Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Characterization of Heat-labile Uracil-DNA Glycosylase from Oncorhynchus mykiss and its Application for Carry-over Contamination Control in RT-qPCR

Author(s): Qingyuan Huang, Yaqi Zhang, Wenhao Hu, Keqi Chen, Jian Zhang, Zhidan Luo and Chen Lu*

Volume 31, Issue 3, 2024

Published on: 09 February, 2024

Page: [169 - 177] Pages: 9

DOI: 10.2174/0109298665283737240122105923

Price: $65

Abstract

Background: Heat-labile uracil-DNA glycosylase (HL-UDG) is commonly employed to eliminate carry-over contamination in DNA amplifications. However, the prevailing HL-UDG is markedly inactivated at 50°C, rendering it unsuitable for specific one-step RT-qPCR protocols utilizing reverse transcriptase at an optimal temperature of 42°C.

Objective: This study aimed to explore novel HL-UDG with lower inactivation temperature and for recombinant expression.

Methods: The gene encoding an HL-UDG was cloned from the cold-water fish rainbow trout (Oncorhynchus mykiss) and expressed in Escherichia coli with high yield. The thermostability of this enzyme and other enzymatic characteristics were thoroughly examined. The novel HL-UDG was then applied for controlling carry-over contamination in one-step RT-qPCR.

Results: This recombinantly expressed truncated HL-UDG of rainbow trout (OmUDG) exhibited high amino acids similarity (84.1% identity) to recombinant Atlantic cod UDG (rcUDG) and was easily denatured at 40°C. The optimal pH of OmUDG was 8.0, and the optimal concentrations of both Na+ and K+ were 10 mM. Since its inactivation temperature was lower than that of rcUDG, the OmUDG could be used to eliminate carry-over contamination in one-step RT-qPCR with moderate reverse transcription temperature.

Conclusion: We successfully identified and recombinantly expressed a novel HL-UDG with an inactivation temperature of 40°C. It is suitable for eliminating carry-over contamination in one-step RT-qPCR.

Next »
Graphical Abstract

[1]
Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12), 63e-63.
[http://dx.doi.org/10.1093/nar/28.12.e63] [PMID: 10871386]
[2]
Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR past, present and future. Biotechniques, 2020, 69(4), 317-325.
[http://dx.doi.org/10.2144/btn-2020-0057] [PMID: 32815744]
[3]
Li, J.; Macdonald, J.; Von Stetten, F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst, 2019, 144(1), 31-67.
[http://dx.doi.org/10.1039/C8AN01621F] [PMID: 30426974]
[4]
Borst, A.; Box, A.T.A.; Fluit, A.C. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. Eur. J. Clin. Microbiol. Infect. Dis., 2004, 23(4), 289-299.
[http://dx.doi.org/10.1007/s10096-004-1100-1] [PMID: 15015033]
[5]
Hartley, J.L.; Rashtchian, A. Dealing with contamination: Enzymatic control of carryover contamination in PCR. Genome Res., 1993, 3(2), S10-S14.
[http://dx.doi.org/10.1101/gr.3.2.S10] [PMID: 8268783]
[6]
Aslanzadeh, J. Preventing PCR amplification carryover contamination in a clinical laboratory. Ann. Clin. Lab. Sci., 2004, 34(4), 389-396.
[PMID: 15648778]
[7]
Longo, M.C.; Berninger, M.S.; Hartley, J.L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 1990, 93(1), 125-128.
[http://dx.doi.org/10.1016/0378-1119(90)90145-H] [PMID: 2227421]
[8]
Krokan, H.E.; Standal, R.; Slupphaug, G. DNA glycosylases in the base excision repair of DNA. Biochem. J., 1997, 325(1), 1-16.
[http://dx.doi.org/10.1042/bj3250001] [PMID: 9224623]
[9]
Krokan, H.E.; Nilsen, H.; Skorpen, F.; Otterlei, M.; Slupphaug, G. Base excision repair of DNA in mammalian cells. FEBS Lett., 2000, 476(1-2), 73-77.
[http://dx.doi.org/10.1016/S0014-5793(00)01674-4] [PMID: 10878254]
[10]
Wu, D.; Chen, L.; Sun, Q.; Wu, X.; Jia, S.; Meng, A. Uracil-DNA glycosylase is involved in DNA demethylation and required for embryonic development in the zebrafish embryo. J. Biol. Chem., 2014, 289(22), 15463-15473.
[http://dx.doi.org/10.1074/jbc.M114.561019] [PMID: 24739389]
[11]
Kleiboeker, S.B. Quantitative assessment of the effect of uracil-DNA glycosylase on amplicon DNA degradation and RNA amplification in reverse transcription-PCR. Virol J., 2005, 2, 29.
[http://dx.doi.org/10.1186/1743-422X-2-29]
[12]
Lindahl, T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci., 1974, 71(9), 3649-3653.
[http://dx.doi.org/10.1073/pnas.71.9.3649] [PMID: 4610583]
[13]
Bennett, S.E.; Mosbaugh, D.W. Characterization of the Escherichia coli uracil-DNA glycosylase inhibitor protein complex. J. Biol. Chem., 1992, 267(31), 22512-22521.
[http://dx.doi.org/10.1016/S0021-9258(18)41702-4] [PMID: 1429601]
[14]
Taggart, E.W.; Carroll, K.C.; Byington, C.L.; Crist, G.A.; Hillyard, D.R. Use of heat labile UNG in an RT-PCR assay for enterovirus detection. J. Virol. Methods, 2002, 105(1), 57-65.
[http://dx.doi.org/10.1016/S0166-0934(02)00080-0] [PMID: 12176142]
[15]
Sobek, H.; Schmidt, M.; Frey, B.; Kaluza, K. Heat-labile uracil-DNA glycosylase: Purification and characterization. FEBS Lett., 1996, 388(1), 1-4.
[http://dx.doi.org/10.1016/0014-5793(96)00444-9] [PMID: 8654578]
[16]
Jaeger, S.; Schmuck, R.; Sobek, H. Molecular cloning, sequencing, and expression of the heat-labile uracil-DNA glycosylase from a marine psychrophilic bacterium, strain BMTU3346. Extremophiles, 2000, 4(2), 115-122.
[http://dx.doi.org/10.1007/s007920050145] [PMID: 10805566]
[17]
Lanes, O.; Guddal, P.H.; Gjellesvik, D.R.; Willassen, N.P. Purification and characterization of a cold-adapted uracil-DNA glycosylase from Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2000, 127(3), 399-410.
[http://dx.doi.org/10.1016/S0305-0491(00)00271-6] [PMID: 11126771]
[18]
Kim, G.A.; Lee, M.S.; Sun, Y.; Lee, B.D.; Lee, J.I.; Lee, J.H.; Kwon, S.T. Characterization of cold-active uracil-DNA glycosylase from Bacillus sp. HJ171 and its use for contamination control in PCR. Appl. Microbiol. Biotechnol., 2008, 80(5), 785-794.
[http://dx.doi.org/10.1007/s00253-008-1585-0] [PMID: 18626641]
[19]
Lanes, O.; Leiros, I.; Smalås, A.; Willassen, N. Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (Gadus morhua): Characterization and homology modeling of the cold-active catalytic domain. Extremophiles, 2002, 6(1), 73-86.
[http://dx.doi.org/10.1007/s007920100225] [PMID: 11878565]
[20]
Hsieh, K.; Mage, P.L.; Csordas, A.T.; Eisenstein, M.; Tom Soh, H. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem. Commun., 2014, 50(28), 3747-3749.
[http://dx.doi.org/10.1039/c4cc00540f] [PMID: 24577617]
[21]
Park, K.S.; Huang, C.H.; Lee, K.; Yoo, Y.E.; Castro, C.M.; Weissleder, R.; Lee, H. Rapid identification of health care–associated infections with an integrated fluorescence anisotropy system. Sci. Adv., 2016, 2(5), e1600300.
[http://dx.doi.org/10.1126/sciadv.1600300] [PMID: 28861468]
[22]
Zhang, T.; Zhao, W.; Zhao, W.; Si, Y.; Chen, N.; Chen, X.; Zhang, X.; Fan, L.; Sui, G. Universally stable and precise CRISPR-LAMP detection platform for precise multiple respiratory tract virus diagnosis including mutant SARS-CoV-2 spike N501Y. Anal. Chem., 2021, 93(48), 16184-16193.
[http://dx.doi.org/10.1021/acs.analchem.1c04065] [PMID: 34818890]
[23]
Gao, L.; Li, L.; Fang, B.; Fang, Z.; Xiang, Y.; Zhang, M.; Zhou, J.; Song, H.; Chen, L.; Li, T.; Xiao, H.; Wan, R.; Jiang, Y.; Peng, H. Carryover contamination-controlled amplicon sequencing workflow for accurate qualitative and quantitative detection of pathogens: A case study on SARS-CoV-2. Microbiol. Spectr., 2023, 11(3), e00206-23.
[http://dx.doi.org/10.1128/spectrum.00206-23] [PMID: 37098913]
[24]
Park, S.; Shin, Y.K.; Yoon, J.Y.; Nam, K.H.; Munashingha, P.R.; Park, S.; Park, S.Y.; Kim, S.; Lee, J.; Seo, M.J.; Yu, W.; Seo, Y.; Chang, I. Computational design of a thermolabile uracil-DNA glycosylase of Escherichia coli. Biophys. J., 2022, 121(7), 1276-1288.
[http://dx.doi.org/10.1016/j.bpj.2022.02.027] [PMID: 35183522]
[25]
Berthelot, C.; Brunet, F.; Chalopin, D.; Juanchich, A.; Bernard, M.; Noel, B.; Bento, P.; Da Silva, C.; Labadie, K.; Alberti, A.; Aury, J. M.; Louis, A.; Dehais, P.; Bardou, P.; Montfort, J.; Klopp, C.; Cabau, C.; Gaspin, C.; Thorgaard, G. H.; Boussaha, M.; Quillet, E.; Guyomard, R.; Galiana, D.; Bobe, J.; Volff, J. N.; Genet, C.; Wincker, P.; Jaillon, O.; Roest, C.H.; Guiguen, Y. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun., 2014, 5, 3657.
[http://dx.doi.org/10.1038/ncomms4657]
[26]
Xu, X.Y.; Liu, L.H.; Wang, J. Uracil-DNA glycosylase activity measurement method, (CNIPA, Ed.), China. 2014.
[27]
Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol., 2022, 40(7), 1023-1025.
[http://dx.doi.org/10.1038/s41587-021-01156-3] [PMID: 34980915]
[28]
Andersson, D.; Svec, D.; Pedersen, C.; Henriksen, J.; Ståhlberg, A. Preamplification with dUTP and Cod UNG Enables Elimination of Contaminating Amplicons. Int. J. Mol. Sci., 2018, 19(10), 3185.
[http://dx.doi.org/10.3390/ijms19103185] [PMID: 30332749]
[29]
Wittwer, C.U.; Bauw, G.; Krokan, H.E. Purification and determination of the amino-terminal amino acid sequence of uracil-DNA glycosylase from human placenta. Biochemistry, 1989, 28(2), 780-784.
[http://dx.doi.org/10.1021/bi00428a055] [PMID: 2713345]
[30]
Moe, E.; Leiros, I.; Riise, E.K.; Olufsen, M.; Lanes, O.; Smalås, A.; Willassen, N.P. Optimisation of the surface electrostatics as a strategy for cold adaptation of uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). J. Mol. Biol., 2004, 343(5), 1221-1230.
[http://dx.doi.org/10.1016/j.jmb.2004.09.004] [PMID: 15491608]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy