Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Photoelectrode FTO/ Anodized TiO2 Production and Characterization for Methylene Blue Affected Photoelectrochemical Decomposition

Author(s): Berrak Caliskan*, Enes Şayan and Hakan Kiziltas

Volume 17, Issue 2, 2024

Published on: 14 February, 2024

Page: [83 - 93] Pages: 11

DOI: 10.2174/0124055204284488240120053918

Price: $65

Abstract

Background: The production of thin film TiO2 nanostructured systems for electrocatalytic, photocatalytic, and photoelectrocatalytic applications has been an essential topic in recent years. Due to the light-sensitive effect of TiO2, it can be produced by various methods and used as a photoelectrode to remove dye. Using magnetron sputtering, Ti thin films can be deposited on different substrates and converted into transparent TiO2 structures by electrochemical anodization.

Methods: In this study, the thin Ti film was produced using a magnetic spraying technique on the FTO substrate, and then an anodic TiO2 structure was obtained by the anodization technique. TiO2 films produced by the anodizing technique were used as a photoelectrode for the degradation of MB. The reactor contained 400 mL of 20 mg/L MB solution at 20 °C. The produced photoelectrode was characterized by the SEM/EDS, FTIR, XRD, and UV-Vis Spectrophotometer analyses.

Results: The EDS analysis confirmed the presence of titanium and oxygen in the FTO/ Anodized TiO2 photoelectrode. The XRD results showed that all the peaks of the produced FTO/ Anodic TiO2 were associated with the anatase phase of TiO2. According to the FTIR spectroscopy, the functional groups of the anodized TiO2 were obtained for the FTO/ Anodized TiO2. The electrocatalytic, photocatalytic, and photoelectrocatalytic degradation experiments were performed with the degradation of the dye solution of MB on the FTO/ Anodic TiO2 photoelectrode, and the rates of dye degradation were determined as 17.12%, 64.67%, and 82.12%, respectively.

Conclusion: This study showed that the methylene blue dye of FTO/ Anodic TiO2 is a suitable photoelectrode for electrocatalytic, photocatalytic, and photoelectrocatalytic degradation.

« Previous
Graphical Abstract

[1]
Shahsavari A, Akbari M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew Sustain Energy Rev 2018; 90: 275-91.
[http://dx.doi.org/10.1016/j.rser.2018.03.065]
[2]
Kiziltas H. Fabrication and characterization of photoelectrode B–Co/TiO2 nanotubes for effective photoelectrochemical degradation of rhodamine B. Opt Mater 2022; 123: 111926.
[http://dx.doi.org/10.1016/j.optmat.2021.111926]
[3]
Alves de Lima RO, Bazo AP, Salvadori DMF, Rech CM, de Palma OD, de Aragão UG. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res Genet Toxicol Environ Mutagen 2007; 626(1-2): 53-60.
[http://dx.doi.org/10.1016/j.mrgentox.2006.08.002] [PMID: 17027325]
[4]
Vickers NJ. Animal communication: When i’m calling you, will you answer too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[5]
Mandake MB, Walke S, Naniwadikar M, Patil G, Jadhav SD. Experimental investigations of the removal of methylene blue from waste water using agricultural adsorbant. Int J Membrane Sci Techno 2023; 10(1): 1-7.
[http://dx.doi.org/10.15379/ijmst.v10i1.1069]
[6]
Bhatia D, Sharma NR, Singh J, Kanwar RS. Biological methods for textile dye removal from wastewater: A review. Crit Rev Environ Sci Technol 2017; 47(19): 1836-76.
[http://dx.doi.org/10.1080/10643389.2017.1393263]
[7]
Zhu G, Fang H, Xiao Y, Hursthouse AS. The application of fluorescence spectroscopy for the investigation of dye degradation by chemical oxidation. J Fluoresc 2020; 30(5): 1271-9.
[http://dx.doi.org/10.1007/s10895-020-02591-2] [PMID: 32767189]
[8]
Joseph J, Radhakrishnan RC, Johnson JK, Joy SP, Thomas J. Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater Chem Phys 2020; 242: 122488.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122488]
[9]
Hidalgo AM, León G, Gómez M, Murcia MD,, Gómez E, Macario JA. Removal of different dye solutions: A comparison study using a polyamide NF membrane. Membranes 2020;; 10(12): 408-, 12,408.
[http://dx.doi.org/10.3390/membranes10120408] [PMID: 33321812]
[10]
Kızıltaş H. Production of highly effective adsorbent from tea waste, and its adsorption behaviors and characteristics for the removal of Rhodamine B. Int J Environ Anal Chem 2022; 1-20.
[http://dx.doi.org/10.1080/03067319.2022.2047181]
[11]
Başar B, Şayan E. Optimization of selective Cu2+ adsorption within the multi-ion system by using activated carbon prepared by ultrasound. Eskişehir Tech Univ 2018; 19(4): 893-906.
[http://dx.doi.org/10.18038/aubtda.383584]
[12]
Morera Hernández LE, Pérez Villar MM. Nickel and chromium removal efficiency using a horizontal subsurface wetland. Afinidad 2022; 79(596): 596.
[http://dx.doi.org/10.55815/401361]
[13]
Chennah A, Amaterz E, Taoufyq A, et al. Photoelectrocatalytic degradation of rhodamine B pollutant with a novel zinc phosphate photoanode. Process Saf Environ Prot 2021; 148: 200-9.
[http://dx.doi.org/10.1016/j.psep.2020.10.012]
[14]
Anaya-Esparza LM,, Villagrán-de la Mora Z, Ruvalcaba-Gómez JM, et al. Use of titanium dioxide (TiO2) nanoparticles as reinforcement agent of polysaccharide-based materials. Processes 2020; 8(11): 1395-, 11.1395.
[http://dx.doi.org/10.3390/pr8111395]
[15]
Tekin D, Kiziltas H, Ungan H. Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. J Mol Liq 2020; 306: 112905.
[http://dx.doi.org/10.1016/j.molliq.2020.112905]
[16]
Carneiro PA, Osugi ME, Sene JJ, Anderson MA, Zanoni MVB. Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes. Electrochim Acta 2004; 49(22-23): 3807-20.
[http://dx.doi.org/10.1016/j.electacta.2003.12.057]
[17]
Yan Y, Lee J, Cui X. Enhanced photoelectrochemical properties of Ta-TiO2 nanotube arrays prepared by magnetron sputtering. Vacuum 2017; 138: 30-8.
[http://dx.doi.org/10.1016/j.vacuum.2016.12.049]
[18]
Uhm SH, Song DH, Kwon JS, Lee SB, Han JG, Kim KN. Tailoring of antibacterial Ag nanostructures on TiO 2 nanotube layers by magnetron sputtering. J Biomed Mater Res B Appl Biomater 2014; 102(3): 592-603.
[http://dx.doi.org/10.1002/jbm.b.33038] [PMID: 24123999]
[19]
Şenyurt HG. Anodic oxidation of tin-coated titanium surfaces. Master's Thesis, Istanbul Technical University, Institute of Science and Technology 2016.
[20]
Bardakçı S. Determination of optical properties of TiO2 thin films prepared by sol-gel method. Master's Thesis, Sakarya University Institute Of Science And Science, Sakarya, Türkiye 2007.
[21]
Keşir MK, Sökmen M. Production of propolis/TiO2 (P-TiO2) nano composites for degradation of food dyes. Turk J Analysis Chem 2019; 1: 1.
[22]
Alnaggar G, Hezam A, Bajiri MA, Drmosh QA, Ananda S. Sulfate radicals induced from peroxymonosulfate on electrochemically synthesized TiO2–MoO3 heterostructure with Ti–O–Mo bond charge transfer pathway for potential organic pollutant removal under solar light irradiation. Chemosphere 2022; 303(Pt 1): 134562.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134562] [PMID: 35413371]
[23]
Abela S, Farrugia C, Xuereb R, Lia F, Zammit E. Photocatalytic activity of titanium dioxide nanotubes following long-term aging. Nanomaterials 2021; 11(11): 2823.
[http://dx.doi.org/10.3390/nano11112823]
[24]
Kmentova H, Kment S, Wang L, et al. Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication. Catal Today 2017; 287: 130-6.
[http://dx.doi.org/10.1016/j.cattod.2016.10.022]
[25]
Bakardjieva S, Stengl V, Szatmary L, et al. Transformation of brookite-type TiO2 nanocrystals to rutile: Correlation between microstructure and photoactivity. J Mater Chem 2006; 16(18): 1709-16.
[http://dx.doi.org/10.1039/b514632a]
[26]
Yu J, Lei J, Wang L, Zhang J, Liu Y. TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - A review. J Alloys Compd 2018; 769: 740-57.
[http://dx.doi.org/10.1016/j.jallcom.2018.07.357]
[27]
Arifin K, Yunus R. Improvement of TiO2 nanotubes for photoelectrochemical water splitting. Int J Hydrogen Energy 2021; 46(7): 4998-5024.
[http://dx.doi.org/10.1016/j.ijhydene.2020.11.063]
[28]
Haque E, Jun JW, Jhung SH. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater 2011; 185(1): 507-11.
[http://dx.doi.org/10.1016/j.jhazmat.2010.09.035] [PMID: 20933323]
[29]
Mandake M, Shingare S, Swamy A. Removal of methylene blue from aqueous solution using peanut hull as adsorbent. G P Global Resear J Chemist 2021; 4(2): 53-64.
[30]
Cao W, Chen K, Xue D. Highly ordered TiO2 nanotube arrays with engineered electrochemical energy storage performances. Materials 2021; 14(3): 510.
[http://dx.doi.org/10.3390/ma14030510]
[31]
Li X, Li C, Gong T, et al. Comparative study on the anodizing process of Ti and Zr and oxide morphology. Ceram Int 2021; 47(16): 23332-7.
[http://dx.doi.org/10.1016/j.ceramint.2021.05.046]
[32]
Kong Y, Sun H, Fan W, et al. Enhanced photoelectrochemical performance of tungsten oxide film by bifunctional Au nanoparticles. RSC Advances 2017; 7(25): 15201-10.
[http://dx.doi.org/10.1039/C7RA01426K]
[33]
Sun Z, Zhang H, Wei X, Du R, Hu X. Fabrication and electrochemical properties of a sno2-sb anode doped with ni-nd for phenol oxidation. J Electrochem Soc 2015; 162: H590.
[34]
Shabani M, Zamiri R, Goodarzi M. Study on the surface modification of titanium alloy by nanostructure tio2 grown through anodic oxidation treatment. Austin Chem Eng 2015; 2: 1015-20.
[35]
Jedi-soltanabadi Z, Pishkar N, Ghoranneviss M. Enhanced physical properties of the anodic TiO2 nanotubes via proper anodization time. J Theor Appl Phys 2018; 2018(12): 135-9.
[http://dx.doi.org/10.1007/s40094-018-0290-3]
[36]
Rho WY, Lee KH, Han SH, Kim HY, Jun BH. Carbon-doped freestanding TiO2 nanotube arrays in dye-sensitized solar cells. R Soc Chem 2019; 10(12): 805.
[http://dx.doi.org/10.1039/C6NJ02615J]
[37]
Jaafar H, Ain MF, Ahmad ZA. Performance of E. conferta and G. atroviridis fruit extracts as sensitizers in dye-sensitized solar cells (DSSCs). Ionics 2018; 24(3): 891-9.
[http://dx.doi.org/10.1007/s11581-017-2244-1]
[38]
Praveen P, Viruthagiri G, Mugundan S, Shanmugam N. Sol–gel synthesis and characterization of pure and manganese doped TiO2 nanoparticles – A new NLO active material. Spectrochim Acta A Mol Biomol Spectrosc 2014; 120: 548-57.
[http://dx.doi.org/10.1016/j.saa.2013.12.006] [PMID: 24374482]
[39]
Zayed M, Samy S, Shaban M, Altowyan AS, Hamdy H, Ahmed AM. Fabrication of TiO2/NiO p-n nanocomposite for enhancement dye photodegradation under solar radiation. Nanomaterials 2022; 12(6): 989.
[http://dx.doi.org/10.3390/nano12060989]
[40]
Mugundan S, Rajamannan B, Viruthagiri G, Shanmugam N, Gobi R, Praveen P. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl Nanosci 2015; 5(4): 449-56.
[http://dx.doi.org/10.1007/s13204-014-0337-y]
[41]
Vasudevan V, Thangavel S, Nallamuthu G, Kirubakaran K, Ramasubramanian PA, Venugopal G. Enhanced photocatalytic properties of nanostructured WO3 semiconductor-photocatalyst prepared via hydrothermal method. J Nanosci Nanotechnol 2018; 18(5): 3320-8.
[http://dx.doi.org/10.1166/jnn.2018.14853] [PMID: 29442834]
[42]
Eskalen H, Kavgaci M. Degradation of methylene blue and rhodamine B by hollow ZnO microspheres formed of radially oriented nanorods. Ömer Halisdemir Üniv mühendis 2023; 12(3): 998-1006.
[http://dx.doi.org/10.28948/ngumuh.1225826]
[43]
Ceballos-Chuc MC, Ramos-Castillo CM, Rodríguez-Pérez M, Ruiz-Gómez MÁ, Rodríguez-Gattorno G, Villanueva-Cab J. Synergistic correlation in the colloidal properties of Tio2 nanoparticles and its impact on the photocatalytic activity. Inorganics 2022; 10(9): 125.
[http://dx.doi.org/10.3390/inorganics10090125]
[44]
Song Y, Li H, Xiong Z, et al. TiO2/carbon composites from waste sawdust for methylene blue photodegradation. Diam Relat Mater 2023; 136: 109918.
[http://dx.doi.org/10.1016/j.diamond.2023.109918]
[45]
Gao W, Li Y, Zhao J, Wu Z. Photocatalytic degradation of methylene blue from aqueous solutions by rgo/Tio2 nanocomposites. Water Air Soil Pollut 2022; 234: 437.
[http://dx.doi.org/10.2139/ssrn.4163968]
[46]
Santhi K, Harish S, Navaneethan M, Ponnusamy S. Enhanced Photocatalytic activities of TiO2 through Metal chalcogenides based Nanocomposites (ZnS/TiO2) for methylene blue degradation. Surf Interfaces 2023; 41: 103205.
[http://dx.doi.org/10.1016/j.surfin.2023.103205]
[47]
Bopape DA, Tetana ZN, Mabuba N, Motaung DE, Hintsho-Mbita NC. Biosynthesis of TiO2 nanoparticles using Commelina benghanlensis for the photodegradation of methylene blue dye and antibiotics: Effect of plant concentration. Results Chem 2023; 5: 100825.
[http://dx.doi.org/10.1016/j.rechem.2023.100825]
[48]
Lu C, Zhang L, Zhang Y, Liu S. Electrodeposition of TiO2/CdSe heterostructure films and photocatalytic degradation of methylene blue. Coatings 2023; 13(8)
[http://dx.doi.org/10.3390/coatings13081472]
[49]
Kerkez Ö, Boz İ. Efficient removal of methylene blue by photocatalytic degradation with TiO2 nanorod array thin films. React Kinet Mech Catal 2013; 110(2): 543-57.
[http://dx.doi.org/10.1007/s11144-013-0616-8]
[50]
Shi Y, Yu Z, Li Z, Zhao X, Yuan Y. In-situ synthesis of TiO2@GO nanosheets for polymers degradation in a natural environment. Polymers 2021; 13(13): 2158.
[http://dx.doi.org/10.3390/polym13132158] [PMID: 34208946]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy