Abstract
Tetrazole is a most versatile pharmacophore of which more than twenty FDAapproved drugs have been marketed globally for the management of various diseases. In spite of many remarkable and consistent efforts having been made by the chemists towards the development of greener and sustainable strategies for the synthesis of tetrazole derivatives, this approach still needs more attention. The present review focuses on the green synthetic approach for the preparation of tetrazole derivatives from different starting materials such as nitrile, isonitrile, carbonyl, amine, amide, oxime and terminal alkyne functions. The mechanism of tetrazole synthesis from different substrates is discussed. In addition to this, a four component Ugi-azide reaction to the tetrazole synthesis is also described. Of note, the present articles exploited several water-mediated and solvent-free methodologies for tetrazole synthesis. The important key features of tetrazole synthesis were pinpointing in each synthetic scheme which provides excellent guide to those searching for selective procedure to achieve the desired transformation. This review seeks to present a timely account (2011-2023) on the splendid array of ecofriendly procedures of synthesis known today for the preparation of tetrazole derivatives from different starting materials. The rational of this review is to enlighten recent advancements in the synthesis of tetrazole derivatives from different substrates.
Graphical Abstract
[http://dx.doi.org/10.1016/j.tet.2022.132753];
b) Adhikari, A.; Bhakta, S.; Ghosh, T. Microwave-assisted synthesis of bioactive heterocycles: An overview. Tetrahedron, 2022, 126, 133085.
[http://dx.doi.org/10.1016/j.tet.2022.133085];
c) Ranjith, R. The chemistry and biological significance of imidazole, benzimidazole, benzoxazole, tetrazole and quinazolinone nucleus. J. Chem. Pharm. Res., 2016, 8(5), 505-526.;
d) Ostrovskii, V.A.; Popova, E.A.; Trifonov, R.E. Developments in tetrazole chemistry (2009–16). Adv. Heterocycl. Chem., 2017, 123, 1-62.
[http://dx.doi.org/10.1016/bs.aihch.2016.12.003]
[http://dx.doi.org/10.1021/acsomega.1c06718] [PMID: 35224384];
b) Borah, B.; Chowhan, L.R. Ultrasound-assisted transition-metal-free catalysis: A sustainable route towards the synthesis of bioactive heterocycles. RSC Adv., 2022, 12(22), 14022-14051.
[http://dx.doi.org/10.1039/D2RA02063G] [PMID: 35558846];
c) Garg, S.; Sohal, H.S.; Malhi, D.S.; Kaur, M.; Singh, K.; Sharma, A.; Mutreja, V.; Thakur, D.; Kaur, L. Electrochemical method: A green approach for the synthesis of organic compounds. Curr. Org. Chem., 2022, 26(10), 899-919.
[http://dx.doi.org/10.2174/1385272826666220516113152];
d) Nair, G.M.; Sajini, T.; Mathew, B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open, 2022, 5, 100080.
[http://dx.doi.org/10.1016/j.talo.2021.100080]
[http://dx.doi.org/10.3390/catal13050858];
b) Chauhan, D.; Dwivedi, J.; Sankararamakrishnan, N. Facile synthesis of smart biopolymeric nanofibers towards toxic ion removal and disinfection control. RSC Advances, 2014, 4(97), 54694-54702.
[http://dx.doi.org/10.1039/C4RA11172A];
c) Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The synthetic and biological attributes of pyrazole derivatives: A review. Mini Rev. Med. Chem., 2018, 18(11), 918-947.
[http://dx.doi.org/10.2174/1389557517666170927160919] [PMID: 28971774];
d) Tak, K.; Sharma, R.; Dave, V.; Jain, S.; Sharma, S. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2020, 11(22), 3741-3748.
[http://dx.doi.org/10.1021/acschemneuro.0c00273] [PMID: 33119989]
[http://dx.doi.org/10.2174/1570179416666191104093533] [PMID: 31984919]
[http://dx.doi.org/10.1002/anie.202305371] [PMID: 37291046];
b) Saini, S.; Tewari, S.; Dwivedi, J.; Sharma, V. Biofilm mediated wastewater treatment: A comprehensive review. Mater. Adv., 2023.;
c) Arya, N.; Dwivedi, J.; Khedkar, V.M.; Coutinho, E.C.; Jain, K.S. Design, synthesis and biological evaluation of some 2-azetidinone derivatives as potential antihyperlipidemic agents. Arch. Pharm., 2013, 346(12), 872-881.
[http://dx.doi.org/10.1002/ardp.201300262] [PMID: 24142910]
[http://dx.doi.org/10.1007/s12274-023-5388-5];
b) Panchal, J.; Jain, S.; Jain, P.K.; Kishore, D.; Dwivedi, J. Greener approach toward synthesis of biologically active s‐TRIAZINE (TCT) derivatives: A recent update. J. Heterocycl. Chem., 2021, 58(11), 2049-2066.
[http://dx.doi.org/10.1002/jhet.4343];
c) Misra, A.; Dwivedi, J.; Shukla, S.; Kishore, D.; Sharma, S. Bacterial cell leakage potential of newly synthesized quinazoline derivatives of 1,5‐benzodiazepines analogue. J. Heterocycl. Chem., 2020, 57(4), 1545-1558.
[http://dx.doi.org/10.1002/jhet.3879];
d) Mishra, S.; Dwivedi, J.; Kumar, A.; Sankararamakrishnan, N. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes. RSC Advances, 2016, 6(98), 95865-95878.
[http://dx.doi.org/10.1039/C6RA18965B];
e) Rani, M.; Sharma, S.; Chauhan, R.; Sharma, S.; Dwivedi, J. Synthesis, characterization and antibacterial evaluation of some azole derivatives. Indian J. Pharmaceut. Educ. Res., 2017, 51(4), 650-655.
[http://dx.doi.org/10.5530/ijper.51.4.96];
f) Shukla, S.; Dwivedi, J.; Yaduvanshi, N.; Jain, S. Medicinal and biological significance of phenoxazine derivatives. Mini Rev. Med. Chem., 2021, 21(12), 1541-1555.
[http://dx.doi.org/10.2174/1389557520666201214102151] [PMID: 33319658]
[http://dx.doi.org/10.2139/ssrn.4028655];
b) Dwivedi, J.; Devi, K.; Asmat, Y.; Jain, S.; Sharma, S. Synthesis, characterization, antibacterial and antiepileptic studies of some novel thiazolidinone derivatives. J. Saudi Chem. Soc., 2016, 20, S16-S20.
[http://dx.doi.org/10.1016/j.jscs.2012.09.001];
c) Arora, D.; Dwivedi, J.; Kumar, S.; Kishore, D. Greener approach toward the generation of dimedone derivatives. Synth. Commun., 2018, 48(2), 115-134.
[http://dx.doi.org/10.1080/00397911.2017.1387924];
d) Mishra, S.; Dwivedi, J.; Kumar, A.; Sankararamakrishnan, N. Studies on salophen anchored micro/meso porous activated carbon fibres for the removal and recovery of uranium. RSC Advances, 2015, 5(42), 33023-33036.
[http://dx.doi.org/10.1039/C5RA03168K]
[http://dx.doi.org/10.1080/00304948.2023.2170665]
[http://dx.doi.org/10.1002/jhet.3431]
[http://dx.doi.org/10.14715/cmb/2021.67.1.1] [PMID: 34817375]
[http://dx.doi.org/10.1007/s11356-022-20302-1] [PMID: 35478393]
[http://dx.doi.org/10.1039/D2NJ05576G]
[http://dx.doi.org/10.1002/jhet.3260]
[http://dx.doi.org/10.1002/ptr.7522] [PMID: 35790042]
[http://dx.doi.org/10.1080/10496475.2017.1345029]
[http://dx.doi.org/10.1002/jcb.30433] [PMID: 37408526]
[http://dx.doi.org/10.1111/fcp.12927] [PMID: 37354029]
b) Siddiqui, N.; Husain, A. Pharmacological and pharmaceutical profile of valsartan: A review. J. Appl. Pharm. Sci., 2011, 12-19.;
c) Jiang, X. Continuous-flow oxidation of amines based on nitrogen-rich heterocycles: A facile and sustainable approach for promising nitro derivatives. Org. Process Res. Dev., 2022, 26(10), 2823-2829.;
d) Shen, T. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis. Drug Des. Devel. Ther., 2021, 15, 2099-2107.;
e) Li, S. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. J. Biomed. Mater. Res. A, 2022, 110(2), 424-442.;
f) Roberti, R. Pharmacology of cenobamate: Mechanism of action, pharmacokinetics, drug-drug interactions and tolerability. CNS Drugs, 2021, 35(6), 609-618.;
g) Seyed Hashtroudi, M. Ru-catalyzed one-pot synthesis of heterocyclic backbones. Catalysts, 2023, 131, 87.;
h) Puskarich, M.A. A multi-center phase II randomized clinical trial of losartan on symptomatic outpatients with COVID-19. EClinicalMedicine, 2021, 37.;
i) Soni, A. A decade of synthesis of N-heterocyclic derivatives via magnetically retrievable Fe3O4@ SiO2@ Cu (II) nanocatalysts: A review (2013-present). Synth. Commun., 2023, 1-37.;
j) Ghobadi, E. Synthetic approaches and structural diversity of triazolylbutanols derived from voriconazole in the antifungal drug development. Eur. J. Med. Chem., 2022, 231, 14161.;
k) Wang, T. Functionalized tetrazole energetics: A route to enhanced performance. Z. Anorg. Allg. Chem., 2021, 647(4), 157-191.
b) He, P.; Zhang, J.G. Energetic salts based on tetrazole N‐oxide. Chem. Eur. J., 2016, 22(23), 7670-7685.;
c) Al-Majed, A.R.A.; Assiri, E. Losartan: Comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol., 2015, 40, 159-194.
[http://dx.doi.org/10.1016/bs.podrm.2015.02.003] [PMID: 26051686]
[http://dx.doi.org/10.2174/1871522218666180525100850];
b) Xu, Y.; Kong, J.; Hu, P. Computational drug repurposing for Alzheimer’s disease using risk genes from GWAS and single-cell RNA sequencing studies. Front. Pharmacol., 2021, 12, 617537.
[http://dx.doi.org/10.3389/fphar.2021.617537] [PMID: 34276354];
c) Devi, M.; Jaiswal, S.; Yaduvanshi, N.; Kaur, N.; Kishore, D.; Dwivedi, J.; Sharma, S. Design, synthesis, antibacterial evaluation and docking studies of triazole and tetrazole linked 1,4‐benzodiazepine nucleus via click approach. ChemistrySelect, 2023, 8(6), e202204710.
[http://dx.doi.org/10.1002/slct.202204710];
d) Sain, S.; Jaiswal, S.; Jain, S.; Misra, N.; Srivastava, A.; Jendra, R.; Kishore, D.; Dwivedi, J.; Wabaidur, S.M.; Islam, M.A.; Sharma, S. Synthesis and theoretical studies of biologically active thieno nucleus incorporated Tri and tetracyclic nitrogen containing heterocyclics scaffolds via suzuki cross‐coupling reaction. Chem. Biodivers., 2022, 19(12), e202200540.
[http://dx.doi.org/10.1002/cbdv.202200540] [PMID: 36310125];
e) Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734];
f) Devi, M.; Jaiswal, S.; Yaduvanshi, N.; Jain, S.; Jain, S.; Verma, K.; Verma, R.; Kishore, D.; Dwivedi, J.; Sharma, S. Design, synthesis, molecular docking, and antibacterial study of aminomethyl triazolo substituted analogues of benzimidazolo [1,4]-benzodiazepine. J. Mol. Struct., 2023, 1286, 135571.
[http://dx.doi.org/10.1016/j.molstruc.2023.135571];
g) Jaiswal, S.; Devi, M.; Sharma, N.; Rathi, K.; Dwivedi, J.; Sharma, S. Emerging approaches for synthesis of 1,2,3-triazole derivatives. A review. Org. Prep. Proced. Int., 2022, 54(5), 387-422.
[http://dx.doi.org/10.1080/00304948.2022.2069456]
[http://dx.doi.org/10.1016/j.bmc.2020.115599] [PMID: 32631569];
b) Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem., 2019, 178, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.071] [PMID: 31200236];
c) Popova, E.A.; Protas, A.V.; Trifonov, R.E. Tetrazole derivatives as promising anticancer agents. Anticancer. Agents Med. Chem., 2018, 17(14), 1856-1868.
[PMID: 28356016]
[http://dx.doi.org/10.1016/j.ejmech.2019.111744] [PMID: 31605865]
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023] [PMID: 30904780]
[http://dx.doi.org/10.1039/D1RA05955F] [PMID: 35492456]
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770]
[http://dx.doi.org/10.1016/j.molliq.2021.117398]
[http://dx.doi.org/10.1016/j.mcat.2021.111788]
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[http://dx.doi.org/10.1016/j.arabjc.2020.10.005]
[http://dx.doi.org/10.1016/j.matpr.2021.08.203]
[http://dx.doi.org/10.1002/aoc.4989]
[http://dx.doi.org/10.1016/j.inoche.2023.110600]
[http://dx.doi.org/10.1021/acs.oprd.9b00526]
[http://dx.doi.org/10.1002/aoc.6014]
[http://dx.doi.org/10.1002/slct.201600265]
[http://dx.doi.org/10.1007/s11164-019-04035-4]
[http://dx.doi.org/10.1016/j.bmcl.2020.127592] [PMID: 33010448]
[http://dx.doi.org/10.1016/j.msec.2019.110260] [PMID: 31761157]
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.020]
[http://dx.doi.org/10.5155/eurjchem.8.1.66-75.1515]
[http://dx.doi.org/10.1039/C4RA13393E]
[http://dx.doi.org/10.1039/C5RA21481E]
[http://dx.doi.org/10.1016/j.ejmech.2014.01.002] [PMID: 24531200]
[http://dx.doi.org/10.1039/c3ra23107k]
[http://dx.doi.org/10.2174/1385272824999200622114919]
[http://dx.doi.org/10.1002/slct.201702427]
[http://dx.doi.org/10.1016/j.carbpol.2019.115819] [PMID: 31952615]
[http://dx.doi.org/10.1016/j.colcom.2021.100471]
[http://dx.doi.org/10.1134/S1070363219090275]
[http://dx.doi.org/10.1016/j.tetlet.2015.03.032]
[http://dx.doi.org/10.1080/00397911.2020.1761396]
[http://dx.doi.org/10.1007/s10562-019-03031-y]
[http://dx.doi.org/10.1002/ardp.201600389]
[http://dx.doi.org/10.1016/j.tetlet.2014.01.117]
[http://dx.doi.org/10.1007/s11164-021-04543-2]
[http://dx.doi.org/10.1016/j.tetlet.2015.06.091]
[http://dx.doi.org/10.1016/j.ejmech.2023.115681] [PMID: 37515921]
[http://dx.doi.org/10.1002/prep.201600005]
[PMID: 15068080]
[http://dx.doi.org/10.1016/j.matlet.2013.05.067]
[http://dx.doi.org/10.1016/j.cclet.2009.06.020]
[http://dx.doi.org/10.1016/j.molstruc.2021.131289]
[http://dx.doi.org/10.1055/s-0036-1591534]
[http://dx.doi.org/10.1080/00397910902917682]
[http://dx.doi.org/10.1002/aoc.6895]
[http://dx.doi.org/10.1002/aoc.7317]
[http://dx.doi.org/10.1039/D2RA04759D] [PMID: 36424985]
[http://dx.doi.org/10.1039/D2RA07510E] [PMID: 36936843]
[http://dx.doi.org/10.1002/aoc.7020]
[http://dx.doi.org/10.1039/D2RA05413B] [PMID: 36545578]
[http://dx.doi.org/10.1016/j.poly.2023.116587]
[http://dx.doi.org/10.1039/D2RA08269A] [PMID: 37101952]
[http://dx.doi.org/10.1002/slct.202301674]
[http://dx.doi.org/10.1038/s41598-023-33109-y] [PMID: 37041186]
[http://dx.doi.org/10.1039/D3RA06440A] [PMID: 38077976]
[http://dx.doi.org/10.1002/aoc.5919]
[http://dx.doi.org/10.1007/s10934-019-00835-6]
[http://dx.doi.org/10.1039/C9NJ06129K]
[http://dx.doi.org/10.1016/j.poly.2019.114169]
[http://dx.doi.org/10.1055/s-0035-1562435]
[http://dx.doi.org/10.1002/anie.201609034] [PMID: 27862731]
[http://dx.doi.org/10.1007/s10593-018-2303-1]
[http://dx.doi.org/10.1021/jo401428q] [PMID: 23944996]
[http://dx.doi.org/10.1002/slct.201904637]
[http://dx.doi.org/10.1039/C9RA08523H] [PMID: 35494449]
[http://dx.doi.org/10.1039/D1RA01913A] [PMID: 35478649]
[http://dx.doi.org/10.1039/C6RA19631D]
[http://dx.doi.org/10.1016/j.tetlet.2015.12.067]
[http://dx.doi.org/10.1039/C4NJ01042F]
[http://dx.doi.org/10.1039/c3ra00021d]
[http://dx.doi.org/10.1039/C8GC01321G]
[http://dx.doi.org/10.1016/j.isci.2020.101872] [PMID: 33336165]
[http://dx.doi.org/10.1002/anie.201308076] [PMID: 24227650]
[http://dx.doi.org/10.1002/aoc.5097]
[http://dx.doi.org/10.1021/acs.orglett.7b02319] [PMID: 28901777]
[http://dx.doi.org/10.1007/s11051-014-2590-0]
[http://dx.doi.org/10.3390/ecsoc-23-06521]
[http://dx.doi.org/10.1016/j.cdc.2018.05.001]
[http://dx.doi.org/10.1246/bcsj.20170148]
[http://dx.doi.org/10.1016/j.molstruc.2020.128985]
[http://dx.doi.org/10.1007/s11164-022-04756-z]
[http://dx.doi.org/10.1134/S1070428016120307]
[http://dx.doi.org/10.1021/acsomega.9b00800] [PMID: 31459987]
[http://dx.doi.org/10.1039/c1gc15245a]
[http://dx.doi.org/10.1016/j.jscs.2016.03.004]
[http://dx.doi.org/10.1007/s10593-022-03059-w]
[http://dx.doi.org/10.1021/acs.orglett.0c01890] [PMID: 32634317]
[http://dx.doi.org/10.1016/j.tetlet.2019.04.014]
[http://dx.doi.org/10.1002/slct.201701252]
[http://dx.doi.org/10.1016/j.tet.2021.132243]
[http://dx.doi.org/10.1021/acs.joc.7b00611] [PMID: 28558241]
[http://dx.doi.org/10.1002/jhet.1858]
[http://dx.doi.org/10.1016/j.tet.2018.06.045]
[http://dx.doi.org/10.3762/bjoc.15.237] [PMID: 31666879]
[http://dx.doi.org/10.1016/j.tetlet.2012.01.038]
[http://dx.doi.org/10.1021/acscombsci.7b00009] [PMID: 28181791]
[http://dx.doi.org/10.1016/j.bmc.2014.12.021] [PMID: 25630499]
[http://dx.doi.org/10.1021/acscombsci.7b00033] [PMID: 28240545]
[http://dx.doi.org/10.1021/acs.orglett.6b01826] [PMID: 27610711]
[http://dx.doi.org/10.1039/c3ob40900g] [PMID: 23912086]
[http://dx.doi.org/10.1039/C6GC03324E]
[http://dx.doi.org/10.1002/ejoc.201403401] [PMID: 26949370];
b) Zhao, T.; Boltjes, A.; Herdtweck, E.; Dömling, A. Tritylamine as an ammonia surrogate in the Ugi tetrazole synthesis. Org. Lett., 2013, 15(3), 639-641.
[http://dx.doi.org/10.1021/ol303348m] [PMID: 23331054]
[http://dx.doi.org/10.1021/co200209a] [PMID: 22330239];
b) Chandgude, A.L.; Dömling, A. Convergent three‐component tetrazole synthesis. Eur. J. Org. Chem., 2016, 2016(14), 2383-2387.
[http://dx.doi.org/10.1002/ejoc.201600317]