Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Pyrazoline Derivatives as Promising MAO-A Targeting Antidepressants: An Update

Author(s): Diksha Choudhary, Rajwinder Kaur*, Thakur Gurjeet Singh and Bhupinder Kumar

Volume 24, Issue 5, 2024

Published on: 02 February, 2024

Page: [401 - 415] Pages: 15

DOI: 10.2174/0115680266280249240126052505

Price: $65

Abstract

Depression is one of the key conditions addressed by the Mental Health Gap Action Programme (mhGAP) of WHO that can lead to self-harm and suicide. Depression is associated with low levels of neurotransmitters, which eventually play a key role in the progression and development of mental illness. The nitrogen-containing heterocyclic compounds exhibit the most prominent pharmacological profile as antidepressants. Pyrazoline, a dihydro derivative of pyrazole, is a well-known five-membered heterocyclic moiety that exhibits a broad spectrum of biological activities. Many researchers have reported pyrazoline scaffold-containing molecules as potential antidepressant agents with selectivity for monoamine oxidase enzyme (MAO) isoforms. Several studies indicated a better affinity of pyrazoline-based moiety as (monoamine oxidase inhibitors) MAOIs. In this review, we have focused on the recent advancements (2019-2023) in the development of pyrazoline-containing derivatives exhibiting promising inhibition of MAO-A enzyme to treat depression. This review provides structural insights on pyrazoline-based molecules along with their SAR analysis, in silico exploration of binding interactions between pyrazoline derivatives and MAO-A enzyme, and clinical trial status of various drug molecules against depression. The in-silico exploration of potent pyrazoline derivatives at the active site of the MAOA enzyme will provide further insights into the development of new potential MAO-A inhibitors for the treatment of depression.

Graphical Abstract

[1]
Kaltiala, R.; Aalto-Setälä, T.; Kiviruusu, O. Socioeconomic disparities in adolescent anxiety and depression in Finland have not increased during the COVID-19 pandemic. Scand. J. Public Health, 2023, 51(5), 656-663.
[http://dx.doi.org/10.1177/14034948231166466] [PMID: 37088988]
[2]
Evranos-Aksoz, B.; Ucar, G.; Tas, S.T.; Aksoz, E.; Yelekci, K.; Erikci, A.; Sara, Y.; Iskit, A.B. New human monoamine oxidase A inhibitors with potential anti-depressant activity: design, synthesis, biological screening and evaluation of pharmacological activity. Comb. Chem. High Throughput Screen., 2017, 20(6), 461-473.
[PMID: 28474547]
[3]
Kumar, R.R.; Kumar, V.; Kaur, D.; Nandi, N.K.; Dwivedi, A.R.; Kumar, V.; Kumar, B. Investigation of indole‐3‐piperazinyl derivatives as potential antidepressants: Design, synthesis, in‐vitro, in‐vivo and in‐silico analysis. ChemistrySelect, 2021, 6(41), 11276-11284.
[http://dx.doi.org/10.1002/slct.202103568]
[4]
Kumar, B.; Kumar, N.; Thakur, A.; Kumar, V.; Kumar, R.; Kumar, V. A review on the arylpiperazine derivatives as potential therapeutics for the treatment of various neurological disorders. Curr. Drug Targets, 2022, 23(7), 729-751.
[http://dx.doi.org/10.2174/1389450123666220117104038] [PMID: 35306994]
[5]
Singh, K.; Bhatia, R.; Kumar, B.; Singh, G.; Monga, V. Design strategies, chemistry and therapeutic insights of multi-target directed ligands as antidepressant agents. Curr. Neuropharmacol., 2022, 20(7), 1329-1358.
[http://dx.doi.org/10.2174/1570159X19666211102154311] [PMID: 34727859]
[6]
Dobrek, L.; Głowacka, K. Depression and its phytopharmacotherapy-a narrative review. Int. J. Mol. Sci., 2023, 24(5), 4772.
[http://dx.doi.org/10.3390/ijms24054772] [PMID: 36902200]
[7]
Organization, W.H. Depression, 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/depression (accessed 2023 3 April).
[8]
Revanasiddappa, B.C.; Kumar, M.V.; Kumar, H. Synthesis and antidepressant activity of pyrazoline derivatives. Dhaka Univ. J. Pharm. Sci., 2020, 19(2), 179-184.
[http://dx.doi.org/10.3329/dujps.v19i2.50634]
[9]
Sa’adah, N.; Darmawan, M.; Dewantari, M.; Haq, K.; Suwito, H. Exploration of pyrazoline and amino chalcone derivatives as monoamine oxidase inhibitors: An in-silico approach. Rasayan J. Chem., 2023, 16(2), 588-595.
[http://dx.doi.org/10.31788/RJC.2023.1628184]
[10]
Rangarajan, T.M.; Mathew, B. Recent updates on pyrazoline derivatives as promising candidates for neuropsychiatric and neurodegenerative disorders. Curr. Top. Med. Chem., 2021, 21(30), 2695-2714.
[http://dx.doi.org/10.2174/1568026621999210902123132] [PMID: 34477522]
[11]
Wu, S.M.; Qiu, X.Y.; Liu, S.J.; Sun, J. Single heterocyclic compounds as monoamine oxidase inhibitors: From past to present. Mini Rev. Med. Chem., 2020, 20(10), 908-920.
[http://dx.doi.org/10.2174/1389557520666200302114620] [PMID: 32116191]
[12]
Singh, K.; Pal, R.; Khan, S.A.; Kumar, B.; Akhtar, M.J. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. J. Mol. Struct., 2021, 1237, 130369.
[http://dx.doi.org/10.1016/j.molstruc.2021.130369]
[13]
Sharma, P.; Singh, M.; Mathew, B. An update of synthetic approaches and structure‐activity relationships of various classes of human MAO‐B inhibitors. ChemistrySelect, 2021, 6(7), 1404-1429.
[http://dx.doi.org/10.1002/slct.202004188]
[14]
Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F.A. Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J. Chem. Sci., 2019, 131(8), 70.
[http://dx.doi.org/10.1007/s12039-019-1646-1]
[15]
Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Review: Biologically active pyrazole derivatives. New J. Chem., 2017, 41(1), 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[16]
Arora, R.; Sharma, R.; Tageza, A.; Grewal, A. S.; Saini, B.; Arora, S.; Kaur, R. Design and synthesis of novel 4-aminophenazone Schiff bases by grinding technique as prospective anti-inflammatory agents. J. Appl. Pharm. Sci., 2021, 11(1), 48-53.
[17]
Alharthy, R.D.; Rashid, F.; Ashraf, A.; Shafiq, Z.; Ford, S.; al-Rashida, M.; Yaqub, M.; Iqbal, J. Pyrazole derivatives of pyridine and naphthyridine as proapoptotic agents in cervical and breast cancer cells. Sci. Rep., 2023, 13(1), 5370.
[http://dx.doi.org/10.1038/s41598-023-32489-5] [PMID: 37005457]
[18]
Lang, D. K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer Agents Med Chem., 2020, 20(18), 2150-2168.
[19]
Al-Abboodi, D.H.; Al-Lami, N.J. Antioxidant Activity of New Synthesized Pyrazole and 2-Oxo-3H-pyrimidine Derivatives Containing Imidazo (1, 2-a); Pyridine, 2023.
[20]
Becerra, D.; Abonia, R.; Castillo, J.C. Recent applications of the multicomponent synthesis for bioactive pyrazole derivatives. Molecules, 2022, 27(15), 4723.
[http://dx.doi.org/10.3390/molecules27154723] [PMID: 35897899]
[21]
Ardiansah, B. Recent reports on pyrazole-based bioactive compounds as candidate for anticancer agents. Asian J. Pharm. Clin. Res., 2017, 10(12), 45.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i12.22065]
[22]
Kaplancıklı, Z.A.; Özdemir, A.; Turan-Zitouni, G.; Altıntop, M.D.; Can, Ö.D. New pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem., 2010, 45(9), 4383-4387.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.011] [PMID: 20587366]
[23]
Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[24]
Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. Derivatives of 4,5-dihydro (1H) pyrazoles as possible MAO-A inhibitors in depression and anxiety disorders: Synthesis, biological evaluation and molecular modeling studies. Med. Chem. Res., 2018, 27(5), 1485-1503.
[http://dx.doi.org/10.1007/s00044-018-2167-z]
[25]
Ozmen Ozgun, D.; Gul, H.I.; Yamali, C.; Sakagami, H.; Gulcin, I.; Sukuroglu, M.; Supuran, C.T. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg. Chem., 2019, 84, 511-517.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.028] [PMID: 30605787]
[26]
Farooq, S.; Ngaini, Z. One-pot and two-pot synthesis of chalcone based mono and bis-pyrazolines. Tetrahedron Lett., 2020, 61(4), 151416.
[http://dx.doi.org/10.1016/j.tetlet.2019.151416]
[27]
Vahedpour, T.; Hamzeh-Mivehroud, M.; Hemmati, S.; Dastmalchi, S. Synthesis of 2‐pyrazolines from hydrazines: Mechanisms explained. ChemistrySelect, 2021, 6(25), 6483-6506.
[http://dx.doi.org/10.1002/slct.202101467]
[28]
Souza, L.N.; da Silva Neto, J.F.; da Silva Paula Cirilo, M.V.; Albuquerque, G.S.; Gomes, C.M.; Borges, L.L.; Taft, C.A.; da Silva, V.B. MAO inhibitors from natural sources for major depression treatment.Research Topics in Bioactivity, Environment and Energy; Springer, 2022, pp. 451-463.
[http://dx.doi.org/10.1007/978-3-031-07622-0_17]
[29]
Grabowski, Ł. Monoamine oxidase inhibitors (MAOI): Pharmacology, metabolism and application in the treatment of depression. Postepy Biochem., 2021, 67(2), 130-140.
[PMID: 34378889]
[30]
Bhawna, ; Kumar, A.; Bhatia, M.; Kapoor, A.; Kumar, P.; Kumar, S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem., 2022, 242(242), 114655.
[http://dx.doi.org/10.1016/j.ejmech.2022.114655] [PMID: 36037788]
[31]
Evranos-Aksoz, B.; Ucar, G.; Yelekci, K. Design, synthesis and hMAO inhibitory screening of novel 2-pyrazoline analogues. Comb. Chem. High Throughput Screen., 2017, 20(6), 510-521.
[PMID: 28474546]
[32]
Youdim, M.B.H. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J. Neural Transm., 2018, 125(11), 1719-1733.
[http://dx.doi.org/10.1007/s00702-018-1942-9] [PMID: 30341696]
[33]
Das, T.; Saha, S.C.; Sunita, K.; Majumder, M.; Ghorai, M.; Mane, A.B.; Prasanth, D.A.; Kumar, P.; Pandey, D.K.; Al-Tawaha, A.R.; Batiha, G.E-S.; Shekhawat, M.S.; Ghosh, A.; Sharifi-Rad, J.; Dey, A. Promising botanical-derived monoamine oxidase (MAO) inhibitors: Pharmacological aspects and structure-activity studies. S. Afr. J. Bot., 2022, 146, 127-145.
[http://dx.doi.org/10.1016/j.sajb.2021.09.019]
[34]
Rehuman, N.A.; Mathew, B.; Jat, R.K.; Nicolotti, O.; Kim, H. A comprehensive review of monoamine oxidase-a inhibitors in their syntheses and potencies. Comb. Chem. High Throughput Screen., 2020, 23(9), 898-914.
[http://dx.doi.org/10.2174/1386207323666200428091306] [PMID: 32342809]
[35]
El-Halaby, L.O.; El-Husseiny, W.M.; El-Messery, S.M.; Goda, F.E. Biphenylpiperazine based MAO inhibitors: Synthesis, biological evaluation, reversibility and molecular modeling studies. Bioorg. Chem., 2021, 115, 105216.
[http://dx.doi.org/10.1016/j.bioorg.2021.105216] [PMID: 34352710]
[36]
Nandi, N.K.; Bhatia, R.; Saini, S.; Rawat, R.; Sharma, S.; Raj, K.; Rangra, N.; Kumar, B. Design, synthesis, pharmacological and in silico screening of disubstituted-piperazine derivatives as selective and reversible MAO-A inhibitors for treatment of depression. J. Mol. Struct., 2023, 1276, 134671.
[http://dx.doi.org/10.1016/j.molstruc.2022.134671]
[37]
Głombik, K.; Budziszewska, B.; Basta-Kaim, A. Mitochondria-targeting therapeutic strategies in the treatment of depression. Mitochondrion, 2021, 58, 169-178.
[http://dx.doi.org/10.1016/j.mito.2021.03.006] [PMID: 33766747]
[38]
Lefin, R.; Petzer, A.; Petzer, J.P. Phenothiazine, anthraquinone and related tricyclic derivatives as inhibitors of monoamine oxidase. Bioorg. Med. Chem., 2022, 54, 116558.
[http://dx.doi.org/10.1016/j.bmc.2021.116558] [PMID: 34915314]
[39]
Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Logan, J.; Shea, C.; Alexoff, D.; MacGregor, R.R.; Schlyer, D.J.; Zezulkova, I.; Wolf, A.P. Brain monoamine oxidase A inhibition in cigarette smokers. Proc. Natl. Acad. Sci. USA, 1996, 93(24), 14065-14069.
[http://dx.doi.org/10.1073/pnas.93.24.14065] [PMID: 8943061]
[40]
Van den Eynde, V.; Abdelmoemin, W.R.; Abraham, M.M.; Amsterdam, J.D.; Anderson, I.M.; Andrade, C.; Baker, G.B.; Beekman, A.T.F.; Berk, M.; Birkenhäger, T.K.; Blackwell, B.B.; Blier, P.; Blom, M.B.J.; Bodkin, A.J.; Cattaneo, C.I.; Dantz, B.; Davidson, J.; Dunlop, B.W.; Estévez, R.F.; Feinberg, S.S.; Finberg, J.P.M.; Fochtmann, L.J.; Gotlib, D.; Holt, A.; Insel, T.R.; Larsen, J.K.; Mago, R.; Menkes, D.B.; Meyer, J.M.; Nutt, D.J.; Parker, G.; Rego, M.D.; Richelson, E.; Ruhé, H.G.; Sáiz-Ruiz, J.; Stahl, S.M.; Steele, T.; Thase, M.E.; Ulrich, S.; van Balkom, A.J.L.M.; Vieta, E.; Whyte, I.; Young, A.H.; Gillman, P.K. The prescriber’s guide to classic MAO inhibitors (phenelzine, tranylcypromine, isocarboxazid) for treatment-resistant depression. CNS Spectr., 2022, 1-14.
[PMID: 35837681]
[41]
Uzbekov, M.G. Monoamine oxidase as a potential biomarker of the efficacy of treatment of mental disorders. Biochemistry, 2021, 86(6), 773-783.
[http://dx.doi.org/10.1134/S0006297921060146] [PMID: 34225599]
[42]
Hitge, R.; Petzer, A.; Petzer, J.P. Isatoic anhydrides as novel inhibitors of monoamine oxidase. Bioorg. Med. Chem., 2022, 73, 117030.
[http://dx.doi.org/10.1016/j.bmc.2022.117030] [PMID: 36179486]
[43]
Ostadkarampour, M.; Putnins, E.E. Monoamine oxidase inhibitors: A review of their anti-inflammatory therapeutic potential and mechanisms of action. Front. Pharmacol., 2021, 12, 676239.
[http://dx.doi.org/10.3389/fphar.2021.676239] [PMID: 33995107]
[44]
Naoi, M.; Riederer, P.; Maruyama, W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: Genetic and environmental factors involved in type A MAO expression. J. Neural Transm., 2016, 123(2), 91-106.
[http://dx.doi.org/10.1007/s00702-014-1362-4] [PMID: 25604428]
[45]
Duarte, P.; Cuadrado, A.; León, R. Monoamine oxidase inhibitors: From classic to new clinical approaches. In: Reactive Oxygen Species:; Network Pharmacology and Therapeutic Applications, 2021; pp. 229-259.
[46]
Upadhyay, S.; Tripathi, A.C.; Paliwal, S.; Saraf, S.K. 2-pyrazoline derivatives in neuropharmacology: Synthesis, ADME prediction, molecular docking and in vivo biological evaluation. EXCLI J., 2017, 16, 628-649.
[PMID: 28694764]
[47]
Patil, P.O.; Bari, S.B. Nitrogen heterocycles as potential monoamine oxidase inhibitors: Synthetic aspects. Arab. J. Chem., 2014, 7(6), 857-884.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.034]
[48]
Kumar, B.; Gupta, V.; Kumar, V. A perspective on monoamine oxidase enzyme as drug target: Challenges and opportunities. Curr. Drug Targets, 2016, 18(1), 87-97.
[http://dx.doi.org/10.2174/1389450117666151209123402] [PMID: 26648064]
[49]
Pal, R.; Kumar, B.; Swamy P M, G.; Chawla, P.A. Design, synthesis of 1,2,4-triazine derivatives as antidepressant and antioxidant agents: In vitro, in vivo and in silico studies. Bioorg. Chem., 2023, 131, 106284.
[http://dx.doi.org/10.1016/j.bioorg.2022.106284] [PMID: 36444791]
[50]
Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J. Neural Transm., 2018, 125(1), 53-66.
[http://dx.doi.org/10.1007/s00702-017-1709-8] [PMID: 28293733]
[51]
Mathew, B.; E Mathew, G.; Suresh, J.; Ucar, G.; Sasidharan, R.; Anbazhagan, S.; Vilapurathu, K.; Jayaprakash, V. Monoamine oxidase inhibitors: Perspective design for the treatment of depression and neurological disorders. Curr. Enzym. Inhib., 2016, 12(2), 115-122.
[http://dx.doi.org/10.2174/1573408012666160402001715]
[52]
Aljanabi, R.; Alsous, L.; Sabbah, D.A.; Gul, H.I.; Gul, M.; Bardaweel, S.K. Monoamine oxidase (MAO) as a potential target for anticancer drug design and development. Molecules, 2021, 26(19), 6019.
[http://dx.doi.org/10.3390/molecules26196019] [PMID: 34641563]
[53]
Liu, Y.; Jiang, H.; Qin, X.; Tian, M.; Zhang, H. PET imaging of reactive astrocytes in neurological disorders. Eur. J. Nucl. Med. Mol. Imaging, 2021, 1-13.
[PMID: 34873637]
[54]
Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur. J. Med. Chem., 2018, 145, 445-497.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.003] [PMID: 29335210]
[55]
Sahu, B.; Bhatia, R.; Kaur, D.; Choudhary, D.; Rawat, R.; Sharma, S.; Kumar, B. Design, synthesis and biological evaluation of oxadiazole clubbed piperazine derivatives as potential antidepressant agents. Bioorg. Chem., 2023, 136, 106544.
[http://dx.doi.org/10.1016/j.bioorg.2023.106544] [PMID: 37116324]
[56]
Laban, T.S.; Saadabadi, A. Monoamine oxidase inhibitors (MAOI). In: StatPearls ; StatPearls Publishing, 2022.
[57]
Katz, R.B.; Toprak, M.; Wilkinson, S.T.; Sanacora, G.; Ostroff, R. Concurrent use of ketamine and monoamine oxidase inhibitors in the treatment of depression: A letter to the editor. Gen. Hosp. Psychiatry, 2018, 54, 62-64.
[http://dx.doi.org/10.1016/j.genhosppsych.2018.05.007] [PMID: 30100209]
[58]
Cho, H.U.; Kim, S.; Sim, J.; Yang, S.; An, H.; Nam, M.H.; Jang, D.P.; Lee, C.J. Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis. Exp. Mol. Med., 2021, 53(7), 1148-1158.
[http://dx.doi.org/10.1038/s12276-021-00646-3] [PMID: 34244591]
[59]
Carradori, S.; Secci, D.; Petzer, J.P. MAO inhibitors and their wider applications: A patent review. Expert Opin. Ther. Pat., 2018, 28(3), 211-226.
[http://dx.doi.org/10.1080/13543776.2018.1427735] [PMID: 29324067]
[60]
Jones, D.N.; Raghanti, M.A. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J. Chem. Neuroanat., 2021, 114, 101957.
[http://dx.doi.org/10.1016/j.jchemneu.2021.101957] [PMID: 33836221]
[61]
Ayerdurai, V.; Cieplak, M.; Noworyta, K.R.; Gajda, M.; Ziminska, A.; Sosnowska, M.; Piechowska, J.; Borowicz, P.; Lisowski, W.; Shao, S.; D’Souza, F.; Kutner, W. Electrochemical sensor for selective tyramine determination, amplified by a molecularly imprinted polymer film. Bioelectrochemistry, 2021, 138, 107695.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107695] [PMID: 33296790]
[62]
Rapaport, M.H. Dietary restrictions and drug interactions with monoamine oxidase inhibitors: The state of the art. J. Clin. Psychiatry, 2007, 68(8)(Suppl. 8), 42-46.
[PMID: 17640157]
[63]
Gillman, P.K. A reassessment of the safety profile of monoamine oxidase inhibitors: Elucidating tired old tyramine myths. J. Neural Transm., 2018, 125(11), 1707-1717.
[http://dx.doi.org/10.1007/s00702-018-1932-y] [PMID: 30255284]
[64]
Mannan, A.; Singh, T.G.; Singh, V.; Garg, N.; Kaur, A.; Singh, M. Insights into the mechanism of the therapeutic potential of herbal monoamine oxidase inhibitors in neurological diseases. Curr. Drug Targets, 2022, 23(3), 286-310.
[http://dx.doi.org/10.2174/1389450122666210707120256] [PMID: 34238153]
[65]
Pathak, A.K.; Srivastava, A.K.; Singour, P.; Gouda, P. Synthetic and natural monoamine oxidase inhibitors as potential lead compounds for effective therapeutics. Cent. Nerv., 2016, 16(2), 81-97.
[66]
Tripathi, A.C.; Upadhyay, S.; Paliwal, S.; Saraf, S.K. N1-benzenesulfonyl-2-pyrazoline hybrids in neurological disorders: Syntheses, biological screening and computational studies. EXCLI J., 2018, 17, 126-148.
[PMID: 29743852]
[67]
Riederer, P.; Müller, T. Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin. Drug Metab. Toxicol., 2017, 13(2), 233-240.
[http://dx.doi.org/10.1080/17425255.2017.1273901] [PMID: 27998194]
[68]
Pratibha, ; Kapoor, A.; Rajput, J. K. Electroactive core–shell chitosan-coated lanthanum iron oxide as a food freshness level indicator for tyramine content determination. ACS Sustain. Chem.& Eng., 2022.
[69]
Livingston, M.G.; Livingston, H.M. Monoamine oxidase inhibitors. An update on drug interactions. Drug Saf., 1996, 14(4), 219-227.
[http://dx.doi.org/10.2165/00002018-199614040-00002] [PMID: 8713690]
[70]
Meiring, L.; Petzer, J.P.; Legoabe, L.J.; Petzer, A. The evaluation of N-propargylamine-2-aminotetralin as an inhibitor of monoamine oxidase. Bioorg. Med. Chem. Lett., 2022, 67, 128746.
[http://dx.doi.org/10.1016/j.bmcl.2022.128746] [PMID: 35447344]
[71]
Dhiman, P.; Malik, N.; Sobarzo-Sánchez, E.; Uriarte, E.; Khatkar, A. Quercetin and related chromenone derivatives as monoamine oxidase inhibitors: targeting neurological and mental disorders. Molecules, 2019, 24(3), 418.
[http://dx.doi.org/10.3390/molecules24030418] [PMID: 30678358]
[72]
Reyes-Chaparro, A.; Flores-Lopez, N.S.; Quintanilla-Guerrero, F.; Nicolás-Álvarez, D.E.; Hernandez-Martinez, A.R. Design of new reversible and selective inhibitors of monoamine oxidase A and a comparison with drugs already approved. Bull. Natl. Res. Cent., 2023, 47(1), 46.
[http://dx.doi.org/10.1186/s42269-023-01018-9]
[73]
Elias, E.; Zhang, A.Y.; Manners, M.T. Novel pharmacological approaches to the treatment of depression. Life, 2022, 12(2), 196.
[http://dx.doi.org/10.3390/life12020196] [PMID: 35207483]
[74]
Kaewjua, K.; Siangproh, W. A non-enzymatic sensor based poly (Histidine) for highly sensitive detection of Tyramine. In: SPAST Abstracts; , 2021; 1, . (1)
[75]
Meyer, J.H.; Wilson, A.A.; Sagrati, S.; Miler, L.; Rusjan, P.; Bloomfield, P.M.; Clark, M.; Sacher, J.; Voineskos, A.N.; Houle, S. Brain monoamine oxidase A binding in major depressive disorder: Relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Arch. Gen. Psychiatry, 2009, 66(12), 1304-1312.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.156] [PMID: 19996035]
[76]
Bobo, W.V.; Richelson, E. Monoamine oxidase inhibitors for treatment-resistant depression; Managing Treatment-Resistant Depression, 2022, pp. 137-166.
[77]
Adámek, R.; Pachlová, V.; Salek, R.N.; Němečková, I.; Buňka, F.; Buňková, L. Reduction of biogenic amine content in Dutch-type cheese as affected by the applied adjunct culture. Lebensm. Wiss. Technol., 2021, 152, 112397.
[http://dx.doi.org/10.1016/j.lwt.2021.112397]
[78]
Mathew, B.; Suresh, J. Monoamine oxidase-A: A valid target for the management of depression. In: Search for Antidepressants-An Integrative View of Drug Discovery; Mathew, B.; Suresh, J., Eds.; , 2017; 2, pp. 126-134.
[http://dx.doi.org/10.2174/9781681084732117020008]
[79]
Available from: https://clinicaltrials.gov/
[80]
Acar Çevik, U.; Osmaniye, D.; Sağlik, B.N.; Levent, S.; Kaya Çavuşoğlu, B.; Özkay, Y.; Kaplancikli, Z.A. Synthesis and evaluation of new pyrazoline‐thiazole derivatives as monoamine oxidase inhibitors. J. Heterocycl. Chem., 2019, 56(11), 3000-3007.
[http://dx.doi.org/10.1002/jhet.3694]
[81]
Tok, F.; Koçyiğit-Kaymakçıoğlu, B.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg. Chem., 2019, 84, 41-50.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.016] [PMID: 30481645]
[82]
Guglielmi, P.; Carradori, S.; Poli, G.; Secci, D.; Cirilli, R.; Rotondi, G.; Chimenti, P.; Petzer, A.; Petzer, J.P. Design, synthesis, docking studies and monoamine oxidase inhibition of a small library of 1-acetyl-and 1-thiocarbamoyl-3, 5-diphenyl-4, 5-dihydro-(1 H)-pyrazoles. Molecules, 2019, 24(3), 484.
[http://dx.doi.org/10.3390/molecules24030484] [PMID: 30700029]
[83]
Goksen, U.S.; Sarigul, S.; Bultinck, P.; Herrebout, W.; Dogan, I.; Yelekci, K.; Ucar, G.; Gokhan Kelekci, N. Absolute configuration and biological profile of pyrazoline enantiomers as MAO inhibitory activity. Chirality, 2019, 31(1), 21-33.
[http://dx.doi.org/10.1002/chir.23027] [PMID: 30468523]
[84]
Aggarwal, N.N.; Dkhar Gatphoh, B.F.; Kumar, M.V.; Ghetia, S.; Revanasiddappa, B. Synthesis, in silico analysis and antidepressant activity of pyrazoline analogs. Thaiphesatchasan, 2021, 45(1)
[85]
Nair, A.S.; Oh, J.M.; Koyiparambath, V.P.; Kumar, S.; Sudevan, S.T.; Soremekun, O.; Soliman, M.E.; Khames, A.; Abdelgawad, M.A.; Pappachen, L.K.; Mathew, B.; Kim, H. Development of halogenated pyrazolines as selective monoamine oxidase-B inhibitors: Deciphering via molecular dynamics approach. Molecules, 2021, 26(11), 3264.
[http://dx.doi.org/10.3390/molecules26113264] [PMID: 34071665]
[86]
Salgin-Goksen, U.; Telli, G.; Erikci, A.; Dedecengiz, E.; Tel, B.C.; Kaynak, F.B.; Yelekci, K.; Ucar, G.; Gokhan-Kelekci, N. New 2-pyrazoline and hydrazone derivatives as potent and selective monoamine oxidase A inhibitors. J. Med. Chem., 2021, 64(4), 1989-2009.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01504] [PMID: 33533632]
[87]
Badavath, V.N.; Thakur, A.; Shilkar, D.; Nath, C.; Acevedo, O.; Ucar, G.; Jayaprakash, V. Brain permeable curcumin-based pyrazoline analogs: MAO inhibitory and antioxidant activity. J. Mol. Struct., 2022, 1268, 133681.
[http://dx.doi.org/10.1016/j.molstruc.2022.133681]
[88]
Ebada, M.E. Drug repurposing may generate novel approaches to treating depression. J. Pharm. Pharmacol., 2017, 69(11), 1428-1436.
[http://dx.doi.org/10.1111/jphp.12815] [PMID: 28925030]
[89]
Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: The role of baseline inflammatory biomarkers. JAMA Psychiatry, 2013, 70(1), 31-41.
[http://dx.doi.org/10.1001/2013.jamapsychiatry.4] [PMID: 22945416]
[90]
Ahsan, M.J.; Ali, A.; Ali, A.; Thiriveedhi, A.; Bakht, M.A.; Yusuf, M.; Salahuddin, ; Afzal, O.; Altamimi, A.S.A. Pyrazoline containing compounds as therapeutic targets for neurodegenerative disorders. ACS Omega, 2022, 7(43), 38207-38245.
[http://dx.doi.org/10.1021/acsomega.2c05339] [PMID: 36340076]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy