Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer

Author(s): Ekta Shirbhate, Vaibhav Singh, Aditya Mishra, Varsha Jahoriya, Ravichandran Veerasamy, Amit K Tiwari and Harish Rajak*

Volume 24, Issue 15, 2024

Published on: 09 February, 2024

Page: [1449 - 1468] Pages: 20

DOI: 10.2174/0113895575287242240129120002

Price: $65

Abstract

Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.

« Previous
Graphical Abstract

[1]
Zhitomirsky, B.; Assaraf, Y.G. Lysosomes as mediators of drug resistance in cancer. Drug Resist. Updat., 2016, 24, 23-33.
[http://dx.doi.org/10.1016/j.drup.2015.11.004] [PMID: 26830313]
[2]
Piao, S.; Amaravadi, R.K. Targeting the lysosome in cancer. Ann. N. Y. Acad. Sci., 2016, 1371(1), 45-54.
[http://dx.doi.org/10.1111/nyas.12953] [PMID: 26599426]
[3]
Dielschneider, R.F.; Henson, E.S.; Gibson, S.B. Lysosomes as oxidative targets for cancer therapy. Oxid. Med. Cell. Longev., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/3749157] [PMID: 28757908]
[4]
Palmieri, M.; Impey, S.; Kang, H.; di Ronza, A.; Pelz, C.; Sardiello, M.; Ballabio, A. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet., 2011, 20(19), 3852-3866.
[http://dx.doi.org/10.1093/hmg/ddr306] [PMID: 21752829]
[5]
Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; Banfi, S.; Parenti, G.; Cattaneo, E.; Ballabio, A. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939), 473-477.
[http://dx.doi.org/10.1126/science.1174447] [PMID: 19556463]
[6]
Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; Facchinetti, V.; Sabatini, D.M.; Ballabio, A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J., 2012, 31(5), 1095-1108.
[http://dx.doi.org/10.1038/emboj.2012.32] [PMID: 22343943]
[7]
Saftig, P.; Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol., 2009, 10(9), 623-635.
[http://dx.doi.org/10.1038/nrm2745] [PMID: 19672277]
[8]
Settembre, C.; Ballabio, A. Lysosomal adaptation: How the lysosome responds to external cues. Cold Spring Harb. Perspect. Biol., 2014, 6(6), a016907.
[http://dx.doi.org/10.1101/cshperspect.a016907] [PMID: 24799353]
[9]
Aits, S.; Jäättelä, M. Lysosomal cell death at a glance. J. Cell Sci., 2013, 126(9), 1905-1912.
[http://dx.doi.org/10.1242/jcs.091181] [PMID: 23720375]
[10]
Kroemer, G.; Jäättelä, M. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer, 2005, 5(11), 886-897.
[http://dx.doi.org/10.1038/nrc1738] [PMID: 16239905]
[11]
Settembre, C.; Fraldi, A.; Medina, D.L.; Ballabio, A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol., 2013, 14(5), 283-296.
[http://dx.doi.org/10.1038/nrm3565] [PMID: 23609508]
[12]
Geisslinger, F.; Müller, M.; Vollmar, A.M.; Bartel, K. Targeting lysosomes in cancer as promising strategy to overcome chemoresistance - A mini review. Front. Oncol., 2020, 10, 1156.
[http://dx.doi.org/10.3389/fonc.2020.01156] [PMID: 32733810]
[13]
Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience, 2012, 6, ed16.
[http://dx.doi.org/10.3332/ecancer.2012.ed16] [PMID: 24883085]
[14]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[15]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[16]
Halaby, R. Influence of lysosomal sequestration on multidrug resistance in cancer cells. Cancer Drug Resist., 2019, 2(1), 31-42.
[http://dx.doi.org/10.20517/cdr.2018.23] [PMID: 35582144]
[17]
Goldman, S.D.B.; Funk, R.S.; Rajewski, R.A.; Krise, J.P. Mechanisms of amine accumulation in, and egress from, lysosomes. Bioanalysis, 2009, 1(8), 1445-1459.
[http://dx.doi.org/10.4155/bio.09.128] [PMID: 21083094]
[18]
Kazmi, F.; Hensley, T.; Pope, C.; Funk, R.S.; Loewen, G.J.; Buckley, D.B.; Parkinson, A. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab. Dispos., 2013, 41(4), 897-905.
[http://dx.doi.org/10.1124/dmd.112.050054] [PMID: 23378628]
[19]
Gotink, K.J.; Broxterman, H.J.; Labots, M.; de Haas, R.R.; Dekker, H.; Honeywell, R.J.; Rudek, M.A.; Beerepoot, L.V.; Musters, R.J.; Jansen, G.; Griffioen, A.W.; Assaraf, Y.G.; Pili, R.; Peters, G.J.; Verheul, H.M.W. Lysosomal sequestration of sunitinib: A novel mechanism of drug resistance. Clin. Cancer Res., 2011, 17(23), 7337-7346.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1667] [PMID: 21980135]
[20]
Hraběta, J.; Belhajová, M.; Šubrtová, H.; Merlos Rodrigo, M.A.; Heger, Z.; Eckschlager, T. Drug sequestration in lysosomes as one of the mechanisms of chemoresistance of cancer Cells and the possibilities of its inhibition. Int. J. Mol. Sci., 2020, 21(12), 4392.
[http://dx.doi.org/10.3390/ijms21124392] [PMID: 32575682]
[21]
Adar, Y.; Stark, M.; Bram, E.E.; Nowak-Sliwinska, P.; van den Bergh, H.; Szewczyk, G.; Sarna, T.; Skladanowski, A.; Griffioen, A.W.; Assaraf, Y.G. Imidazoacridinone-dependent lysosomal photodestruction: A pharmacological Trojan horse approach to eradicate multidrug-resistant cancers. Cell Death Dis., 2012, 3(4), e293.
[http://dx.doi.org/10.1038/cddis.2012.30] [PMID: 22476101]
[22]
Herlevsen, M.; Oxford, G.; Owens, C.R.; Conaway, M.; Theodorescu, D. Depletion of major vault protein increases doxorubicin sensitivity and nuclear accumulation and disrupts its sequestration in lysosomes. Mol. Cancer Ther., 2007, 6(6), 1804-1813.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0372] [PMID: 17575109]
[23]
Ndolo, R.A.; Luan, Y.; Duan, S.; Forrest, M.L.; Krise, J.P. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro. PLoS One, 2012, 7(11), e49366.
[http://dx.doi.org/10.1371/journal.pone.0049366] [PMID: 23145164]
[24]
Marshall, L.A.; Rhee, M.S.; Hofmann, L.; Khodjakov, A.; Schneider, E. Increased lysosomal uptake of methotrexate-polyglutamates in two methotrexate-resistant cell lines with distinct mechanisms of resistance. Biochem. Pharmacol., 2005, 71(1-2), 203-213.
[http://dx.doi.org/10.1016/j.bcp.2005.10.008] [PMID: 16263093]
[25]
Zhitomirsky, B.; Assaraf, Y.G. Correction: Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget, 2022, 13(1), 585-586.
[http://dx.doi.org/10.18632/oncotarget.28110] [PMID: 35391719]
[26]
Mohammadabadi, M.R.; Mozafari, M.R. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form. J. Drug Deliv. Sci. Technol., 2018, 47, 445-453.
[http://dx.doi.org/10.1016/j.jddst.2018.08.019]
[27]
Barazandeh, H.; Kissane, D.W.; Saeedi, N.; Gordon, M. A systematic review of the relationship between early maladaptive schemas and borderline personality disorder/traits. Pers. Individ. Dif., 2016, 94, 130-139.
[http://dx.doi.org/10.1016/j.paid.2016.01.021]
[28]
Barazandeh, A.; Mohammadabadi, M.R.; Ghaderi-Zefrehei, M.; Nezamabadi-pour, H. Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech J. Anim. Sci., 2016, 61(11), 487-495.
[http://dx.doi.org/10.17221/78/2015-CJAS]
[29]
Zarrabi, A.J.; Welsh, J.W.; Sniecinski, R.; Curseen, K.; Gillespie, T.; Baer, W.; McKenzie-Brown, A.M.; Singh, V. Perception of benefits and harms of medical cannabis among seriously Ill patients in an outpatient palliative care practice. J. Palliat. Med., 2020, 23(4), 558-562.
[http://dx.doi.org/10.1089/jpm.2019.0211] [PMID: 31539298]
[30]
Allemailem, K.S.; Almatroudi, A.; Alrumaihi, F.; Almatroodi, S.A.; Alkurbi, M.O.; Basfar, G.T.; Rahmani, A.H.; Khan, A.A. Novel approaches of dysregulating lysosome functions in cancer cells by specific drugs and its nanoformulations: A smart approach of modern therapeutics. Int. J. Nanomedicine, 2021, 16, 5065-5098.
[http://dx.doi.org/10.2147/IJN.S321343] [PMID: 34345172]
[31]
Li, F.; Wang, W.; Lai, G.; Lan, S.; Lv, L.; Wang, S.; Liu, X.; Zheng, J. Development and validation of a novel lysosome-related LncRNA signature for predicting prognosis and the immune landscape features in colon cancer. Sci. Rep., 2024, 14(1), 622.
[http://dx.doi.org/10.1038/s41598-023-51126-9] [PMID: 38182713]
[32]
Tang, T.; Yang, Z.; Wang, D.; Yang, X.; Wang, J.; Li, L.; Wen, Q.; Gao, L.; Bian, X.; Yu, S. The role of lysosomes in cancer development and progression. Cell Biosci., 2020, 10(1), 131.
[http://dx.doi.org/10.1186/s13578-020-00489-x] [PMID: 33292489]
[33]
Pal, S.; Sharma, A.; Mathew, S.P.; Jaganathan, B.G. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Front. Immunol., 2022, 13, 955476.
[http://dx.doi.org/10.3389/fimmu.2022.955476] [PMID: 36618350]
[34]
Commisso, C.; Davidson, S.M.; Soydaner-Azeloglu, R.G.; Parker, S.J.; Kamphorst, J.J.; Hackett, S.; Grabocka, E.; Nofal, M.; Drebin, J.A.; Thompson, C.B.; Rabinowitz, J.D.; Metallo, C.M.; Vander Heiden, M.G.; Bar-Sagi, D. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature, 2013, 497(7451), 633-637.
[http://dx.doi.org/10.1038/nature12138] [PMID: 23665962]
[35]
Mosesson, Y.; Mills, G.B.; Yarden, Y. Derailed endocytosis: An emerging feature of cancer. Nat. Rev. Cancer, 2008, 8(11), 835-850.
[http://dx.doi.org/10.1038/nrc2521] [PMID: 18948996]
[36]
Perera, R.M.; Bardeesy, N. Pancreatic cancer metabolism: Breaking it down to build it back up. Cancer Discov., 2015, 5(12), 1247-1261.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0671] [PMID: 26534901]
[37]
MDuff F.K.E.; Turner, S.D.; Jailbreak, D. Jailbreak: Oncogene-induced senescence and its evasion. Cell. Signal., 2011, 23(1), 6-13.
[http://dx.doi.org/10.1016/j.cellsig.2010.07.004] [PMID: 20633638]
[38]
Collado, M.; Gil, J.; Efeyan, A.; Guerra, C.; Schuhmacher, A.J.; Barradas, M.; Benguría, A.; Zaballos, A.; Flores, J.M.; Barbacid, M.; Beach, D.; Serrano, M. Senescence in premalignant tumours. Nature, 2005, 436(7051), 642.
[http://dx.doi.org/10.1038/436642a] [PMID: 16079833]
[39]
Braig, M.; Lee, S.; Loddenkemper, C.; Rudolph, C.; Peters, A.H.F.M.; Schlegelberger, B.; Stein, H.; Dörken, B.; Jenuwein, T.; Schmitt, C.A. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature, 2005, 436(7051), 660-665.
[http://dx.doi.org/10.1038/nature03841] [PMID: 16079837]
[40]
Chen, Z.; Trotman, L.C.; Shaffer, D.; Lin, H.K.; Dotan, Z.A.; Niki, M.; Koutcher, J.A.; Scher, H.I.; Ludwig, T.; Gerald, W.; Cordon-Cardo, C.; Paolo Pandolfi, P. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 2005, 436(7051), 725-730.
[http://dx.doi.org/10.1038/nature03918] [PMID: 16079851]
[41]
Dankort, D.; Filenova, E.; Collado, M.; Serrano, M.; Jones, K.; McMahon, M. A new mouse model to explore the initiation, progression, and therapy of BRAF V600E -induced lung tumors. Genes Dev., 2007, 21(4), 379-384.
[http://dx.doi.org/10.1101/gad.1516407] [PMID: 17299132]
[42]
Ivanov, A.; Pawlikowski, J.; Manoharan, I.; van Tuyn, J.; Nelson, D.M.; Rai, T.S.; Shah, P.P.; Hewitt, G.; Korolchuk, V.I.; Passos, J.F.; Wu, H.; Berger, S.L.; Adams, P.D. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol., 2013, 202(1), 129-143.
[http://dx.doi.org/10.1083/jcb.201212110] [PMID: 23816621]
[43]
Halaby, R. Role of lysosomes in cancer therapy. Res. Rep. Biol., 2015, 6, 147-155.
[http://dx.doi.org/10.2147/RRB.S83999]
[44]
Guo, J.Y.; Karsli-Uzunbas, G.; Mathew, R.; Aisner, S.C.; Kamphorst, J.J.; Strohecker, A.M.; Chen, G.; Price, S.; Lu, W.; Teng, X.; Snyder, E.; Santanam, U.; DiPaola, R.S.; Jacks, T.; Rabinowitz, J.D.; White, E. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev., 2013, 27(13), 1447-1461.
[http://dx.doi.org/10.1101/gad.219642.113] [PMID: 23824538]
[45]
Rao, S.; Tortola, L.; Perlot, T.; Wirnsberger, G.; Novatchkova, M.; Nitsch, R.; Sykacek, P.; Frank, L.; Schramek, D.; Komnenovic, V.; Sigl, V.; Aumayr, K.; Schmauss, G.; Fellner, N.; Handschuh, S.; Glösmann, M.; Pasierbek, P.; Schlederer, M.; Resch, G.P.; Ma, Y.; Yang, H.; Popper, H.; Kenner, L.; Kroemer, G.; Penninger, J.M. A dual role for autophagy in a murine model of lung cancer. Nat. Commun., 2014, 5(1), 3056.
[http://dx.doi.org/10.1038/ncomms4056] [PMID: 24445999]
[46]
Xie, X.; Koh, J.Y.; Price, S.; White, E.; Mehnert, J.M. Atg7 Overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov., 2015, 5(4), 410-423.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1473] [PMID: 25673642]
[47]
Lévy, J.; Cacheux, W.; Bara, M.A.; L’Hermitte, A.; Lepage, P.; Fraudeau, M.; Trentesaux, C.; Lemarchand, J.; Durand, A.; Crain, A.M.; Marchiol, C.; Renault, G.; Dumont, F.; Letourneur, F.; Delacre, M.; Schmitt, A.; Terris, B.; Perret, C.; Chamaillard, M.; Couty, J.P.; Romagnolo, B. Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat. Cell Biol., 2015, 17(8), 1062-1073.
[http://dx.doi.org/10.1038/ncb3206] [PMID: 26214133]
[48]
Santanam, U.; Banach-Petrosky, W.; Abate-Shen, C.; Shen, M.M.; White, E.; DiPaola, R.S. Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev., 2016, 30(4), 399-407.
[http://dx.doi.org/10.1101/gad.274134.115] [PMID: 26883359]
[49]
Yeo, S.K.; Wen, J.; Chen, S.; Guan, J.L. Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfβ/Smad signaling. Cancer Res., 2016, 76(11), 3397-3410.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2946] [PMID: 27197172]
[50]
Morelli, M.B.; Nabissi, M.; Amantini, C.; Tomassoni, D.; Rossi, F.; Cardinali, C.; Santoni, M.; Arcella, A.; Oliva, M.A.; Santoni, A.; Polidori, C.; Mariani, M.P.; Santoni, G. Overexpression of transient receptor potential mucolipin-2 ion channels in gliomas: Role in tumor growth and progression. Oncotarget, 2016, 7(28), 43654-43668.
[http://dx.doi.org/10.18632/oncotarget.9661] [PMID: 27248469]
[51]
Liu, H.; Ma, Y.; He, H.W.; Zhao, W.L.; Shao, R.G. SPHK1 (sphingosine kinase 1) induces epithelial-mesenchymal transition by promoting the autophagy-linked lysosomal degradation of CDH1/E-cadherin in hepatoma cells. Autophagy, 2017, 13(5), 900-913.
[http://dx.doi.org/10.1080/15548627.2017.1291479] [PMID: 28521610]
[52]
Zhang, W.; Yuan, W.; Song, J.; Wang, S.; Gu, X. LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia-induced autophagy through inactivation of HIF-1α. Biochimie, 2018, 144, 21-27.
[http://dx.doi.org/10.1016/j.biochi.2017.10.002] [PMID: 29017924]
[53]
Wu, W.J.; Hirsch, D.S. Mechanism of E-cadherin lysosomal degradation. Nat. Rev. Cancer, 2009, 9(2), 143.
[http://dx.doi.org/10.1038/nrc2521-c1] [PMID: 19148182]
[54]
Fiore, L.S.; Ganguly, S.S.; Sledziona, J.; Cibull, M.L.; Wang, C.; Richards, D.L.; Neltner, J.M.; Beach, C.; McCorkle, J.R.; Kaetzel, D.M.; Plattner, R. c-Abl and Arg induce cathepsin-mediated lysosomal degradation of the NM23-H1 metastasis suppressor in invasive cancer. Oncogene, 2014, 33(36), 4508-4520.
[http://dx.doi.org/10.1038/onc.2013.399] [PMID: 24096484]
[55]
Sharifi, M.N.; Mowers, E.E.; Drake, L.E.; Collier, C.; Chen, H.; Zamora, M.; Mui, S.; Macleod, K.F. Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC. Cell Rep., 2016, 15(8), 1660-1672.
[http://dx.doi.org/10.1016/j.celrep.2016.04.065] [PMID: 27184837]
[56]
Lock, R.; Kenific, C.M.; Leidal, A.M.; Salas, E.; Debnath, J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov., 2014, 4(4), 466-479.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0841] [PMID: 24513958]
[57]
Endres, M.; Kneitz, S.; Orth, M.F.; Perera, R.K.; Zernecke, A.; Butt, E. Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1). Oncotarget, 2016, 7(39), 64244-64259.
[http://dx.doi.org/10.18632/oncotarget.11720] [PMID: 27588391]
[58]
Mohsen, A.; Collery, P.; Garnotel, R.; Brassart, B.; Etique, N.; Mohamed Sabry, G.; Elsherif Hassan, R.; Jeannesson, P.; Desmaële, D.; Morjani, H. A new gallium complex inhibits tumor cell invasion and matrix metalloproteinase MMP-14 expression and activity. Metallomics, 2017, 9(8), 1176-1184.
[http://dx.doi.org/10.1039/C7MT00049A] [PMID: 28765844]
[59]
Grimm, C.; Bartel, K.; Vollmar, A.; Biel, M. Endolysosomal cation channels and cancer-A link with great potential. Pharmaceuticals, 2018, 11(1), 4.
[http://dx.doi.org/10.3390/ph11010004] [PMID: 29303993]
[60]
Lyu, L.; Jin, X.; Li, Z.; Liu, S.; Li, Y.; Su, R.; Su, H. TBBPA regulates calcium-mediated lysosomal exocytosis and thereby promotes invasion and migration in hepatocellular carcinoma. Ecotoxicol. Environ. Saf., 2020, 192, 110255.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110255] [PMID: 32018154]
[61]
Withana, N.P.; Blum, G.; Sameni, M.; Slaney, C.; Anbalagan, A.; Olive, M.B.; Bidwell, B.N.; Edgington, L.; Wang, L.; Moin, K.; Sloane, B.F.; Anderson, R.L.; Bogyo, M.S.; Parker, B.S. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res., 2012, 72(5), 1199-1209.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2759] [PMID: 22266111]
[62]
Keliher, E.J.; Reiner, T.; Earley, S.; Klubnick, J.; Tassa, C.; Lee, A.J.; Ramaswamy, S.; Bardeesy, N.; Hanahan, D.; DePinho, R.A.; Castro, C.M.; Weissleder, R. Targeting cathepsin E in pancreatic cancer by a small molecule allows in vivo detection. Neoplasia, 2013, 15(7), 684-IN3.
[http://dx.doi.org/10.1593/neo.13276] [PMID: 23814481]
[63]
Small, D.M.; Burden, R.E.; Jaworski, J.; Hegarty, S.M.; Spence, S.; Burrows, J.F.; McFarlane, C.; Kissenpfennig, A.; McCarthy, H.O.; Johnston, J.A.; Walker, B.; Scott, C.J. Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int. J. Cancer, 2013, 133(9), 2102-2112.
[http://dx.doi.org/10.1002/ijc.28238] [PMID: 23629809]
[64]
Morgan, M.J.; Fitzwalter, B.E.; Owens, C.R.; Powers, R.K.; Sottnik, J.L.; Gamez, G.; Costello, J.C.; Theodorescu, D.; Thorburn, A. Metastatic cells are preferentially vulnerable to lysosomal inhibition. Proc. Natl. Acad. Sci., 2018, 115(36), E8479-E8488.
[http://dx.doi.org/10.1073/pnas.1706526115] [PMID: 30127018]
[65]
Bluff, J.E.; Menakuru, S.R.; Cross, S.S.; Higham, S.E.; Balasubramanian, S.P.; Brown, N.J.; Reed, M.W.; Staton, C.A. Angiogenesis is associated with the onset of hyperplasia in human ductal breast disease. Br. J. Cancer, 2009, 101(4), 666-672.
[http://dx.doi.org/10.1038/sj.bjc.6605196] [PMID: 19623180]
[66]
Carmeliet, P. Angiogenesis in health and disease. Nat. Med., 2003, 9(6), 653-660.
[http://dx.doi.org/10.1038/nm0603-653] [PMID: 12778163]
[67]
Joyce, J.A.; Baruch, A.; Chehade, K.; Meyer-Morse, N.; Giraudo, E.; Tsai, F.Y.; Greenbaum, D.C.; Hager, J.H.; Bogyo, M.; Hanahan, D. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 2004, 5(5), 443-453.
[http://dx.doi.org/10.1016/S1535-6108(04)00111-4] [PMID: 15144952]
[68]
Kallunki, T.; Olsen, O.D.; Jäättelä, M. Cancer-associated lysosomal changes: Friends or foes? Oncogene, 2013, 32(16), 1995-2004.
[http://dx.doi.org/10.1038/onc.2012.292] [PMID: 22777359]
[69]
Jiang, H.; Wu, Cheng X.; Shi, G.P.; Hu, L.; Inoue, A.; Yamamura, Y.; Wu, H.; Takeshita, K.; Li, X.; Huang, Z.; Song, H.; Asai, M.; Hao, C.N.; Unno, K.; Koike, T.; Oshida, Y.; Okumura, K.; Murohara, T.; Kuzuya, M. Cathepsin K-mediated notch1 activation contributes to neovascularization in response to hypoxia. Nat. Commun., 2014, 5(1), 3838.
[http://dx.doi.org/10.1038/ncomms4838] [PMID: 24894568]
[70]
Jopling, H.; Odell, A.; Pellet-Many, C.; Latham, A.; Frankel, P.; Sivaprasadarao, A.; Walker, J.; Zachary, I.; Ponnambalam, S. Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation. Cells, 2014, 3(2), 363-385.
[http://dx.doi.org/10.3390/cells3020363] [PMID: 24785348]
[71]
Favia, A.; Desideri, M.; Gambara, G.; D’Alessio, A.; Ruas, M.; Esposito, B.; Del Bufalo, D.; Parrington, J.; Ziparo, E.; Palombi, F.; Galione, A.; Filippini, A. VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2–dependent Ca 2+ signaling. Proc. Natl. Acad. Sci., 2014, 111(44), E4706-E4715.
[http://dx.doi.org/10.1073/pnas.1406029111] [PMID: 25331892]
[72]
Intlekofer, A.M.; Thompson, C.B. At the Bench: Preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J. Leukoc. Biol., 2013, 94(1), 25-39.
[http://dx.doi.org/10.1189/jlb.1212621] [PMID: 23625198]
[73]
Wang, H.; Han, X.; Xu, J. Lysosome as the black hole for checkpoint molecules. Adv. Exp. Med. Biol., 2020, 1248, 325-346.
[http://dx.doi.org/10.1007/978-981-15-3266-5_14] [PMID: 32185717]
[74]
Casey, T.M.; Meade, J.L.; Hewitt, E.W. Organelle proteomics. Mol. Cell. Proteomics, 2007, 6(5), 767-780.
[http://dx.doi.org/10.1074/mcp.M600365-MCP200] [PMID: 17272266]
[75]
Tofilon, P.J.; Fike, J.R. The radioresponse of the central nervous system: A dynamic process. Radiat. Res., 2000, 153(4), 357-370.
[http://dx.doi.org/10.1667/0033-7587(2000)153[0357:TROTCN]2.0.CO;2] [PMID: 10798963]
[76]
Samie, M.; Wang, X.; Zhang, X.; Goschka, A.; Li, X.; Cheng, X.; Gregg, E.; Azar, M.; Zhuo, Y.; Garrity, A.G.; Gao, Q.; Slaugenhaupt, S.; Pickel, J.; Zolov, S.N.; Weisman, L.S.; Lenk, G.M.; Titus, S.; Bryant-Genevier, M.; Southall, N.; Juan, M.; Ferrer, M.; Xu, H. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell, 2013, 26(5), 511-524.
[http://dx.doi.org/10.1016/j.devcel.2013.08.003] [PMID: 23993788]
[77]
Aras, S.; Zaidi, M.R. TAMeless traitors: Macrophages in cancer progression and metastasis. Br. J. Cancer, 2017, 117(11), 1583-1591.
[http://dx.doi.org/10.1038/bjc.2017.356] [PMID: 29065107]
[78]
Sun, L.; Hua, Y.; Vergarajauregui, S.; Diab, H.I.; Puertollano, R. Novel role of TRPML2 in the regulation of the innate immune response. J. Immunol., 2015, 195(10), 4922-4932.
[http://dx.doi.org/10.4049/jimmunol.1500163] [PMID: 26432893]
[79]
Plesch, E.; Chen, C.C.; Butz, E.; Scotto Rosato, A.; Krogsaeter, E.K.; Yinan, H.; Bartel, K.; Keller, M.; Robaa, D.; Teupser, D.; Holdt, L.M.; Vollmar, A.M.; Sippl, W.; Puertollano, R.; Medina, D.; Biel, M.; Wahl-Schott, C.; Bracher, F.; Grimm, C. Selective agonist of TRPML2 reveals direct role in chemokine release from innate immune cells. eLife, 2018, 7, e39720.
[http://dx.doi.org/10.7554/eLife.39720] [PMID: 30479274]
[80]
Mirzaei, S.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Farahani, M.V.; Hushmandi, K.; Zarrabi, A.; Goldman, A.; Ashrafizadeh, M.; Orive, G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov. Today, 2022, 27(2), 436-455.
[http://dx.doi.org/10.1016/j.drudis.2021.09.020] [PMID: 34624510]
[81]
Machado, E.R.; Annunziata, I.; van de Vlekkert, D.; Grosveld, G.C.; d’Azzo, A. Lysosomes and cancer progression: A malignant liaison. Front. Cell Dev. Biol., 2021, 9, 642494.
[http://dx.doi.org/10.3389/fcell.2021.642494] [PMID: 33718382]
[82]
Yamagishi, T.; Sahni, S.; Sharp, D.M.; Arvind, A.; Jansson, P.J.; Richardson, D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem., 2013, 288(44), 31761-31771.
[http://dx.doi.org/10.1074/jbc.M113.514091] [PMID: 24062304]
[83]
Al-Akra, L.; Bae, D.H.; Sahni, S.; Huang, M.L.H.; Park, K.C.; Lane, D.J.R.; Jansson, P.J.; Richardson, D.R. Tumor stressors induce two mechanisms of intracellular P-glycoprotein–mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. J. Biol. Chem., 2018, 293(10), 3562-3587.
[http://dx.doi.org/10.1074/jbc.M116.772699] [PMID: 29305422]
[84]
Noack, A.; Gericke, B.; von Köckritz-Blickwede, M.; Menze, A.; Noack, S.; Gerhauser, I.; Osten, F.; Naim, H.Y.; Löscher, W. Mechanism of drug extrusion by brain endothelial cells via lysosomal drug trapping and disposal by neutrophils. Proc. Natl. Acad. Sci., 2018, 115(41), E9590-E9599.
[http://dx.doi.org/10.1073/pnas.1719642115] [PMID: 30254169]
[85]
Grimm, C.; Holdt, L.M.; Chen, C.C.; Hassan, S.; Müller, C.; Jörs, S.; Cuny, H.; Kissing, S.; Schröder, B.; Butz, E.; Northoff, B.; Castonguay, J.; Luber, C.A.; Moser, M.; Spahn, S.; Lüllmann-Rauch, R.; Fendel, C.; Klugbauer, N.; Griesbeck, O.; Haas, A.; Mann, M.; Bracher, F.; Teupser, D.; Saftig, P.; Biel, M.; Wahl-Schott, C. High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat. Commun., 2014, 5(1), 4699.
[http://dx.doi.org/10.1038/ncomms5699] [PMID: 25144390]
[86]
Schneider, L.S.; von Schwarzenberg, K.; Lehr, T.; Ulrich, M.; Kubisch-Dohmen, R.; Liebl, J.; Trauner, D.; Menche, D.; Vollmar, A.M. Vacuolar-ATPase inhibition blocks iron metabolism to mediate therapeutic effects in breast cancer. Cancer Res., 2015, 75(14), 2863-2874.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2097] [PMID: 26018087]
[87]
Whitton, B.; Okamoto, H.; Packham, G.; Crabb, S.J. Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med., 2018, 7(8), 3800-3811.
[http://dx.doi.org/10.1002/cam4.1594] [PMID: 29926527]
[88]
von Schwarzenberg, K. Lajtos, T.; Simon, L.; Müller, R.; Vereb, G.; Vollmar, A.M. V-ATPase inhibition overcomes trastuzumab resistance in breast cancer. Mol. Oncol., 2014, 8(1), 9-19.
[http://dx.doi.org/10.1016/j.molonc.2013.08.011] [PMID: 24055142]
[89]
Bartel, K.; Winzi, M.; Ulrich, M.; Koeberle, A.; Menche, D.; Werz, O.; Müller, R.; Guck, J.; Vollmar, A.M.; von Schwarzenberg, K. V-ATPase inhibition increases cancer cell stiffness and blocks membrane related Ras signaling - a new option for HCC therapy. Oncotarget, 2017, 8(6), 9476-9487.
[http://dx.doi.org/10.18632/oncotarget.14339] [PMID: 28036299]
[90]
Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol., 2009, 10(8), 513-525.
[http://dx.doi.org/10.1038/nrm2728] [PMID: 19603039]
[91]
Fu, D.; Arias, I.M. Intracellular trafficking of P-glycoprotein. Int. J. Biochem. Cell Biol., 2012, 44(3), 461-464.
[http://dx.doi.org/10.1016/j.biocel.2011.12.009] [PMID: 22212176]
[92]
Stark, M.; Silva, T.F.D.; Levin, G.; Machuqueiro, M.; Assaraf, Y.G. The lysosomotropic activity of hydrophobic weak base drugs is mediated via their intercalation into the lysosomal membrane. Cells, 2020, 9(5), 1082.
[http://dx.doi.org/10.3390/cells9051082] [PMID: 32349204]
[93]
Seebacher, N.; Lane, D.J.R.; Richardson, D.R.; Jansson, P.J. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic. Biol. Med., 2016, 96, 432-445.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.201] [PMID: 27154979]
[94]
Gericke, B.; Wienböker, I.; Brandes, G.; Löscher, W. Is P-Glycoprotein functionally expressed in the limiting membrane of endolysosomes? A biochemical and ultrastructural study in the rat liver. Cells, 2022, 11(9), 1556.
[http://dx.doi.org/10.3390/cells11091556] [PMID: 35563868]
[95]
Saha, J.; Kim, J.H.; Amaya, C.N.; Witcher, C.; Khammanivong, A.; Korpela, D.M.; Brown, D.R.; Taylor, J.; Bryan, B.A.; Dickerson, E.B. Propranolol sensitizes vascular sarcoma cells to doxorubicin by altering lysosomal drug sequestration and drug efflux. Front. Oncol., 2021, 10, 614288.
[http://dx.doi.org/10.3389/fonc.2020.614288] [PMID: 33598432]
[96]
Kokkonen, N.; Rivinoja, A.; Kauppila, A.; Suokas, M.; Kellokumpu, I.; Kellokumpu, S. Defective acidification of intracellular organelles results in aberrant secretion of cathepsin D in cancer cells. J. Biol. Chem., 2004, 279(38), 39982-39988.
[http://dx.doi.org/10.1074/jbc.M406698200] [PMID: 15258139]
[97]
Vega-Rubin-de-Celis, S.; Peña-Llopis, S.; Konda, M.; Brugarolas, J. Multistep regulation of TFEB by MTORC1. Autophagy, 2017, 13(3), 464-472.
[http://dx.doi.org/10.1080/15548627.2016.1271514] [PMID: 28055300]
[98]
Medina, D.L.; Di Paola, S.; Peluso, I.; Armani, A.; De Stefani, D.; Venditti, R.; Montefusco, S.; Scotto-Rosato, A.; Prezioso, C.; Forrester, A.; Settembre, C.; Wang, W.; Gao, Q.; Xu, H.; Sandri, M.; Rizzuto, R.; De Matteis, M.A.; Ballabio, A. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol., 2015, 17(3), 288-299.
[http://dx.doi.org/10.1038/ncb3114] [PMID: 25720963]
[99]
Repnik, U.; Stoka, V.; Turk, V.; Turk, B. Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta. Proteins Proteomics, 2012, 1824(1), 22-33.
[http://dx.doi.org/10.1016/j.bbapap.2011.08.016] [PMID: 21914490]
[100]
Li, D.L.; Wang, Z.V.; Ding, G.; Tan, W.; Luo, X.; Criollo, A.; Xie, M.; Jiang, N.; May, H.; Kyrychenko, V.; Schneider, J.W.; Gillette, T.G.; Hill, J.A. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation, 2016, 133(17), 1668-1687.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017443] [PMID: 26984939]
[101]
Zhang, Z.; Yue, P.; Lu, T.; Wang, Y.; Wei, Y.; Wei, X. Role of lysosomes in physiological activities, diseases, and therapy. J. Hematol. Oncol., 2021, 14(1), 79.
[http://dx.doi.org/10.1186/s13045-021-01087-1] [PMID: 33990205]
[102]
Xiao, H.; Zheng, Y.; Ma, L.; Tian, L.; Sun, Q. Clinically-relevant abc transporter for anti-cancer drug resistance. Front. Pharmacol., 2021, 12, 648407.
[http://dx.doi.org/10.3389/fphar.2021.648407] [PMID: 33953682]
[103]
Assaraf, Y.G. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist. Updat., 2006, 9(4-5), 227-246.
[http://dx.doi.org/10.1016/j.drup.2006.09.001] [PMID: 17092765]
[104]
Gillet, J.P.; Gottesman, M.M. Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Curr. Pharm. Biotechnol., 2011, 12(4), 686-692.
[http://dx.doi.org/10.2174/138920111795163931] [PMID: 21118086]
[105]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[106]
Ferrao, P.; Sincock, P.; Cole, S.; Ashman, L. Intracellular P-gp contributes to functional drug efflux and resistance in acute myeloid leukaemia. Leuk. Res., 2001, 25(5), 395-405.
[http://dx.doi.org/10.1016/S0145-2126(00)00156-9] [PMID: 11301107]
[107]
Stefan, S.M.; Jansson, P.J.; Kalinowski, D.S.; Anjum, R.; Dharmasivam, M.; Richardson, D.R. The growing evidence for targeting P-glycoprotein in lysosomes to overcome resistance. Future Med. Chem., 2020, 12(6), 473-477.
[http://dx.doi.org/10.4155/fmc-2019-0350] [PMID: 32098489]
[108]
Chapuy, B.; Koch, R.; Radunski, U.; Corsham, S.; Cheong, N.; Inagaki, N.; Ban, N.; Wenzel, D.; Reinhardt, D.; Zapf, A.; Schweyer, S.; Kosari, F.; Klapper, W.; Truemper, L.; Wulf, G.G. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia, 2008, 22(8), 1576-1586.
[http://dx.doi.org/10.1038/leu.2008.103] [PMID: 18463677]
[109]
Chapuy, B.; Panse, M.; Radunski, U.; Koch, R.; Wenzel, D.; Inagaki, N.; Haase, D.; Truemper, L.; Wulf, G.G. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica, 2009, 94(11), 1528-1536.
[http://dx.doi.org/10.3324/haematol.2009.008631] [PMID: 19880777]
[110]
Song, I.S.; Savaraj, N.; Siddik, Z.H.; Liu, P.; Wei, Y.; Wu, C.J.; Kuo, M.T. Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol. Cancer Ther., 2004, 3(12), 1543-1549.
[http://dx.doi.org/10.1158/1535-7163.1543.3.12] [PMID: 15634647]
[111]
Ishida, S.; Lee, J.; Thiele, D.J.; Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci., 2002, 99(22), 14298-14302.
[http://dx.doi.org/10.1073/pnas.162491399] [PMID: 12370430]
[112]
Lin, X.; Okuda, T.; Holzer, A.; Howell, S.B. The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol. Pharmacol., 2002, 62(5), 1154-1159.
[http://dx.doi.org/10.1124/mol.62.5.1154] [PMID: 12391279]
[113]
Holzer, A.K.; Samimi, G.; Katano, K.; Naerdemann, W.; Lin, X.; Safaei, R.; Howell, S.B. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol. Pharmacol., 2004, 66(4), 817-823.
[http://dx.doi.org/10.1124/mol.104.001198] [PMID: 15229296]
[114]
Lee, Y.Y.; Choi, C.H.; Do, I.G.; Song, S.Y.; Lee, W.; Park, H.S.; Song, T.J.; Kim, M.K.; Kim, T.J.; Lee, J.W.; Bae, D.S.; Kim, B.G. Prognostic value of the copper transporters, CTR1 and CTR2, in patients with ovarian carcinoma receiving platinum-based chemotherapy. Gynecol. Oncol., 2011, 122(2), 361-365.
[http://dx.doi.org/10.1016/j.ygyno.2011.04.025] [PMID: 21570711]
[115]
Chen, H.H.W.; Yan, J.J.; Chen, W.C.; Kuo, M.T.; Lai, Y.H.; Lai, W.W.; Liu, H.S.; Su, W.C. Predictive and prognostic value of human copper transporter 1 (hCtr1) in patients with stage III non-small-cell lung cancer receiving first-line platinum-based doublet chemotherapy. Lung Cancer, 2012, 75(2), 228-234.
[http://dx.doi.org/10.1016/j.lungcan.2011.06.011] [PMID: 21788094]
[116]
Kim, E.S.; Tang, X.; Peterson, D.R.; Kilari, D.; Chow, C.W.; Fujimoto, J.; Kalhor, N.; Swisher, S.G.; Stewart, D.J.; Wistuba, I.I.; Siddik, Z.H. Copper transporter CTR1 expression and tissue platinum concentration in non-small cell lung cancer. Lung Cancer, 2014, 85(1), 88-93.
[http://dx.doi.org/10.1016/j.lungcan.2014.04.005] [PMID: 24792335]
[117]
Xu, X.; Duan, L.; Zhou, B.; Ma, R.; Zhou, H.; Liu, Z. Genetic polymorphism of copper transporter protein 1 is related to platinum resistance in Chinese non-small cell lung carcinoma patients. Clin. Exp. Pharmacol. Physiol., 2012, 39(9), 786-792.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05741.x] [PMID: 22725681]
[118]
Bertinato, J.; Swist, E.; Plouffe, L.J.; Brooks, S.P.J.; L’Abbé, M.R. Ctr2 is partially localized to the plasma membrane and stimulates copper uptake in COS-7 cells. Biochem. J., 2008, 409(3), 731-740.
[http://dx.doi.org/10.1042/BJ20071025] [PMID: 17944601]
[119]
Huang, C.P.; Fofana, M.; Chan, J.; Chang, C.J.; Howell, S.B. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin. Metallomics, 2014, 6(3), 654-661.
[http://dx.doi.org/10.1039/c3mt00331k] [PMID: 24522273]
[120]
van den Berghe, P.V.E.; Folmer, D.E.; Malingré, H.E.M.; van Beurden, E.; Klomp, A.E.M.; van de Sluis, B.; Merkx, M.; Berger, R.; Klomp, L.W.J. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem. J., 2007, 407(1), 49-59.
[http://dx.doi.org/10.1042/BJ20070705] [PMID: 17617060]
[121]
Blair, B.G.; Larson, C.A.; Adams, P.L.; Abada, P.B.; Pesce, C.E.; Safaei, R.; Howell, S.B. Copper transporter 2 regulates endocytosis and controls tumor growth and sensitivity to cisplatin in vivo. Mol. Pharmacol., 2011, 79(1), 157-166.
[http://dx.doi.org/10.1124/mol.110.068411] [PMID: 20930109]
[122]
Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilson’s disease. Lancet, 2007, 369(9559), 397-408.
[http://dx.doi.org/10.1016/S0140-6736(07)60196-2] [PMID: 17276780]
[123]
Peña, K.; Coblenz, J.; Kiselyov, K. Brief exposure to copper activates lysosomal exocytosis. Cell Calcium, 2015, 57(4), 257-262.
[http://dx.doi.org/10.1016/j.ceca.2015.01.005] [PMID: 25620123]
[124]
Polishchuk, E.V.; Concilli, M.; Iacobacci, S.; Chesi, G.; Pastore, N.; Piccolo, P.; Paladino, S.; Baldantoni, D.; van IJzendoorn, S.C.D.; Chan, J.; Chang, C.J.; Amoresano, A.; Pane, F.; Pucci, P.; Tarallo, A.; Parenti, G.; Brunetti-Pierri, N.; Settembre, C.; Ballabio, A.; Polishchuk, R.S. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell, 2014, 29(6), 686-700.
[http://dx.doi.org/10.1016/j.devcel.2014.04.033] [PMID: 24909901]
[125]
Komatsu, M.; Sumizawa, T.; Mutoh, M.; Chen, Z.S.; Terada, K.; Furukawa, T.; Yang, X.L.; Gao, H.; Miura, N.; Sugiyama, T.; Akiyama, S. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res., 2000, 60(5), 1312-1316.
[PMID: 10728692]
[126]
Chauhan, S.S.; Liang, X.J.; Su, A.W.; Pai-Panandiker, A.; Shen, D.W.; Hanover, J.A.; Gottesman, M.M. Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. Br. J. Cancer, 2003, 88(8), 1327-1334.
[http://dx.doi.org/10.1038/sj.bjc.6600861] [PMID: 12698203]
[127]
Kalayda, G.V.; Wagner, C.H.; Buß, I.; Reedijk, J.; Jaehde, U. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells. BMC Cancer, 2008, 8(1), 175.
[http://dx.doi.org/10.1186/1471-2407-8-175] [PMID: 18565219]
[128]
Safaei, R.; Larson, B.J.; Cheng, T.C.; Gibson, M.A.; Otani, S.; Naerdemann, W.; Howell, S.B. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol. Cancer Ther., 2005, 4(10), 1595-1604.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0102] [PMID: 16227410]
[129]
Andrews, N.W. Regulated secretion of conventional lysosomes. Trends Cell Biol., 2000, 10(8), 316-321.
[http://dx.doi.org/10.1016/S0962-8924(00)01794-3] [PMID: 10884683]
[130]
Groth-Pedersen, L.; Jäättelä, M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett., 2013, 332(2), 265-274.
[http://dx.doi.org/10.1016/j.canlet.2010.05.021] [PMID: 20598437]
[131]
Assmus, F.; Houston, J.B.; Galetin, A. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs. Eur. J. Pharm. Sci., 2017, 109, 419-430.
[http://dx.doi.org/10.1016/j.ejps.2017.08.014] [PMID: 28823852]
[132]
Medina, D.L.; Fraldi, A.; Bouche, V.; Annunziata, F.; Mansueto, G.; Spampanato, C.; Puri, C.; Pignata, A.; Martina, J.A.; Sardiello, M.; Palmieri, M.; Polishchuk, R.; Puertollano, R.; Ballabio, A. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell, 2011, 21(3), 421-430.
[http://dx.doi.org/10.1016/j.devcel.2011.07.016] [PMID: 21889421]
[133]
Yanes, R.E.; Tarn, D.; Hwang, A.A.; Ferris, D.P.; Sherman, S.P.; Thomas, C.R.; Lu, J.; Pyle, A.D.; Zink, J.I.; Tamanoi, F. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small, 2013, 9, 697-704.
[http://dx.doi.org/10.1002/smll.201201811]
[134]
Boya, P.; Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene, 2008, 27(50), 6434-6451.
[http://dx.doi.org/10.1038/onc.2008.310] [PMID: 18955971]
[135]
Dielschneider, R.F.; Eisenstat, H.; Mi, S.; Curtis, J.M.; Xiao, W.; Johnston, J.B.; Gibson, S.B. Lysosomotropic agents selectively target chronic lymphocytic leukemia cells due to altered sphingolipid metabolism. Leukemia, 2016, 30(6), 1290-1300.
[http://dx.doi.org/10.1038/leu.2016.4] [PMID: 26859075]
[136]
Lim, C.Y.; Zoncu, R. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol., 2016, 214(6), 653-664.
[http://dx.doi.org/10.1083/jcb.201607005] [PMID: 27621362]
[137]
Appelqvist, H.; Sandin, L.; Björnström, K.; Saftig, P.; Garner, B.; Öllinger, K.; Kågedal, K. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS One, 2012, 7(11), e50262.
[http://dx.doi.org/10.1371/journal.pone.0050262] [PMID: 23166840]
[138]
Gyrd-Hansen, M.; Nylandsted, J.; Jäättelä, M. Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity. Cell Cycle, 2004, 3(12), 1484-1485.
[http://dx.doi.org/10.4161/cc.3.12.1287] [PMID: 15539949]
[139]
Ostenfeld, M.S.; Fehrenbacher, N.; Høyer-Hansen, M.; Thomsen, C.; Farkas, T.; Jäättelä, M. Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res., 2005, 65(19), 8975-8983.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0269] [PMID: 16204071]
[140]
Gotink, K.J.; Broxterman, H.J.; Honeywell, R.J.; Dekker, H.; de Haas, R.R.; Miles, K.M.; Adelaiye, R.; Griffioen, A.W.; Peters, G.J.; Pili, R.; Verheul, H.M.W. Acquired tumor cell resistance to sunitinib causes resistance in a HT-29 human colon cancer xenograft mouse model without affecting sunitinib biodistribution or the tumor microvasculature. Oncoscience, 2014, 1(12), 844-853.
[http://dx.doi.org/10.18632/oncoscience.106] [PMID: 25621299]
[141]
Li, Y.; Sun, Y.; Jing, L.; Wang, J.; Yan, Y.; Feng, Y.; Zhang, Y.; Liu, Z.; Ma, L.; Diao, A. Lysosome inhibitors enhance the chemotherapeutic activity of doxorubicin in HepG2 cells. Chemotherapy, 2017, 62(2), 85-93.
[http://dx.doi.org/10.1159/000448802] [PMID: 27764836]
[142]
Wang, E.; Lee, M.D.; Dunn, K.W. Lysosomal accumulation of drugs in drug-sensitive MES-SA but not multidrug-resistant MES-SA/Dx5 uterine sarcoma cells. J. Cell. Physiol., 2000, 184(2), 263-274.
[http://dx.doi.org/10.1002/1097-4652(200008)184:2<263:AID-JCP15>3.0.CO;2-F] [PMID: 10867652]
[143]
Zhang, S.; Schneider, L.S.; Vick, B.; Grunert, M.; Jeremias, I.; Menche, D.; Müller, R.; Vollmar, A.M.; Liebl, J. Anti-leukemic effects of the V-ATPase inhibitor Archazolid. Oncotarget, 2015, 6(41), 43508-43528.
[http://dx.doi.org/10.18632/oncotarget.6180] [PMID: 26496038]
[144]
Dykstra, K.M.; Fay, H.R.S.; Massey, A.C.; Yang, N.; Johnson, M.; Portwood, S.; Guzman, M.L.; Wang, E.S. Inhibiting autophagy targets human leukemic stem cells and hypoxic AML blasts by disrupting mitochondrial homeostasis. Blood Adv., 2021, 5(8), 2087-2100.
[http://dx.doi.org/10.1182/bloodadvances.2020002666] [PMID: 33877295]
[145]
Visser, N.; Lourens, H.J.; Huls, G.; Bremer, E.; Wiersma, V.R. Inhibition of autophagy does not re-sensitize acute myeloid leukemia cells resistant to cytarabine. Int. J. Mol. Sci., 2021, 22(5), 2337.
[http://dx.doi.org/10.3390/ijms22052337] [PMID: 33652766]
[146]
Bao, E.L.; Nandakumar, S.K.; Liao, X.; Bick, A.G.; Karjalainen, J.; Tabaka, M.; Gan, O.I.; Havulinna, A.S.; Kiiskinen, T.T.J.; Lareau, C.A.; de Lapuente Portilla, A.L.; Li, B.; Emdin, C.; Codd, V.; Nelson, C.P.; Walker, C.J.; Churchhouse, C.; de la Chapelle, A.; Klein, D.E.; Nilsson, B.; Wilson, P.W.F.; Cho, K.; Pyarajan, S.; Gaziano, J.M.; Samani, N.J.; Palotie, A.; Daly, M.; Jacob, H.; Matakidou, A.; Runz, H.; John, S.; Plenge, R.; McCarthy, M.; Hunkapiller, J.; Ehm, M.; Waterworth, D.; Fox, C.; Malarstig, A.; Klinger, K.; Call, K.; Mäkelä, T.; Kaprio, J.; Virolainen, P.; Pulkki, K.; Kilpi, T.; Perola, M.; Partanen, J.; Pitkäranta, A.; Kaarteenaho, R.; Vainio, S.; Savinainen, K.; Kosma, V-M.; Kujala, U.; Tuovila, O.; Hendolin, M.; Pakkanen, R.; Waring, J.; Riley-Gillis, B.; Matakidou, A.; Runz, H.; Liu, J.; Biswas, S.; Hunkapiller, J.; Waterworth, D.; Ehm, M.; Diogo, D.; Fox, C.; Malarstig, A.; Marshall, C.; Hu, X.; Call, K.; Klinger, K.; Gossel, M.; Ripatti, S.; Schleutker, J.; Perola, M.; Arvas, M.; Carpén, O.; Hinttala, R.; Kettunen, J.; Laaksonen, R.; Mannermaa, A.; Kujala, U.; Tuovila, O.; Hendolin, M.; Pakkanen, R.; Soininen, H.; Julkunen, V.; Remes, A.; Kälviäinen, R.; Hiltunen, M.; Peltola, J.; Tienari, P.; Rinne, J.; Ziemann, A.; Waring, J.; Esmaeeli, S.; Smaoui, N.; Lehtonen, A.; Eaton, S.; Runz, H.; Lahdenperä, S.; van Adelsberg, J.; Biswas, S.; Michon, J.; Kerchner, G.; Hunkapiller, J.; Bowers, N.; Teng, E.; Eicher, J.; Mehta, V.; Gormley, P.; Linden, K.; Whelan, C.; Xu, F.; Pulford, D.; Färkkilä, M.; Pikkarainen, S.; Jussila, A.; Blomster, T.; Kiviniemi, M.; Voutilainen, M.; Georgantas, B.; Heap, G.; Waring, J.; Smaoui, N.; Rahimov, F.; Lehtonen, A.; Usiskin, K.; Maranville, J.; Lu, T.; Bowers, N.; Oh, D.; Michon, J.; Mehta, V.; Kalpala, K.; Miller, M.; Hu, X.; McCarthy, L.; Eklund, K.; Palomäki, A.; Isomäki, P.; Pirilä, L.; Kaipiainen-Seppänen, O.; Huhtakangas, J.; Georgantas, B.; Waring, J.; Rahimov, F.; Lertratanakul, A.; Smaoui, N.; Lehtonen, A.; Close, D.; Hochfeld, M.; Bowers, N.; Michon, J.; Diogo, D.; Mehta, V.; Kalpala, K.; Bing, N.; Hu, X.; Gordillo, J.E.; Mars, N.; Laitinen, T.; Pelkonen, M.; Kauppi, P.; Kankaanranta, H.; Harju, T.; Smaoui, N.; Close, D.; Greenberg, S.; Chen, H.; Bowers, N.; Michon, J.; Mehta, V.; Betts, J.; Ghosh, S.; Salomaa, V.; Niiranen, T.; Juonala, M.; Metsärinne, K.; Kähönen, M.; Junttila, J.; Laakso, M.; Pihlajamäki, J.; Sinisalo, J.; Taskinen, M-R.; Tuomi, T.; Laukkanen, J.; Challis, B.; Peterson, A.; Hunkapiller, J.; Bowers, N.; Michon, J.; Diogo, D.; Chu, A.; Mehta, V.; Parkkinen, J.; Miller, M.; Muslin, A.; Waterworth, D.; Joensuu, H.; Meretoja, T.; Carpén, O.; Aaltonen, L.; Auranen, A.; Karihtala, P.; Kauppila, S.; Auvinen, P.; Elenius, K.; Popovic, R.; Waring, J.; Riley-Gillis, B.; Lehtonen, A.; Matakidou, A.; Schutzman, J.; Hunkapiller, J.; Bowers, N.; Michon, J.; Mehta, V.; Loboda, A.; Chhibber, A.; Lehtonen, H.; McDonough, S.; Crohns, M.; Kulkarni, D.; Kaarniranta, K.; Turunen, J.; Ollila, T.; Seitsonen, S.; Uusitalo, H.; Aaltonen, V.; Uusitalo-Järvinen, H.; Luodonpää, M.; Hautala, N.; Runz, H.; Strauss, E.; Bowers, N.; Chen, H.; Michon, J.; Podgornaia, A.; Mehta, V.; Diogo, D.; Hoffman, J.; Tasanen, K.; Huilaja, L.; Hannula-Jouppi, K.; Salmi, T.; Peltonen, S.; Koulu, L.; Harvima, I.; Kalpala, K.; Wu, Y.; Choy, D.; Michon, J.; Smaoui, N.; Rahimov, F.; Lehtonen, A.; Waterworth, D.; Davis, J.W.; Riley-Gillis, B.; Quarless, D.; Petrovski, S.; Liu, J.; Chen, C-Y.; Bronson, P.; Yang, R.; Maranville, J.; Biswas, S.; Chang, D.; Hunkapiller, J.; Bhangale, T.; Bowers, N.; Diogo, D.; Holzinger, E.; Gormley, P.; Wang, X.; Chen, X.; Hedman, Å.; Auro, K.; Wang, C.; Xu, E.; Auge, F.; Chatelain, C.; Kurki, M.; Ripatti, S.; Daly, M.; Karjalainen, J.; Havulinna, A.; Jalanko, A.; Palin, K.; Palta, P.; della Briotta Parolo, P.; Zhou, W.; Lemmelä, S.; Rivas, M.; Harju, J.; Palotie, A.; Lehisto, A.; Ganna, A.; Llorens, V.; Karlsson, A.; Kristiansson, K.; Arvas, M.; Hyvärinen, K.; Ritari, J.; Wahlfors, T.; Koskinen, M.; Carpén, O.; Kettunen, J.; Pylkäs, K.; Kalaoja, M.; Karjalainen, M.; Mantere, T.; Kangasniemi, E.; Heikkinen, S.; Mannermaa, A.; Laakkonen, E.; Kononen, J.; Kallio, L.; Soini, S.; Partanen, J.; Pitkänen, K.; Vainio, S.; Savinainen, K.; Kosma, V-M.; Kuopio, T.; Jalanko, A.; Kajanne, R.; Lyhs, U.; Kurki, M.; Karjalainen, J.; della Briotta Parola, P.; Rüeger, S.; Lehistö, A.; Zhou, W.; Kanai, M.; Laivuori, H.; Havulinna, A.; Lemmelä, S.; Kiiskinen, T.; Kaunisto, M.; Harju, J.; Kilpeläinen, E.; Sipilä, T.P.; Brein, G.; Dada, O.A.; Awaisa, G.; Shcherban, A.; Sipilä, T.; Donner, K.; Loukola, A.; Laiho, P.; Sistonen, T.; Kaiharju, E.; Laukkanen, M.; Järvensivu, E.; Lähteenmäki, S.; Männikkö, L.; Wong, R.; Mattsson, H.; Kristiansson, K.; Lemmelä, S.; Hiekkalinna, T.; Jiménez, M.G.; Palta, P.; Pärn, K.; Nunez-Fontarnau, J.; Laitinen, T.; Siirtola, H.; Tabuenca, J.G.; Agee, M.; Alipanahi, B.; Auton, A.; Bell, R.K.; Bryc, K.; Elson, S.L.; Fontanillas, P.; Furlotte, N.A.; Hinds, D.A.; Huber, K.E.; Kleinman, A.; Litterman, N.K.; McCreight, J.C.; McIntyre, M.H.; Mountain, J.L.; Noblin, E.S.; Northover, C.A.M.; Pitts, S.J.; Sathirapongsasuti, J.F.; Sazonova, O.V.; Shelton, J.F.; Shringarpure, S.; Tian, C.; Tung, J.Y.; Vacic, V.; Wilson, C.H.; Regev, A.; Palotie, A.; Neale, B.M.; Dick, J.E.; Natarajan, P.; O’Donnell, C.J.; Daly, M.J.; Milyavsky, M.; Kathiresan, S.; Sankaran, V.G. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature, 2020, 586(7831), 769-775.
[http://dx.doi.org/10.1038/s41586-020-2786-7] [PMID: 33057200]
[147]
Seebacher, N.A.; Lane, D.J.R.; Jansson, P.J.; Richardson, D.R. Glucose modulation induces lysosome formation and increases lysosomotropic drug sequestration via the P-Glycoprotein drug transporter. J. Biol. Chem., 2016, 291(8), 3796-3820.
[http://dx.doi.org/10.1074/jbc.M115.682450] [PMID: 26601947]
[148]
Seebacher, N.A.; Richardson, D.R.; Jansson, P.J. A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis., 2016, 7(12), e2510.
[http://dx.doi.org/10.1038/cddis.2016.381] [PMID: 27906178]
[149]
Jansson, P.J.; Yamagishi, T.; Arvind, A.; Seebacher, N.; Gutierrez, E.; Stacy, A.; Maleki, S.; Sharp, D.; Sahni, S.; Richardson, D.R. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp). J. Biol. Chem., 2015, 290(15), 9588-9603.
[http://dx.doi.org/10.1074/jbc.M114.631283] [PMID: 25720491]
[150]
Lovejoy, D.B.; Jansson, P.J.; Brunk, U.T.; Wong, J.; Ponka, P.; Richardson, D.R. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Cancer Res., 2011, 71(17), 5871-5880.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1218] [PMID: 21750178]
[151]
Yuan, J.; Lovejoy, D.B.; Richardson, D.R. Novel di-2-pyridyl–derived iron chelators with marked and selective antitumor activity: In vitro and in vivo assessment. Blood, 2004, 104(5), 1450-1458.
[http://dx.doi.org/10.1182/blood-2004-03-0868] [PMID: 15150082]
[152]
Gutierrez, E.M.; Seebacher, N.A.; Arzuman, L.; Kovacevic, Z.; Lane, D.J.R.; Richardson, V.; Merlot, A.M.; Lok, H.; Kalinowski, D.S.; Sahni, S.; Jansson, P.J.; Richardson, D.R. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(7), 1665-1681.
[http://dx.doi.org/10.1016/j.bbamcr.2016.04.017] [PMID: 27102538]
[153]
Świtalska, M.; Filip-Psurska, B.; Milczarek, M.; Psurski, M.; Moszyńska, A.; Dąbrowska, A.M.; Gawrońska, M.; Krzymiński, K.; Bagiński, M.; Bartoszewski, R.; Wietrzyk, J. Combined anticancer therapy with imidazoacridinone analogue C‐1305 and paclitaxel in human lung and colon cancer xenografts—Modulation of tumour angiogenesis. J. Cell. Mol. Med., 2022, 26(14), 3950-3964.
[http://dx.doi.org/10.1111/jcmm.17430 ] [PMID: 35701366]
[154]
Chen, N.; Kommidi, H.; Guo, H.; Wu, A.P.; Zhang, Z.; Yang, X.; Xia, L.; An, F.; Ting, R. A lysosome specific, acidic-pH activated, near-infrared Bodipy fluorescent probe for noninvasive, long-term, in vivo tumor imaging. Mater. Sci. Eng. C, 2020, 111, 110762.
[http://dx.doi.org/10.1016/j.msec.2020.110762] [PMID: 32279764]
[155]
Gui, L.; Wang, K.; Wang, Y.; Yan, J.; Liu, X.; Guo, J.; Liu, J.; Deng, D.; Chen, H.; Yuan, Z. Monitoring the pH fluctuation of lysosome under cell stress using a near-infrared ratiometric fluorescent probe. Chin. Chem. Lett., 2023, 34(3), 107586.
[http://dx.doi.org/10.1016/j.cclet.2022.06.009]
[156]
Sun, Y.; Zhou, X.; Sun, L.; Zhao, X.; He, Y.; Gao, G.; Han, W.; Zhou, J. Lysosome-targeting red fluorescent probe for broad carboxylesterases detection in breast cancer cells. Chin. Chem. Lett., 2022, 33(9), 4229-4232.
[http://dx.doi.org/10.1016/j.cclet.2022.01.087]
[157]
Zong, D.; Hååg, P.; Yakymovych, I.; Lewensohn, R.; Viktorsson, K. Chemosensitization by phenothiazines in human lung cancer cells: impaired resolution of γH2AX and increased oxidative stress elicit apoptosis associated with lysosomal expansion and intense vacuolation. Cell Death Dis., 2011, 2(7), e181.
[http://dx.doi.org/10.1038/cddis.2011.62] [PMID: 21776019]
[158]
Zong, D.; Zielinska-Chomej, K.; Juntti, T.; Mörk, B.; Lewensohn, R.; Hååg, P.; Viktorsson, K. Harnessing the lysosome-dependent antitumor activity of phenothiazines in human small cell lung cancer. Cell Death Dis., 2014, 5(3), e1111.
[http://dx.doi.org/10.1038/cddis.2014.56] [PMID: 24625970]
[159]
Fehrenbacher, N.; Bastholm, L.; Kirkegaard-Sørensen, T.; Rafn, B.; Bøttzauw, T.; Nielsen, C.; Weber, E.; Shirasawa, S.; Kallunki, T.; Jäättelä, M. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res., 2008, 68(16), 6623-6633.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0463] [PMID: 18701486]
[160]
Petersen, N.H.T.; Olsen, O.D.; Groth-Pedersen, L.; Ellegaard, A.M.; Bilgin, M.; Redmer, S.; Ostenfeld, M.S.; Ulanet, D.; Dovmark, T.H.; Lønborg, A.; Vindeløv, S.D.; Hanahan, D.; Arenz, C.; Ejsing, C.S.; Kirkegaard, T.; Rohde, M.; Nylandsted, J.; Jäättelä, M. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell, 2013, 24(3), 379-393.
[http://dx.doi.org/10.1016/j.ccr.2013.08.003] [PMID: 24029234]
[161]
Sukhai, M.A.; Prabha, S.; Hurren, R.; Rutledge, A.C.; Lee, A.Y.; Sriskanthadevan, S.; Sun, H.; Wang, X.; Skrtic, M.; Seneviratne, A.; Cusimano, M.; Jhas, B.; Gronda, M.; MacLean, N.; Cho, E.E.; Spagnuolo, P.A.; Sharmeen, S.; Gebbia, M.; Urbanus, M.; Eppert, K.; Dissanayake, D.; Jonet, A.; Dassonville-Klimpt, A.; Li, X.; Datti, A.; Ohashi, P.S.; Wrana, J.; Rogers, I.; Sonnet, P.; Ellis, W.Y.; Corey, S.J.; Eaves, C.; Minden, M.D.; Wang, J.C.Y.; Dick, J.E.; Nislow, C.; Giaever, G.; Schimmer, A.D. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J. Clin. Invest., 2013, 123(1), 315-328.
[http://dx.doi.org/10.1172/JCI64180] [PMID: 23202731]
[162]
Fernandes, I.; Vale, N.; de Freitas, V.; Moreira, R.; Mateus, N.; Gomes, P. Anti-tumoral activity of imidazoquines, a new class of antimalarials derived from primaquine. Bioorg. Med. Chem. Lett., 2009, 19(24), 6914-6917.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.081] [PMID: 19896373]
[163]
Zhang, Y.; Li, Y.; Li, Y.; Li, R.; Ma, Y.; Wang, H.; Wang, Y. Chloroquine inhibits MGC803 gastric cancer cell migration via the Toll-like receptor 9/nuclear factor kappa B signaling pathway. Mol. Med. Rep., 2015, 11(2), 1366-1371.
[http://dx.doi.org/10.3892/mmr.2014.2839] [PMID: 25369757]
[164]
Erdal, H.; Berndtsson, M.; Castro, J.; Brunk, U.; Shoshan, M.C.; Linder, S. Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc. Natl. Acad. Sci., 2005, 102(1), 192-197.
[http://dx.doi.org/10.1073/pnas.0408592102] [PMID: 15618392]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy