Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Systematic Review Article

Biochar Amendment and its Impacts on Medicinal and Aromatic Plants in Sustainable Agriculture

Author(s): Mohamad Hesam Shahrajabian* and Wenli Sun*

Volume 11, Issue 3, 2024

Published on: 31 January, 2024

Page: [296 - 311] Pages: 16

DOI: 10.2174/0122133461286440240123055247

Price: $65

Abstract

Introduction: Biochar application and research have experienced a significant increase in recent decades. It can produce different kinds of organic materials, and it can be employed for different purposes, such as soil conditioning, carbon sequestration and filtration of pollutants from gas and aqueous media. Biochar is a C-rich material, which can be obtained from different types of organic feedstock, such as animal manure, sewage sludge, wood and crop residues and other organic waste. It is also considered an environmentally friendly and resource-saving approach in medicinal and aromatic plants production. Biochar can lead to plant growth improvement and influence on chemical components of medicinal plants, stimulate the growth of soil microflora, increase soil carbonsequestration, bioremediation of soil, regulate carbon fluxes between atmosphere and biosphere, reduce biotic stress in plants, improve soil nutrient availability, decrease abiotic stress in plants, wastewater treatment, immobilization and sorption of soil heavy metal contaminants.

Methods: Relevant literature has been obtained using the keywords “biochar”, “organic amendment”, “soil quality”, “medicinal Plants”, “natural products”, “soil quality”, “macronutrient”, and “chemical components” in scientific databases, such as “PubMed”, “SciFinder”, “Elsevier”, and “Web of Science”.

Results: The aim of this literature review is to study the impact of different kinds of biochars on medicinal and aromatic plants, soil quality and soil fertility by considering case studies of successful paradigms.

Conclusion: Conclusively, we consider our review article will provide an appropriate guide for practitioners and researchers for future studies as well as large-scale field applications.

« Previous
Graphical Abstract

[1]
Shahrajabian, M.H.; Sun, W. Study of different types of fermentation in wine-making process and considering aromatic substances and organic acid. Curr. Org. Synth., 2023.
[http://dx.doi.org/10.2174/1570179420666230803102253] [PMID: 37534487]
[2]
Shahrajabian, M.H.; Sun, W. Five important seeds in traditional medicine and pharmacological benefits. Seeds, 2023, 2(3), 290-308.
[http://dx.doi.org/10.3390/seeds2030022]
[3]
Sun, W.; Shahrajabian, M.H.; Petropoulos, S.A.; Shahrajabian, N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants, 2023, 12(13), 2469.
[http://dx.doi.org/10.3390/plants12132469] [PMID: 37447031]
[4]
Shahrajabian, M.H.; Sun, W. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin. Curr. Org. Synth., 2023, 20.
[http://dx.doi.org/10.2174/1570179420666230607124949] [PMID: 37287298]
[5]
Shahrajabian, M.H.; Sun, W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett. Drug Des. Discov., 2023, 20(20), 1-16.
[http://dx.doi.org/10.2174/1570180820666230411102209]
[6]
Shahrajabian, M.H.; Sun, W. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr. Pharm. Anal., 2023, 19(4), 267-281.
[http://dx.doi.org/10.2174/1573412919666230406100948]
[7]
Shahrajabian, M.H.; Sun, W. Great health benefits of essential oils of pennyroyal (Mentha pulegium L.): A natural and organic medicine. Curr. Nutr. Food Sci., 2023, 19(4), 340-345.
[http://dx.doi.org/10.2174/1573401318666220620145213]
[8]
Shahrajabian, M.H.; Sun, W. The important nutritional benefits and wonderful health benefits of cashew (Anacardium occidentale L.). Nat. Prod. J., 2023, 13(4), e270422204127.
[http://dx.doi.org/10.2174/2210315512666220427113702]
[9]
Shahrajabian, M.H.; Sun, W. Assessment of wine quality, traceability and detection of grapes wine, detection of harmful substances in alcohol and liquor composition analysis. Lett. Drug Des. Discov., 2023, 20.
[http://dx.doi.org/10.2174/1570180820666230228115450]
[10]
Shahrajabian, M.H.; Sun, W. A friendly strategy for an organic life by considering Syrian bean caper (Zygophyllum fabago L.), and parsnip (Pastinaca sativa L.). Curr. Nutr. Food Sci., 2023, 19(9), 870-874.
[http://dx.doi.org/10.2174/1573401319666230207093757]
[11]
Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules, 2023, 28(4), 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[12]
Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 2023, 9(2), 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[13]
Sun, W.; Shahrajabian, M.H.; Lin, M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation, 2022, 8(12), 688.
[http://dx.doi.org/10.3390/fermentation8120688]
[14]
Shahrajabian, M.H.; Sun, W. Potential roles of longan as a natural remedy with tremendous nutraceutical values. Curr. Nutr. Food Sci., 2023, 19(9), 888-895.
[http://dx.doi.org/10.2174/1573401319666230221111242]
[15]
Shahrajabian, M.H.; Sun, W. Kashk and doogh: The yogurt-based national Persian products. Curr. Nutr. Food Sci., 2023, 19(9), 922-927.
[http://dx.doi.org/10.2174/1573401319666230228115432]
[16]
Shahrajabian, M.H.; Sun, W. Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammation properties. Lett. Drug Des. Discov., 2023, 20(11), 1707-1743.
[http://dx.doi.org/10.2174/1570180819666220816115506]
[17]
Soleymani, A.; Shahrajabian, M.H.; Hosseini Far, S.H.; Naranjani, L. Morphological traits, yield and yield components of safflower (Carthamus tinctorius L.) cultivars under drought stress condition in Kerman province. J. Food Agric. Environ., 2011, 9(3&4), 249-251.
[18]
Soleymani, A.; Hoodagi, M.; Shahrajabian, M.H.; Karimi, A. The influence of manganese sulfate on yield and yield components of three wheat cultivars in Abadeh region. J. Food Agric. Environ., 2011, 9(3&4), 247-248.
[19]
Soleymani, A.; Khoshkharam, M.; Shahrajabian, M.H. Influence of green manures and crop residue management on yield and yield components of silage corn. Res. Crops, 2012, 13(3), 871-876.
[20]
Qiao, L.; Silva, J.V.; Fan, M.; Mehmood, I.; Fan, J.; Li, R.; van Ittersum, M.K. Assessing the contribution of nitrogen fertilizer and soil quality to yield gaps: A study for irrigated and rainfed maize in China. Field Crops Res., 2021, 273, 108304.
[http://dx.doi.org/10.1016/j.fcr.2021.108304]
[21]
Sen, U.; Longo, A.; Gonçalves, M.; Miranda, I.; Pereira, H. The potential of waste phloem fraction of Quercus cerris Bark in biochar production. Environments, 2023, 10(5), 71.
[http://dx.doi.org/10.3390/environments10050071]
[22]
Mota-Panizio, R.; Carmo-Calado, L.; Assis, A.C.; Matos, V.; Hermoso-Orzáez, M.J.; Romano, P.; Gonçalves, M.; Brito, P. Properties and uses of biochars incorporated into mortars. Environments, 2023, 10(3), 47.
[http://dx.doi.org/10.3390/environments10030047]
[23]
Barbosa, C.F.; Correa, D.A.; Carneiro, J.S.S.; Melo, L.C.A. Biochar phosphate fertilizer loaded with urea preserves available nitrogen longer than conventional urea. Sustainability, 2022, 14(2), 686.
[http://dx.doi.org/10.3390/su14020686]
[24]
Mavi, M.S.; Singh, G.; Choudhary, O.P.; Singh, A.; Vashisht, B.B.; Sekhon, K.S.; Pathania, N.; Singh, B. Successive addition of rice straw biochar enhances carbon accumulation in soil irrigated with saline or non-saline water. Environ. Res., 2023, 217, 114733.
[http://dx.doi.org/10.1016/j.envres.2022.114733] [PMID: 36402185]
[25]
Yuan, R.; Salam, M.; Miao, X.; Yang, Y.; Li, H.; Wei, Y. Potential disintegration and transport of biochar in the soil-water environment: A case study towards purple soil. Environ. Res., 2023, 222, 115383.
[http://dx.doi.org/10.1016/j.envres.2023.115383] [PMID: 36716806]
[26]
Bilgili, A.V.; Aydemir, S.; Altun, O.; Sayğan, E.P.; Yalçın, H.; Schindelbeck, R. The effects of biochars produced from the residues of locally grown crops on soil quality variables and indexes. Geoderma, 2019, 345, 123-133.
[http://dx.doi.org/10.1016/j.geoderma.2019.03.010]
[27]
Zhang, R.; Zhang, Y.; Song, L.; Song, X.; Hänninen, H.; Wu, J. Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition. For. Ecol. Manage., 2017, 391, 321-329.
[http://dx.doi.org/10.1016/j.foreco.2017.02.036]
[28]
Parmar, A. Biochar production from agro-food industry residues: A sustainable approach for soil and environmental management. Curr. Sci., 2014, 107, 1673-1682.
[29]
Panwar, N.L.; Pawar, A.; Salvi, B.L. Comprehensive review on production and utilization of biochar. SN Appl. Sci., 2019, 1(2), 168.
[http://dx.doi.org/10.1007/s42452-019-0172-6]
[30]
Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev., 2016, 57, 1126-1140.
[http://dx.doi.org/10.1016/j.rser.2015.12.185]
[31]
Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.S.; Vijay, V.; Kumar, V.; Kumar V, V.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol., 2020, 304, 123036.
[http://dx.doi.org/10.1016/j.biortech.2020.123036] [PMID: 32107150]
[32]
Renaud, C.; Leys, N.; Wattiez, R. Photosynthetic microorganisms, an overview of their biostimulant effects on plants and perspectives for space agriculture. J. Plant Interact., 2023, 18(1), 2242697.
[http://dx.doi.org/10.1080/17429145.2023.2242697]
[33]
Singh Yadav, S.P.; Bhandari, S.; Bhatta, D.; Poudel, A.; Bhattarai, S.; Yadav, P.; Ghimire, N.; Paudel, P.; Paudel, P.; Shrestha, J.; Oli, B. Biochar application: A sustainable approach to improve soil health. J. Agricult. Food Res., 2023, 11, 100498.
[http://dx.doi.org/10.1016/j.jafr.2023.100498]
[34]
Agarwal, H.; Kashyap, V.H.; Mishra, A.; Bordoloi, S.; Singh, P.K.; Joshi, N.C. Biochar-based fertilizers and their applications in plant growth promotion and protection. 3 Biotech, 2022, 12, 136.
[http://dx.doi.org/10.1007/s13205-022-03195-2]
[35]
Venkatesh, G.; Gopinath, K.A.; Reddy, K.S.; Reddy, B.S.; Prabhakar, M.; Srinivasarao, C.; Visha Kumari, V.; Singh, V.K. Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use. Sustainability, 2022, 14(4), 2295.
[http://dx.doi.org/10.3390/su14042295]
[36]
Seow, Y.X.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Ibrahim, M.L.; Ghasemi, M. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. J. Environ. Chem. Eng., 2022, 10(1), 107017.
[http://dx.doi.org/10.1016/j.jece.2021.107017]
[37]
Chaudhary, D.K.; Park, J.H.; Kim, P.G.; Ok, Y.S.; Hong, Y. Enrichment cultivation of VOC-degrading bacteria using diffusion bioreactor and development of bacterial-immobilized biochar for VOC bioremediation. Environ. Pollut., 2023, 320, 121089.
[http://dx.doi.org/10.1016/j.envpol.2023.121089] [PMID: 36669717]
[38]
Shang, Q.; Chi, J. Impact of biochar coexistence with polar/nonpolar microplastics on phenanthrene sorption in soil. J. Hazard. Mater., 2023, 447, 130761.
[http://dx.doi.org/10.1016/j.jhazmat.2023.130761] [PMID: 36638674]
[39]
Gu, S.; Yang, X.; Chen, H.; Jeyakumar, P.; Chen, J.; Wang, H. Crawfish shell- and Chinese banyan branch-derived biochars reduced phytoavailability of As and Pb and altered community composition of bacteria in a contaminated arable soil. Sci. Total Environ., 2023, 865, 161284.
[http://dx.doi.org/10.1016/j.scitotenv.2022.161284] [PMID: 36587703]
[40]
Liu, L.; Yang, X.; Ahmad, S.; Li, X.; Ri, C.; Tang, J.; Ellam, R.M.; Song, Z. Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation. Chem. Eng. J., 2023, 457, 141194.
[http://dx.doi.org/10.1016/j.cej.2022.141194]
[41]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of rhizobium, agrobacterium, bradyrhizobium, herbaspirillum, sinorhizobium in sustainable agricultural production. Not. Bot. Horti Agrobot. Cluj-Napoca, 2021, 49(3), 12183.
[http://dx.doi.org/10.15835/nbha49312183]
[42]
Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; Rinklebe, J.; Wang, H.; Singh, B.P.; Siddique, K.H.M. Soil acidification and the liming potential of biochar. Environ. Pollut., 2023, 317, 120632.
[http://dx.doi.org/10.1016/j.envpol.2022.120632] [PMID: 36384210]
[43]
Sharma, S.; Rana, V.S.; Rana, N.; Prasad, H.; Sharma, U.; Patiyal, V. Biochar from fruit crops waste and its potential impact on fruit crops. Sci. Hortic., 2022, 299, 111052.
[http://dx.doi.org/10.1016/j.scienta.2022.111052]
[44]
Nkoh, J.N.; Baquy, M.A.A.; Mia, S.; Shi, R.; Kamran, M.A.; Mehmood, K.; Xu, R. A critical-systematic review of the interactions of biochar with soils and the observable outcomes. Sustainability, 2021, 13(24), 13726.
[http://dx.doi.org/10.3390/su132413726]
[45]
Maru, A.; Haruna, A.O.; Asap, A.; Majid, N.M.A.; Maikol, N.; Jeffary, A.V. Reducing acidity of tropical acid soil to improve phosphorus availability and Zea mays L. productivity through efficient use of chicken litter biochar and triple superphosphate. Appl. Sci., 2020, 10(6), 2127.
[http://dx.doi.org/10.3390/app10062127]
[46]
Khawkomol, S.; Neamchan, R.; Thongsamer, T.; Vinitnantharat, S.; Panpradit, B.; Sohsalam, P.; Werner, D.; Mrozik, W. Potential of biochar derived from agricultural residues for sustainable management. Sustainability, 2021, 13(15), 8147.
[http://dx.doi.org/10.3390/su13158147]
[47]
Van Truong, T.; Kim, Y.J.; Kim, D.J. Study of biochar impregnated with Al recovered from water sludge for phosphate adsorption/desorption. J. Clean. Prod., 2023, 383, 135507.
[http://dx.doi.org/10.1016/j.jclepro.2022.135507]
[48]
Dorner, M.; Lokesh, S.; Yang, Y.; Behrens, S. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants - A review. Sci. Total Environ., 2022, 852, 158381.
[http://dx.doi.org/10.1016/j.scitotenv.2022.158381] [PMID: 36055499]
[49]
Yuan, Y.; Kong, Q.; Zheng, Y.; Zheng, H.; Liu, Y.; Cheng, Y.; Zhang, X.; Li, Z.; You, X.; Li, Y. Co-application of biochar and pyroligneous acid improved peanut production and nutritional quality in a coastal soil. Environm. Technol. Innov., 2022, 28, 102886.
[http://dx.doi.org/10.1016/j.eti.2022.102886]
[50]
Ahmad, A.; Zahra, M.; Fakhar e Alam; Ali, S.; Pervaiz, M.; Saeed, Z.; Younas, U.; Mushtaq, M.; Rajendran, S.; Luque, R. A sustainable approach for the multi-dimensional exploitation of mixed biochar based nano-composites. Fuel, 2023, 336, 126930.
[http://dx.doi.org/10.1016/j.fuel.2022.126930]
[51]
Khaledi, S.; Delbari, M.; Galavi, H.; Bagheri, H.; Chari, M.M. Effects of biochar particle size, biochar application rate, and moisture content on thermal properties of an unsaturated sandy loam soil. Soil Tillage Res., 2023, 226, 105579.
[http://dx.doi.org/10.1016/j.still.2022.105579]
[52]
Bass, A.M.; Bird, M.I.; Kay, G.; Muirhead, B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci. Total Environ., 2016, 550, 459-470.
[http://dx.doi.org/10.1016/j.scitotenv.2016.01.143] [PMID: 26845182]
[53]
Farhangi-Abriz, S.; Ghassemi-Golezani, K. Improving electrochemical characteristics of plant roots by biochar is an efficient mechanism in increasing mechanism in increasing cations uptake by plants. Chemosphere, 2023, 313, 137365.
[http://dx.doi.org/10.1016/j.chemosphere.2022.137365] [PMID: 36427572]
[54]
Schmidt, M.P.; Ashworth, D.J.; Celis, N.; Ibekwe, A.M. Optimizing date palm leaf and pistachio shell biochar properties for antibiotic adsorption by varying pyrolysis temperature. Bioresour. Technol. Rep., 2023, 21, 101325.
[http://dx.doi.org/10.1016/j.biteb.2022.101325]
[55]
Qian, S.; Zhou, X.; Fu, Y.; Song, B.; Yan, H.; Chen, Z.; Sun, Q.; Ye, H.; Qin, L.; Lai, C. Biochar-compost as a new option for soil improvement: Application in various problem soils. Sci. Total Environ., 2023, 870, 162024.
[http://dx.doi.org/10.1016/j.scitotenv.2023.162024] [PMID: 36740069]
[56]
Cooper, J.A.; Malakar, A.; Kaiser, M. Self-functionalization of soil-aged biochar surfaces increases nitrate retention. Sci. Total Environ., 2023, 861, 160644.
[http://dx.doi.org/10.1016/j.scitotenv.2022.160644] [PMID: 36464046]
[57]
Zhao, K.; Shang, J. Transport of biochar colloids under unsaturated flow condition: Roles of chemical aging and cation type. Sci. Total Environ., 2023, 859(Pt 2), 160415.
[http://dx.doi.org/10.1016/j.scitotenv.2022.160415] [PMID: 36427725]
[58]
Briones, M.J.I.; Panzacchi, P.; Davies, C.A.; Ineson, P. Contrasting responses of macro- and meso-fauna to biochar additions in a bioenergy cropping system. Soil Biol. Biochem., 2020, 145, 107803.
[http://dx.doi.org/10.1016/j.soilbio.2020.107803]
[59]
Tao, B.; Chen, Q.; Yang, H.; Jiang, Y.; Wang, J.; Zhang, B. Combined effect of biochar addition and temperature on methane absorption of topsoil in a temperate forest, China. Ecol. Eng., 2023, 187, 106844.
[http://dx.doi.org/10.1016/j.ecoleng.2022.106844]
[60]
Anand, A.; Gautam, S.; Ram, L.C. Feedstock and pyrolysis conditions affect suitability of biochar for various sustainable energy and environmental applications. J. Anal. Appl. Pyrolysis, 2023, 170, 105881.
[http://dx.doi.org/10.1016/j.jaap.2023.105881]
[61]
Liu, Q.; He, X.; Wang, K.; Li, D. Biochar drives humus formation during composting by regulating the specialized metabolic features of microbiome. Chem. Eng. J., 2023, 458, 141380.
[http://dx.doi.org/10.1016/j.cej.2023.141380]
[62]
Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total Environ., 2021, 775, 145869.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145869]
[63]
Zong, Y.; Xiao, Q.; Malik, Z.; Su, Y.; Wang, Y.; Lu, S. Crop straw-derived biochar alleviated cadmium and copper phytotoxicity by reducing bioavailability and accumulation in a field experiment of rice-rape-corn rotation system. Chemosphere, 2021, 280, 130830.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130830] [PMID: 34162097]
[64]
Azeem, M.; Hayat, R.; Hussain, Q.; Ahmed, M.; Pan, G.; Ibrahim Tahir, M.; Imran, M.; Irfan, M.; Mehmood-ul-Hassan Biochar improves soil quality and N2-fixation and reduces net ecosystem CO2 exchange in a dryland legume-cereal cropping system. Soil Tillage Res., 2019, 186, 172-182.
[http://dx.doi.org/10.1016/j.still.2018.10.007]
[65]
Hu, Y.; Sun, B.; Wu, S.; Feng, H.; Gao, M.; Zhang, B.; Liu, Y. After-effects of straw and straw-derived biochar application on crop growth, yield, and soil properties in wheat (Triticum aestivum L.) -maize (Zea mays L.) rotations: A four-year field experiment. Sci. Total Environ., 2021, 780, 146560.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146560] [PMID: 33770594]
[66]
Zhou, R.; Wang, Y.; Tian, M.; Shah Jahan, M.; Shu, S.; Sun, J.; Li, P.; Ahammed, G.J.; Guo, S. Mixing of biochar, vinegar and mushroom residues regulates soil microbial community and increases cucumber yield under continuous cropping regime. Appl. Soil Ecol., 2021, 161, 103883.
[http://dx.doi.org/10.1016/j.apsoil.2021.103883]
[67]
Zeeshan, M.; Ahmad, W.; Hussain, F.; Ahamd, W.; Numan, M.; Shah, M.; Ahmad, I. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. J. Clean. Prod., 2020, 255, 120318.
[http://dx.doi.org/10.1016/j.jclepro.2020.120318]
[68]
Zhou, Y.; Berruti, F.; Greenhalf, C.; Henry, H.A.L. Combined effects of biochar amendment, leguminous cover crop addition and snow removal on nitrogen leaching losses and nitrogen retention over winter and subsequent yield of a test crop (Eruca sativa L.). Soil Biol. Biochem., 2017, 114, 220-228.
[http://dx.doi.org/10.1016/j.soilbio.2017.07.023]
[69]
Galinato, S.P.; Yoder, J.K.; Granatstein, D. The economic value of biochar in crop production and carbon sequestration. Energy Policy, 2011, 39(10), 6344-6350.
[http://dx.doi.org/10.1016/j.enpol.2011.07.035]
[70]
French, E.; Iyer-Pascuzzi, A.S. A role for the gibberellin pathway in biochar-mediated growth promotion. Sci. Rep., 2018, 8(1), 5389.
[http://dx.doi.org/10.1038/s41598-018-23677-9] [PMID: 29599525]
[71]
Bohara, H.; Dodla, S.; Wang, J.J.; Darapuneni, M.; Kongchum, M.; Fromme, D.D.; Harrell, D. Impacts of N-stabilizers and biochar on nitrogen losses, nitrogen phytoavailability, and cotton yield in poultry litter-fertilized soils. Agron. J., 2018, 110(5), 2016-2024.
[http://dx.doi.org/10.2134/agronj2018.01.0007]
[72]
Milon, A.R.; Chang, S.W.; Ravindran, B. Biochar amended compost maturity evaluation using commercial vegetable crops seedlings through phytotoxicity germination bioassay. J. King Saud Univ. Sci., 2022, 34(2), 101770.
[http://dx.doi.org/10.1016/j.jksus.2021.101770]
[73]
Baronti, S.; Magno, R.; Maienza, A.; Montagnoli, A.; Ungaro, F.; Vaccari, F.P. Long term effect of biochar on soil plant water relation and fine roots: Results after 10 years of vineyard experiment. Sci. Total Environ., 2022, 851(Pt 1), 158225.
[http://dx.doi.org/10.1016/j.scitotenv.2022.158225] [PMID: 35998720]
[74]
Zhang, Y.; Li, M.; Dong, L.; Han, C.; Li, M.; Wu, H. Effects of biochar dosage on treatment performance, enzyme activity and microbial community in aerated constructed wetlands for treating low C/N domestic sewage. Environm. Technol. Innov., 2021, 24, 101919.
[http://dx.doi.org/10.1016/j.eti.2021.101919]
[75]
Kochanek, J.; Soo, R.M.; Martinez, C.; Dakuidreketi, A.; Mudge, A.M. Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: A review. Resour. Conserv. Recycling, 2022, 179, 106109.
[http://dx.doi.org/10.1016/j.resconrec.2021.106109]
[76]
Erdem, H. The effects of biochars produced in different pyrolsis temperatures from agricultural wastes on cadmium uptake of tobacco plant. Saudi J. Biol. Sci., 2021, 28(7), 3965-3971.
[http://dx.doi.org/10.1016/j.sjbs.2021.04.016] [PMID: 34220253]
[77]
You, X.; Yin, S.; Suo, F.; Xu, Z.; Chu, D.; Kong, Q.; Zhang, C.; Li, Y.; Liu, L. Biochar and fertilizer improved the growth and quality of the ice plant (Mesembryanthemum crystallinum L.) shoots in a coastal soil of Yellow River Delta, China. Sci. Total Environ., 2021, 775, 144893.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144893] [PMID: 33618299]
[78]
Beesley, L.; Marmiroli, M.; Pagano, L.; Pigoni, V.; Fellet, G.; Fresno, T.; Vamerali, T.; Bandiera, M.; Marmiroli, N. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci. Total Environ., 2013, 454-455, 598-603.
[http://dx.doi.org/10.1016/j.scitotenv.2013.02.047] [PMID: 23583727]
[79]
Liu, A.; Tian, D.; Xiang, Y.; Mo, H. Effects of biochar on growth of Asian lotus (Nelumbo nucifera Gaertn.) and cadmium uptake in artificially cadmium-polluted water. Sci. Hortic., 2016, 198, 311-317.
[http://dx.doi.org/10.1016/j.scienta.2015.11.030]
[80]
Ma, S.; Zhu, G.; Parhat, R.; Jin, Y.; Wang, X.; Wu, W.; Xu, W.; Wang, Y.; Chen, W. Exogenous selenium and biochar application modulate the growth and selenium uptake of medicinal legume Astragalus species. Plants, 2023, 12(10), 1957.
[http://dx.doi.org/10.3390/plants12101957] [PMID: 37653874]
[81]
Pandey, V.; Patel, A.; Patra, D.D. Biochar ameliorates crop productivity, soil fertility, essential oil yield and aroma profiling in basil (Ocimum basilicum L.). Ecol. Eng., 2016, 90, 361-366.
[http://dx.doi.org/10.1016/j.ecoleng.2016.01.020]
[82]
Jabborova, D.; Ma, H.; Bellingrath-Kimura, S.D.; Wirth, S. Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities. Sci. Hortic., 2021, 290, 110518.
[http://dx.doi.org/10.1016/j.scienta.2021.110518]
[83]
Mehdizadeh, L.; Farsaraei, S.; Moghaddam, M. Biochar application modified growth and physiological parameters of Ocimum ciliatum L. and reduced human risk assessment under cadmium stress. J. Hazard. Mater., 2021, 409, 124954.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124954] [PMID: 33422756]
[84]
Ding, Z.; Zhou, Z.; Lin, X.; Zhao, F.; Wang, B.; Lin, F.; Ge, Y.; Eissa, M.A. Biochar impacts on NH3-volatilization kinetics and growth of sweet basil (Ocimum basilicum L.) under saline conditions. Ind. Crops Prod., 2020, 157, 112903.
[http://dx.doi.org/10.1016/j.indcrop.2020.112903]
[85]
Bu, X.; Xue, J.; Wu, Y.; Ma, W. Effect of biochar on seed germination and seedling growth of Robinia pseudoacacia L. in Karst calcareous soils. Commun. Soil Sci. Plant Anal., 2020, 51(3), 352-363.
[http://dx.doi.org/10.1080/00103624.2019.1709484]
[86]
Gul-Lalay; Ullah, S.; Nafees, M.; Ahmed, I. Resistance induction in Brassica napus L. against water deficit stress through application of biochar and plant growth promoting rhizobacteria. J. Saudi Soc. Agric. Sci., 2023, 22(7), 420-429.
[http://dx.doi.org/10.1016/j.jssas.2023.04.001]
[87]
Losacco, D.; Tumolo, M.; Cotugno, P.; Leone, N.; Massarelli, C.; Convertini, S.; Tursi, A.; Uricchio, V.F.; Ancona, V. Use of biochar to improve the sustainable crop production of Cauliflower (Brassica oleracea L.). Plants, 2022, 11(9), 1182.
[http://dx.doi.org/10.3390/plants11091182] [PMID: 35567183]
[88]
Heidarian D, R.; Denis, A.; Fouche, J.; Burgeon, V.; Cornelis, J.T.; Tychon, B.; Placencia Gomez, E.; Meersmans, J. Remotely-sensed assessment of the impact of century-old biochar on chicory crop growth using high-resolution UAV-based imagery. Int. J. Appl. Earth Obs. Geoinf., 2020, 91, 102147.
[http://dx.doi.org/10.1016/j.jag.2020.102147]
[89]
Xiao, Y.; Li, Y.; Che, Y.; Deng, S.; Liu, M. Effects of biochar and nitrogen addition on nutrient and Cd uptake of Cichorium intybus grown in acidic soil. Int. J. Phytoremediation, 2018, 20(4), 398-404.
[http://dx.doi.org/10.1080/15226514.2017.1365342] [PMID: 28949769]
[90]
Chun, J.H.; Kang, Y.G.; Lee, J.H.; Yun, Y.U.; Oh, T.K.; Yoon, M.H. The combined effect of nitrogen and biochar amendments on the yield and glucosinolate contents of the Chinese cabbage. J. King Saud Univ. Sci., 2022, 34(2), 101799.
[http://dx.doi.org/10.1016/j.jksus.2021.101799]
[91]
Zhao, L.; Xu, W.; Guan, H.; Wang, K.; Xiang, P.; Wei, F.; Yang, S.; Miao, C.; Ma, L.Q. Biochar increases Panax notoginseng’s survival under continuous cropping by improving soil properties and microbial diversity. Sci. Total Environ., 2022, 850, 157990.
[http://dx.doi.org/10.1016/j.scitotenv.2022.157990] [PMID: 35963414]
[92]
Nazir, A. Potential application of biochar composte derived from rice straw and animal bones to improve plant growth. Sustainability, 2021, 13, 11104.
[http://dx.doi.org/10.3390/su131911104]
[93]
Liu, A.; Tian, D.; Xiang, Y.; Mo, H. Biochar improved growth of an important medicinal plant (Salvia miltiorrhiza Bunge) and inhibited its cadmium uptake. J. Plant Biol. States Health, 2016, 3(2), 6.
[94]
Zhang, J.; Zhou, Y.; Wen, S.; Jia, L.; Zhang, R.; Chen, Y.; Zhao, P.; Long, G. Biochar improves the yield and quality of Erigeron breviscapus in heavily cadmium-polluted soil. Sci. Hortic., 2023, 321, 112371.
[http://dx.doi.org/10.1016/j.scienta.2023.112371]
[95]
Agbede, T.M. Effect of tillage, biochar, poultry manure and NPK 15-15-15 fertilizer, and their mixture on soil properties, growth and carrot (Daucus carota L.) yield under tropical conditions. Heliyon, 2021, 7(6), e07391.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07391] [PMID: 34222703]
[96]
Agbede, T.M.; Odoja, A.S.; Bayode, L.N.; Omotehinse, P.O.; Adepehin, I. Effects of biochar and poultry manure on soil properties, growth, yield and quality of cocoyam (Xanthosoma sagittifolium Schott) grown in sandy soil. Commun. Soil Sci. Plant Anal., 2020, 51(7), 932-947.
[http://dx.doi.org/10.1080/00103624.2020.1744621]
[97]
Ronga, D.; Francia, E.; Allesina, G.; Pedrazzi, S.; Zaccardelli, M.; Pane, C.; Tava, A.; Bignami, C. Valorization of vineyard by-products to obtain composted digestate and biochar suitable for nursery grapevine (Vitis vinifera L.) production. Agronomy, 2019, 9(8), 420.
[http://dx.doi.org/10.3390/agronomy9080420]
[98]
Saha, A.; Basak, B.B.; Gajbhiye, N.A.; Kalariya, K.A.; Manivel, P. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of Andrographis paniculata and soil health. Ind. Crops Prod., 2019, 140, 111607.
[http://dx.doi.org/10.1016/j.indcrop.2019.111607]
[99]
Regmi, A.; Poudyal, S.; Singh, S.; Coldren, C.; Moustaid-Moussa, N.; Simpson, C. Biochar influences phytochemical concentrations of Viola cornuta flowers. Sustainability (Basel), 2023, 15(5), 3882.
[http://dx.doi.org/10.3390/su15053882]
[100]
Khan, T.F.; Salma, M.U.; Hossain, S.A. Impacts of different sources of biochar on plant growth characteristics. Am. J. Plant Sci., 2018, 9(9), 1922-1934.
[http://dx.doi.org/10.4236/ajps.2018.99139]
[101]
Han, Y.; Douds, D.D., Jr; Boateng, A.A. Effect of biochar soil-amendments on Allium porrum growth and arbuscular mycorrhizal fungus colonization. J. Plant Nutr., 2016, 39(11), 1654-1662.
[http://dx.doi.org/10.1080/01904167.2015.1089903]
[102]
Xu, Q.; Song, X.; Xu, M.; Xu, Q.; Liu, Q.; Tang, C.; Wang, X.; Yin, W.; Wang, X. Elevated CO2 and biochar differentially affect plant C:N:P stoichiometry and soil microbiota in the rhizosphere of white lupin (Lupinus albus L.). Chemosphere, 2022, 308(Pt 2), 136347.
[http://dx.doi.org/10.1016/j.chemosphere.2022.136347] [PMID: 36087720]
[103]
Taheri, M.R.; Astaraei, A.R.; Lakzian, A.; Emami, H. Sorbitol and biochar have key roles in microbial and enzymatic activity of saline-sodic and calcareous soil in millet cropping. Rhizosphere, 2022, 24, 100598.
[http://dx.doi.org/10.1016/j.rhisph.2022.100598]
[104]
Keshavarz A, R.; Hashemi, M.; DaCosta, M.; Spargo, J.; Sadeghpour, A. Biochar application and drought stress effects on physiological characteristics of Silybum marianum. Commun. Soil Sci. Plant Anal., 2016, 47(6), 743-752.
[http://dx.doi.org/10.1080/00103624.2016.1146752]
[105]
Ghassemi-Golezani, K.; Farhangi-Abriz, S. Biochar related treatments improved physiological performance, growth and productivity of Mentha crispa L. plants under fluoride and cadmium toxicities. Ind. Crops Prod., 2023, 194, 116287.
[http://dx.doi.org/10.1016/j.indcrop.2023.116287]
[106]
Yan, J.; Yu, P.; Liu, C.; Li, Q.; Gu, M. Replacing peat moss with mixed hardwood biochar as container substrates to produce five types of mint (Mentha spp.). Ind. Crops Prod., 2020, 155, 112820.
[http://dx.doi.org/10.1016/j.indcrop.2020.112820]
[107]
Silva Gonzaga, M.I.; Oliveira da Silva, P.S.; Carlos de Jesus Santos, J.; Ganassali de Oliveira, Junior, L.F. Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicol. Environ. Saf., 2019, 183, 109557.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109557] [PMID: 31408820]
[108]
Chen, W.; Wu, Z.; Liu, C.; Zhang, Z.; Liu, X. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt, and promote radish growth. Ecotoxicol. Environ. Saf., 2023, 251, 114509.
[http://dx.doi.org/10.1016/j.ecoenv.2023.114509] [PMID: 36621032]
[109]
Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Biochar and poultry manure effects on soil properties and radish (Raphanus sativus L.) yield. Biol. Agric. Hortic., 2019, 35(1), 33-45.
[http://dx.doi.org/10.1080/01448765.2018.1500306]
[110]
Peiris, C.; Wathudura, P.D.; Gunatilake, S.R.; Gajanayake, B.; Wewalwela, J.J.; Abeysundara, S.; Vithanage, M. Effect of acid modified tea-waste biochar on crop productivity of red onion (Allium cepa L.). Chemosphere, 2022, 288(Pt 2), 132551.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132551] [PMID: 34655645]
[111]
Noordin, N.; Ghazali, S.; Adnan, N. Impact of sap-biochar incorporation on controlled release water retention fertilizer (CRWR) towards growth of okras (Abelmoschus esculentus). Mater. Today Proc., 2018, 5(10), 21911-21918.
[http://dx.doi.org/10.1016/j.matpr.2018.07.050]
[112]
Adeyemi, O.R.; Bashiruddin, A.A.; Adigun, J.A.; Adejuyigbe, C.O.; Osunleti, S.O. Fruit quality and marketability of Okra (Abelmoschus esculentus (L.) Moench) as influenced by biochar rates and weeding regime. Int. J. Pest Manage., 2022, 1-9.
[http://dx.doi.org/10.1080/09670874.2022.2094493]
[113]
Jain, S.; Khare, P.; Mishra, D.; Shanker, K.; Singh, P.; Singh, R.P.; Das, P.; Yadav, R.; Saikia, B.K.; Baruah, B.P. Biochar aided aromatic grass Cymbopogon martini (Roxb.) Wats. Vegetation: A sustainable method for stabilization of highly acidic mine waste. J. Hazard. Mater., 2020, 390, 121799.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121799] [PMID: 31818656]
[114]
Mumivand, H.; Izadi, Z.; Amirizadeh, F.; Maggi, F.; Morshedloo, M.R. Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduces environmental contamination from waste water disposal. J. Hazard. Mater., 2023, 446, 130674.
[http://dx.doi.org/10.1016/j.jhazmat.2022.130674] [PMID: 36603422]
[115]
Prilaningrum, S.O.; Puji, A.B.; Yunus, A. Growth response of Echinacea purpurea (L) Moench to biochar types and hormone doses. IOP Conf. Ser. Earth Environ. Sci., 2022, 1016(1), 012013.
[http://dx.doi.org/10.1088/1755-1315/1016/1/012013]
[116]
Sadegh Kasmaei, L.; Yasrebi, J.; Zarei, M.; Ronaghi, A.; Ghasemi, R.; Saharkhiz, M.J.; Ahmadabadi, Z.; Schnug, E. Influence of plant growth promoting rhizobacteria, compost, and biochar of Azolla on rosemary (Rosmarinus officinalis L.) growth and some soil quality indicators in a calcareous soil. Commun. Soil Sci. Plant Anal., 2019, 50(2), 119-131.
[http://dx.doi.org/10.1080/00103624.2018.1554669]
[117]
Beiranvandi, M.; Akbari, N.; Ahmadi, A.; Mumivand, H.; Nazarian, F. Biochar and super absorbent polymer improved growth, yield, and phytochemical characteristics of Satureja rechingeri Jamzad in water-deficiency conditions. Ind. Crops Prod., 2022, 183, 114959.
[http://dx.doi.org/10.1016/j.indcrop.2022.114959]
[118]
Wacal, C.; Ogata, N.; Basalirwa, D.; Handa, T.; Sasagawa, D.; Acidri, R.; Ishigaki, T.; Kato, M.; Masunaga, T.; Yamamoto, S.; Nishihara, E. Growth, seed yield, mineral nutrients and soil properties of sesame (Sesamum indicum L.) as influenced by biochar addition on upland field converted from paddy. Agronomy, 2019, 9(2), 55.
[http://dx.doi.org/10.3390/agronomy9020055]
[119]
Kamran, M.A.; Bibi, S.; Chen, B. Preventative effect of crop straw-derived biochar on plant growth in an arsenic polluted acidic ultisol. Sci. Total Environ., 2022, 812, 151469.
[http://dx.doi.org/10.1016/j.scitotenv.2021.151469] [PMID: 34742960]
[120]
Xiu, L.; Gu, W.; Sun, Y.; Wu, D.; Wang, Y.; Zhang, H.; Zhang, W.; Chen, W. The fate and supply capacity of potassium in biochar used in agriculture. Sci. Total Environ., 2023, 902, 165969.
[http://dx.doi.org/10.1016/j.scitotenv.2023.165969] [PMID: 37541494]
[121]
Bashir, S.; Rehman, M.; Yousaf, M.; Salam, A.; Gulshan, A.B.; Iqbal, J.; Aziz, I.; Azeem, M.; Rukh, S.; Asghar, R.M.A. Comparative efficiency of wheat straw and sugarcane bagasse biochar reduces the cadmium bioavailability to spinach and enhances the microbial activity in contaminated soil. Int. J. Phytoremediation, 2019, 21(11), 1098-1103.
[http://dx.doi.org/10.1080/15226514.2019.1606781] [PMID: 31244330]
[122]
Prasetya, A.; Nuryani, H.U.S.; Hanudin, E. Effects of shade and biochar application on the quercetin content of longevity spinach in inceptisol. Appl. Environ. Soil Sci., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6699873]
[123]
Yadav, V.; Karak, T.; Singh, S.; Singh, A.K.; Khare, P. Benefits of biochar over other organic amendments: Responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Ind. Crops Prod., 2019, 131, 96-105.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.045]
[124]
Wang, L.; He, D.; Wang, E.; Chen, G.; Li, Z.; Qian, X.; Gao, Y.; Zhang, H.; Liu, K. Nitrogen management to reduce GHG emissions while maintaining high crop productivity in temperate summer rainfall climate. Field Crops Res., 2023, 290, 108761.
[http://dx.doi.org/10.1016/j.fcr.2022.108761]
[125]
Zhang, Q.; Song, Y.; Wu, Z.; Yan, X.; Gunina, A.; Kuzyakov, Y.; Xiong, Z. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J. Clean. Prod., 2020, 242, 118435.
[http://dx.doi.org/10.1016/j.jclepro.2019.118435]
[126]
Paneque, M.; De la Rosa, J.M.; Franco-Navarro, J.D.; Colmenero-Flores, J.M.; Knicker, H. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena, 2016, 147, 280-287.
[http://dx.doi.org/10.1016/j.catena.2016.07.037]
[127]
Borgohain, A.; Sarmah, M.; Gogoi, B.B.; Konwar, K.; Handique, J.G.; Paul, R.K.; Yeasin, M.; Pandey, V.; Yadav, R.; Malakar, H.; Saikia, J.; Deka, D.; Rahman, F.H.; Panja, S.; Khare, P.; Karak, T. Can tea pruning litter biochar be a friend or foe for tea (Camellia sinensis L.) plants’ growth and growth regulators?: Feasible or fumes of fancy. Ind. Crops Prod., 2023, 195, 116394.
[http://dx.doi.org/10.1016/j.indcrop.2023.116394]
[128]
Borgohain, A.; Sarmah, M.; Konwar, K.; Gogoi, R.; Bikash, G.B.; Khare, P.; Kumar, P.R.; Handique, J.G.; Malakar, H.; Deka, D.; Saikia, J.; Karak, T. Tea pruning litter biochar amendment in soil reduces arsenic, cadmium, and chromium in made tea (Camellia sinensis L.) and tea infusion: A safe drink for tea consumers. Food Chem. X, 2022, 13, 100255.
[http://dx.doi.org/10.1016/j.fochx.2022.100255] [PMID: 35498976]
[129]
Sarmah, M.; Borgohain, A.; Gogoi, B.B.; Yeasin, M.; Paul, R.K.; Malakar, H.; Handique, J.G.; Saikia, J.; Deka, D.; Khare, P.; Karak, T. Insights into the effects of tea pruning litter biochar on major micronutrients (Cu, Mn, and Zn) pathway from soil to tea plant: An environmental armour. J. Hazard. Mater., 2023, 442, 129970.
[http://dx.doi.org/10.1016/j.jhazmat.2022.129970] [PMID: 36162303]
[130]
Kenneth, F.; Joniver, C.F.H.; Meredith, W.; Adams, J.M.M. The productivity effects of macroalgal biochar from Ulva (Linnaeus) bloom species on Arabidopsis thaliana (Linnaeus) seedlings. Eur. J. Phycol., 2023, 58(3), 284-299.
[http://dx.doi.org/10.1080/09670262.2022.2103739]
[131]
Changxun, G.; Zhiyong, P.; Shu’ang, P. Effect of biochar on the growth of Poncirus trifoliata (L.) Raf. seedlings in Gannan acidic red soil. Soil Sci. Plant Nutr., 2016, 62(2), 194-200.
[http://dx.doi.org/10.1080/00380768.2016.1150789]
[132]
Saha, A.; Basak, B.B.; Banerjee, A. In-vitro antioxidant evaluation and production of biochar from distillation waste biomass of Mentha arvensis. J. Appl. Res. Med. Aromat. Plants, 2022, 31, 100428.
[http://dx.doi.org/10.1016/j.jarmap.2022.100428]
[133]
Nigam, N.; Khare, P.; Ahsan, M.; Yadav, V.; Shanker, K.; Singh, R.P.; Pandey, V.; Das, P. Biochar amendment reduced the risk associated with metal uptake and improved metabolite content in medicinal hebrs. Physiol. Plant., 2021, 173(1), 321-329.
[http://dx.doi.org/10.1111/ppl.13393] [PMID: 33713449]
[134]
Lian, F.; Sun, B.; Song, Z.; Zhu, L.; Qi, X.; Xing, B. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chem. Eng. J., 2014, 248, 128-134.
[http://dx.doi.org/10.1016/j.cej.2014.03.021]
[135]
Boersma, M.; Wrobel-Tobiszewska, A.; Murphy, L.; Eyles, A. Impact of biochar application on the productivity of a temperate vegetable cropping system. N. Z. J. Crop Hortic. Sci., 2017, 45(4), 277-288.
[http://dx.doi.org/10.1080/01140671.2017.1329745]
[136]
Kul, R.; Arjumend, T.; Ekinci, M.; Yildirim, E.; Turan, M.; Argin, S. Biochar as an organic soil conditioner for mitigating salinity stress in tomato. Soil Sci. Plant Nutr., 2021, 67(6), 693-706.
[http://dx.doi.org/10.1080/00380768.2021.1998924]
[137]
Basak, B.B.; Saha, A.; Sarkar, B.; Kumar, B.P.; Gajbhiye, N.A.; Banerjee, A. Repurposing distillation waste biomass and low-value mineral resources through biochar-mineral-complex for sustainable production of high-value medicinal plants and soil quality improvement. Sci. Total Environ., 2021, 760, 143319.
[http://dx.doi.org/10.1016/j.scitotenv.2020.143319] [PMID: 33199015]
[138]
Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J., 2017, 81(4), 687-711.
[http://dx.doi.org/10.2136/sssaj2017.01.0017]
[139]
Diatta, A.A.; Fike, J.H.; Battaglia, M.L.; Galbraith, J.M.; Baig, M.B. Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arab. J. Geosci., 2020, 13(14), 595.
[http://dx.doi.org/10.1007/s12517-020-05586-2]
[140]
Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 2021, 11(6), 819.
[http://dx.doi.org/10.3390/biom11060819] [PMID: 34072781]
[141]
Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules, 2021, 11(5), 698.
[http://dx.doi.org/10.3390/biom11050698] [PMID: 34067181]
[142]
Marmitt, D.J.; Shahrajabian, M.H. Plant species used in Brazil and Asia regions with toxic properties. Phytother. Res., 2021, 35(9), 4703-4726.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[143]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceuutical science. Mini Rev. Med. Chem., 2021, 21(6), 724-730.
[http://dx.doi.org/10.2174/18755607MTEx4OTAn5] [PMID: 33245271]
[144]
Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res., 2020, 2020(1), 1-11.
[http://dx.doi.org/10.1002/ptr.6888] [PMID: 33350538]
[145]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int. J. Food Prop., 2020, 23(1), 1961-1970.
[http://dx.doi.org/10.1080/10942912.2020.1828456]
[146]
Adekiya, A.O.; Agbede, T.M.; Olayanju, A.; Ejue, W.S.; Adekanye, T.A.; Adenusi, T.T.; Ayeni, J.F. Effect of biochar on soil properties, soil loss, and cocyam yield on a tropical sandy loam alfisol. Sci. World J., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/9391630] [PMID: 32158364]
[147]
Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar production and applications in agro and forestry systems: A review. Sci. Total Environ., 2020, 723, 137775.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137775] [PMID: 32213399]
[148]
Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manage., 2018, 227, 146-154.
[http://dx.doi.org/10.1016/j.jenvman.2018.08.082] [PMID: 30176434]
[149]
Kim, H.S.; Kim, K.R.; Yang, J.E.; Ok, Y.S.; Owens, G.; Nehls, T.; Wessolek, G.; Kim, K.H. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 2016, 142, 153-159.
[http://dx.doi.org/10.1016/j.chemosphere.2015.06.041] [PMID: 26138709]
[150]
Xiao, Q.; Zhu, L.X.; Zhang, H.P.; Li, X.Y.; Shen, Y.F.; Li, S.Q. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci., 2016, 67(5), 495-507.
[http://dx.doi.org/10.1071/CP15351]
[151]
Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ., 2016, 543(Pt A), 295-306.
[http://dx.doi.org/10.1016/j.scitotenv.2015.11.054] [PMID: 26590867]
[152]
Martinsen, V.; Alling, V.; Nurida, N.L.; Mulder, J.; Hale, S.E.; Ritz, C.; Rutherford, D.W.; Heikens, A.; Breedveld, G.D.; Cornelissen, G. pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Sci. Plant Nutr., 2015, 61(5), 821-834.
[http://dx.doi.org/10.1080/00380768.2015.1052985]
[153]
Chathurika, J.A.S.; Kumaragamage, D.; Zvomuya, F.; Akinremi, O.O.; Flaten, D.N.; Indraratne, S.P.; Dandeniya, W.S. Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils. Can. J. Soil Sci., 2016, 96(4), 472-484.
[http://dx.doi.org/10.1139/cjss-2015-0094]
[154]
Sandhu, S.S.; Ussiri, D.A.N.; Kumar, S.; Chintala, R.; Papiernik, S.K.; Malo, D.D.; Schumacher, T.E. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation. Chemosphere, 2017, 184, 473-481.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.165] [PMID: 28618279]
[155]
Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 2020, 361, 114055.
[http://dx.doi.org/10.1016/j.geoderma.2019.114055]
[156]
Mclennon, E.; Solomon, J.K.Q.; Neupane, D.; Davison, J. Biochar and nitrogen application rates effect on phosphorus removal from a mixed grass sward irrigated with reclaimed wastewater. Sci. Total Environ., 2020, 715, 137012.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137012] [PMID: 32041056]
[157]
Alghamdi, A.G. Biochar as a potential soil additive for improving soil physical properties-a review. Arab. J. Geosci., 2018, 11(24), 766.
[http://dx.doi.org/10.1007/s12517-018-4056-7]
[158]
DeLuca, T.H.; Gundale, M.J.; Mackenzie, M.D.; Jones, D.L. Biochar effects on soil nutrient transofrmations. Biochar. Environ. Manag. Sci. Technol. Implement, 2015, 2, 421-454.
[http://dx.doi.org/10.1201/b18920-17]
[159]
Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. Int. J. Agron., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/3158207]
[160]
Joseph, S.; Kammann, C.I.; Shepherd, J.G.; Conte, P.; Schmidt, H.P.; Hagemann, N.; Rich, A.M.; Marjo, C.E.; Allen, J.; Munroe, P.; Mitchell, D.R.G.; Donne, S.; Spokas, K.; Graber, E.R. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Sci. Total Environ., 2018, 618, 1210-1223.
[http://dx.doi.org/10.1016/j.scitotenv.2017.09.200] [PMID: 29126641]
[161]
Huang, M.; Fan, L.; Chen, J.; Jiang, L.; Zou, Y. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Sci. Rep., 2018, 8(1), 11461.
[http://dx.doi.org/10.1038/s41598-018-29877-7] [PMID: 30061619]
[162]
Grutzmacher, P.; Puga, A.P.; Bibar, M.P.S.; Coscione, A.R.; Packer, A.P.; Andrade, C.A. Carbon stability and fertilizer induced N2O emissions mitigation in soil treated with biochar. Sci. Total Environ., 2018, 625, 1459-1466.
[http://dx.doi.org/10.1016/j.scitotenv.2017.12.196] [PMID: 29996442]
[163]
Ullah, S.; Zhao, Q.; Wu, K.; Ali, I.; Liang, H.; Iqbal, A.; Wei, S.; Cheng, F.; Ahmad, S.; Jiang, L.; Gillani, S.W.; Amanullah; Anwar, S.; Khan, Z. Biochar application to rice with 15N-labelled fertilizers, enhanced leaf nitrogen concentration and assimilation by improving morpho-physiological traits and soil quality. Saudi J. Biol. Sci., 2021, 28(6), 3399-3413.
[http://dx.doi.org/10.1016/j.sjbs.2021.03.003] [PMID: 34121878]
[164]
Lo Piccolo, E.; Becagli, M.; Lauria, G.; Cantini, V.; Ceccanti, C.; Cardelli, R.; Massai, R.; Remorini, D.; Guidi, L.; Landi, M. Biochar as a soil amendment in the tree establishment phase: What are the consequences for tree physiology, soil quality and carbon sequestration? Sci. Total Environ., 2022, 844, 157175.
[http://dx.doi.org/10.1016/j.scitotenv.2022.157175] [PMID: 35803424]
[165]
Olmo, M.; Lozano, A.M.; Barrón, V.; Villar, R. Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield. Sci. Total Environ., 2016, 562, 690-700.
[http://dx.doi.org/10.1016/j.scitotenv.2016.04.089] [PMID: 27110980]
[166]
Giagnoni, L.; Renella, G. Effects of biochar on the C use efficiency of soil microbial communities: Components and mechanisms. Environments, 2022, 9(11), 138.
[http://dx.doi.org/10.3390/environments9110138]
[167]
Yang, F.; Zhou, Y.; Liu, W.; Tang, W.; Meng, J.; Chen, W.; Li, X. Strain-specific effects of biochar and its water-soluble compounds on bacterial growth. Appl. Sci., 2019, 9(16), 3209.
[http://dx.doi.org/10.3390/app9163209]
[168]
Karim, M.R.; Halim, M.A.; Gale, N.V.; Thomas, S.C. Biochar effects on soil physiochemical properties in degraded managed ecosystems in Northeastern Bangladesh. Soil Syst., 2020, 4(4), 69.
[http://dx.doi.org/10.3390/soilsystems4040069]
[169]
Amer, M.M. Effect of biochar, compost tea and magnetic iron ore application on some soil properties and productivity of some field crops under saline soil condition at North Nile Delta. Egypt. J. Soil Sci., 2017, 56, 169-186.
[http://dx.doi.org/10.21608/ejss.2017.1097]
[170]
Cara, I.G.; Țopa, D.; Puiu, I.; Jităreanu, G. Biochar a promising strategy for pesticide-contaminated soils. Agriculture, 2022, 12(10), 1579.
[http://dx.doi.org/10.3390/agriculture12101579]
[171]
Faye, A.; Stewart, Z.P.; Diome, K.; Edward, C.T.; Fall, D.; Ganyo, D.K.K.; Akplo, T.M.; Prasad, P.V.V. Single application of biochar increases fertilizer efficiency, C sequestration, and pH over the long-term in sandy soils of Senegal. Sustainability, 2021, 13(21), 11817.
[http://dx.doi.org/10.3390/su132111817]
[172]
Solaiman, Z.M.; Shafi, M.I.; Beamont, E.; Anawar, H.M. Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. Agriculture, 2020, 10(10), 480.
[http://dx.doi.org/10.3390/agriculture10100480]
[173]
Yasmin Khan, K.; Ali, B.; Cui, X.; Feng, Y.; Yang, X.; Joseph Stoffella, P. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicol. Environ. Saf., 2017, 141, 129-138.
[http://dx.doi.org/10.1016/j.ecoenv.2017.03.020] [PMID: 28324819]
[174]
Khoshkharam, M.; Rezaei, A.; Soleymani, A.; Shahrajabian, M.H. Effects of tillage and residue management on yield components and yield of maize in second cropping after barley. Res. Crops, 2010, 11(3), 659-666.
[175]
Soleymani, A.; Shahrajabian, M.H.; Khoshkharam, M. Effect of different fertility systems on fresh forage yield and qualitative traits of forage. Res. Crops, 2012, 13(3), 861-865.
[176]
Zhang, Y.; Idowu, O.; Brewer, C. Using agricultural residue biochar to improve soil quality of desert. Agriculture, 2016, 6(1), 10.
[http://dx.doi.org/10.3390/agriculture6010010]
[177]
Fryda, L.; Visser, R. Biochar for soil improvement: Evaluation of biochar from gasification and slow pyrolysis. Agriculture, 2015, 5(4), 1076-1115.
[http://dx.doi.org/10.3390/agriculture5041076]
[178]
Ducey, T.; Novak, J.; Johnson, M. Effects of biochar blends on microbial community composition in two coastal plain soils. Agriculture, 2015, 5(4), 1060-1075.
[http://dx.doi.org/10.3390/agriculture5041060]
[179]
Allohverdi, T.; Mohanty, A.K.; Roy, P.; Misra, M. A review on current status of biochar uses in agriculture. Molecules, 2021, 26(18), 5584.
[http://dx.doi.org/10.3390/molecules26185584] [PMID: 34577054]
[180]
Aguirre, J.L.; González-Egido, S.; González-Lucas, M.; González-Pernas, F.M. Medium-term effects and economic analysis of biochar application in three Mediterranean crops. Energies, 2023, 16(10), 4131.
[http://dx.doi.org/10.3390/en16104131]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy