseng via pro-angiogenesis and anti-apoptosis. J. Ethnopharmacol., 2016, 181, 50-58.
[http://dx.doi.org/10.1016/j.jep.2016.01.022] [PMID: 26806572]
[86]
Liu, J.; Wang, Y.; Qiu, L.; Yu, Y.; Wang, C. Saponins of Panax notoginseng: Chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin. Investig. Drugs, 2014, 23(4), 523-539.
[http://dx.doi.org/10.1517/13543784.2014.892582] [PMID: 24555869]
[87]
Tian, X.; Chen, X.; Jiang, Q.; Sun, Q.; Liu, T.; Hong, Y.; Zhang, Y.; Jiang, Y.; Shao, M.; Yang, R.; Li, C.; Wang, Q.; Wang, Y. Notoginsenoside r1 ameliorates cardiac lipotoxicity through ampk signaling pathway. Front. Pharmacol., 2022, 13, 864326.
[http://dx.doi.org/10.3389/fphar.2022.864326] [PMID: 35370720]
[88]
Xu, C.; Wang, W.; Wang, B.; Zhang, T.; Cui, X.; Pu, Y.; Li, N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. J. Ethnopharmacol., 2019, 236, 443-465.
[http://dx.doi.org/10.1016/j.jep.2019.02.035] [PMID: 30802611]
[89]
Li, Y.; Li, X.; Chen, X.; Sun, X. Liu, X Qishen granule (qsg) inhibits monocytes released from the spleen and protect myocardial function via the tlr4-myd88-nf-κb p65 pathway in heart failure mice. Front. Pharmacol., 2022, 13, 850187.
[http://dx.doi.org/10.3389/fphar.2022.850187]
[90]
Humeres, C.; Frangogiannis, N.G. Fibroblasts in the infarcted, remodeling, and failing heart. JACC Basic Transl. Sci., 2019, 4(3), 449-467.
[http://dx.doi.org/10.1016/j.jacbts.2019.02.006] [PMID: 31312768]
[91]
Deng, M.; Chen, H.; Long, J.; Song, J.; Xie, L.; Li, X. Calycosin: A review of its pharmacological effects and application prospects. Expert Rev. Anti Infect. Ther., 2021, 19(7), 911-925.
[http://dx.doi.org/10.1080/14787210.2021.1863145] [PMID: 33346681]
[92]
Wang, X.; Li, W.; Zhang, Y.; Sun, Q.; Cao, J.; Tan, N.; Yang, S.; Lu, L.; Zhang, Q.; Wei, P.; Ma, X.; Wang, W.; Wang, Y. Calycosin as a novel pi3k activator reduces inflammation and fibrosis in heart failure through akt–ikk/stat3 axis. Front. Pharmacol., 2022, 13, 828061.
[http://dx.doi.org/10.3389/fphar.2022.828061] [PMID: 35264961]
[93]
Wang, S.H.; Tsai, K.L.; Chou, W.C.; Cheng, H.C.; Huang, Y.T.; Ou, H.C.; Chang, Y.C. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through nrf2/ho-1 signaling pathway. Am. J. Chin. Med., 2022, 50(5), 1281-1298.
[http://dx.doi.org/10.1142/S0192415X22500537] [PMID: 35670059]
[94]
Zhou, Z.; Zhang, J.; You, L.; Wang, T.; Wang, K.; Wang, L.; Kong, X.; Gao, Y.; Sun, X. Application of herbs and active ingredients ameliorate non-alcoholic fatty liver disease under the guidance of traditional Chinese medicine. Front. Endocrinol., 2022, 13, 1000727.
[http://dx.doi.org/10.3389/fendo.2022.1000727] [PMID: 36204095]
[95]
Wang, Y.; Cui, W.; Yang, C.; Wei, H.; Liu, Q.; Xiong, L.; Li, H.; Lin, Y. Comparison of geqingpi and sihuaqingpi based on ultra‐high‐performance liquid chromatography‐tandem mass spectrometry combined with multivariate statistics, network pharmacology analysis, and molecular docking. J. Sep. Sci., 2022, 45(22), 4079-4098.
[http://dx.doi.org/10.1002/jssc.202200564] [PMID: 36200604]
[96]
Huang, J.; Chen, R.; Zhou, J.; Zhang, Q.; Xue, C.; Li, Y.; Zheng, L.; Huang, Y.; Wang, Q.; Chen, Y.; Gong, Z. Comparative pharmacokinetic study of the five anti-inflammatory active ingredients of Inula cappa in a normal and an LPS-induced inflammatory cell model. Front. Pharmacol., 2022, 13, 981112.
[http://dx.doi.org/10.3389/fphar.2022.981112] [PMID: 36199688]
[97]
Wu, E.; Zhang, J.; Chen, W.; Wang, Y.; Yin, H. Comparative pharmacokinetic study of nine bioactive components in osteoarthritis rat plasma using uplc‐ms/ms after single and combined oral administration of epimedii folium and chuanxiong rhizoma extract. Biomed. Chromatogr., 2022, 5518.
[http://dx.doi.org/10.1002/bmc.5518] [PMID: 36201235]
[98]
Mohammed, S.A.D.; Liu, H.; Baldi, S.; Chen, P.; Lu, F.; Liu, S. Gjd modulates cardiac/vascular inflammation and decreases blood pressure in hypertensive rats. Mediators Inflamm., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/7345116] [PMID: 36164390]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy