Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Disulfidptosis and its Role in Peripheral Blood Immune Cells after a Stroke: A New Frontier in Stroke Pathogenesis

Author(s): Shan-peng Liu, Cuiying Liu, Baohui Xu, Hongmei Zhou* and Heng Zhao*

Volume 20, Issue 5, 2023

Published on: 30 January, 2024

Page: [608 - 622] Pages: 15

DOI: 10.2174/0115672026286243240105115419

Price: $65

Abstract

Background: Stroke-Induced Immunodepression (SIID) is characterized by apoptosis in blood immune populations, such as T cells, B cells, NK cells, and monocytes, leading to the clinical presentation of lymphopenia. Disulfidptosis is a novel form of programmed cell death characterized by accumulating disulfide bonds in the cytoplasm, resulting in cellular dysfunction and eventual cell death.

Objective: In this study, we investigated the association between disulfidptosis and stroke by analyzing gene sequencing data from peripheral blood samples of stroke patients.

Methods: Differential gene expression analysis identified a set of disulfidptosis-related genes (DRGs) significantly associated with stroke. Initial exploration identified 32 DRGs and their interactions. Our study encompassed several analyses to understand the molecular mechanisms of DRGs in stroke. Weighted Gene Co-Expression Network Analysis (WGCNA) uncovered modules of co-expressed genes in stroke samples, and differentially expressed gene (DEG) analysis highlighted 1643 key genes.

Results: These analyses converged on four hub genes of DRGs (SLC2A3, SLC2A14, SLC7A11, NCKAP1) associated with stroke. Immune cell composition analysis indicated positive correlations between hub genes and macrophages M1, M2, and neutrophils and negative associations with CD4+ and CD8+ T cells, B cells, and NK cells. Sub-cluster analysis revealed two distinct clusters with different immune cell expression profiles. Gene Set Enrichment Analysis (GSEA) demonstrated enrichment of apoptosis-related pathways, neurotrophin signaling, and actin cytoskeleton regulation. Associations between hub genes and apoptosis, necroptosis, ferroptosis, and cuproptosis, were also identified.

Conclusion: These results suggest that the DRG hub genes are interconnected with various cell death pathways and immune processes, potentially contributing to stroke pathological development.

[1]
Feigin VL, Krishnamurthi RV, Parmar P, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: The GBD 2013 study. Neuroepidemiology 2015; 45(3): 161-76.
[http://dx.doi.org/10.1159/000441085] [PMID: 26505981]
[2]
Mendelson SJ, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke. JAMA 2021; 325(11): 1088-98.
[http://dx.doi.org/10.1001/jama.2020.26867] [PMID: 33724327]
[3]
Urra X, Laredo C, Zhao Y, et al. Neuroanatomical correlates of stroke-associated infection and stroke-induced immunodepression. Brain Behav Immun 2017; 60: 142-50.
[http://dx.doi.org/10.1016/j.bbi.2016.10.004] [PMID: 27742582]
[4]
Gallizioli M, Arbaizar-Rovirosa M, Brea D, Planas AM. Differences in the post-stroke innate immune response between young and old. Semin Immunopathol 2023; 45(3): 367-76.
[http://dx.doi.org/10.1007/s00281-023-00990-8] [PMID: 37045990]
[5]
Mracsko E, Liesz A, Karcher S, Zorn M, Bari F, Veltkamp R. Differential effects of sympathetic nervous system and hypothalamic–pituitary–adrenal axis on systemic immune cells after severe experimental stroke. Brain Behav Immun 2014; 41: 200-9.
[http://dx.doi.org/10.1016/j.bbi.2014.05.015] [PMID: 24886966]
[6]
Dirnagl U, Klehmet J, Braun JS, et al. Stroke-induced immunodepression. Stroke 2007; 38(2) (Suppl.): 770-3.
[http://dx.doi.org/10.1161/01.STR.0000251441.89665.bc] [PMID: 17261736]
[7]
Liu DD, Chu SF, Chen C, Yang PF, Chen NH, He X. Research progress in stroke-induced immunodepression syndrome (SIDS) and stroke-associated pneumonia (SAP). Neurochem Int 2018; 114: 42-54.
[http://dx.doi.org/10.1016/j.neuint.2018.01.002] [PMID: 29317279]
[8]
Hannawi Y, Hannawi B, Rao CPV, Suarez JI, Bershad EM. Stroke-associated pneumonia: Major advances and obstacles. Cerebrovasc Dis 2013; 35(5): 430-43.
[http://dx.doi.org/10.1159/000350199] [PMID: 23735757]
[9]
Zhang B, Zhao W, Ma H, et al. Remote ischemic conditioning in the prevention for stroke-Associated Pneumonia: A pilot randomized controlled trial. Front Neurol 2022; 12723342.
[http://dx.doi.org/10.3389/fneur.2021.723342] [PMID: 35185744]
[10]
Zhong J, Liao J, Zhang R, et al. Reduced plasma levels of RGM-A predict stroke-associated pneumonia in patients with acute ischemic stroke: A prospective clinical study. Front Neurol 2022; 13949515.
[http://dx.doi.org/10.3389/fneur.2022.949515] [PMID: 36188375]
[11]
Girardot T, Rimmelé T, Venet F, Monneret G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis 2017; 22(2): 295-305.
[http://dx.doi.org/10.1007/s10495-016-1325-3]
[12]
Miró-Mur F, Urra X, Gallizioli M, Chamorro A, Planas AM. Antigen presentation after stroke. Neurotherapeutics 2016; 13(4): 719-28.
[http://dx.doi.org/10.1007/s13311-016-0469-8] [PMID: 27514673]
[13]
Hug A, Liesz A, Muerle B, et al. Reduced efficacy of circulating costimulatory cells after focal cerebral ischemia. Stroke 2011; 42(12): 3580-6.
[http://dx.doi.org/10.1161/STROKEAHA.111.620948] [PMID: 21960584]
[14]
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol 2021; 18(5): 1106-21.
[http://dx.doi.org/10.1038/s41423-020-00630-3] [PMID: 33785842]
[15]
Radak D, Katsiki N, Resanovic I, et al. Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 2017; 15(2): 115-22.
[http://dx.doi.org/10.2174/1570161115666161104095522] [PMID: 27823556]
[16]
Cui Y, Zhang Y, Zhao X, et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 2021; 93: 312-21.
[http://dx.doi.org/10.1016/j.bbi.2021.01.003] [PMID: 33444733]
[17]
Fan X, Chen H, Jiang F, et al. Comprehensive analysis of cuproptosis-related genes in immune infiltration in ischemic stroke. Front Neurol 2023; 131077178.
[http://dx.doi.org/10.3389/fneur.2022.1077178] [PMID: 36818726]
[18]
Zheng T, Liu Q, Xing F, Zeng C, Wang W. Disulfidptosis: a new form of programmed cell death. Journal of experimental & clinical cancer research. CR (East Lansing Mich) 2023; 42(1): 137.
[19]
Machesky LM. Deadly actin collapse by disulfidptosis. Nat Cell Biol 2023; 25(3): 375-6.
[http://dx.doi.org/10.1038/s41556-023-01100-4] [PMID: 36918690]
[20]
Liu X, Nie L, Zhang Y, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol 2023; 25(3): 404-14.
[http://dx.doi.org/10.1038/s41556-023-01091-2] [PMID: 36747082]
[21]
Wang Y, Jin H, Wang Y, et al. Sult2b1 deficiency exacerbates ischemic stroke by promoting pro-inflammatory macrophage polarization in mice. Theranostics 2021; 11(20): 10074-90.
[http://dx.doi.org/10.7150/thno.61646] [PMID: 34815805]
[22]
Yao Y, Li Y, Ni W, et al. Systematic study of immune cell diversity in ischemic postconditioning using high-dimensional single-cell analysis with mass cytometry. Aging Dis 2021; 12(3): 812-25.
[http://dx.doi.org/10.14336/AD.2020.1115] [PMID: 34094644]
[23]
Li L, Han Z, Yang Z, et al. Circulating inflammatory biomarkers level before thrombolysis for acute ischemic stroke predicts symptomatic intracerebral hemorrhage. Aging Dis 2023; 14(1): 9-13.
[http://dx.doi.org/10.14336/AD.2022.0608] [PMID: 36818569]
[24]
Liesz A, Dalpke A, Mracsko E, et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci 2015; 35(2): 583-98.
[http://dx.doi.org/10.1523/JNEUROSCI.2439-14.2015] [PMID: 25589753]
[25]
Faura J, Bustamante A, Miró-Mur F, Montaner J. Stroke-induced immunosuppression: Implications for the prevention and prediction of post-stroke infections. J Neuroinflammation 2021; 18(1): 127.
[http://dx.doi.org/10.1186/s12974-021-02177-0] [PMID: 34092245]
[26]
Zheng P, Zhou C, Ding Y, Duan S. Disulfidptosis: a new target for metabolic cancer therapy. Journal of experimental & clinical cancer research. CR (East Lansing Mich) 2023; 42(1): 103.
[27]
Wang T, Guo K, Zhang D, et al. Disulfidptosis classification of hepatocellular carcinoma reveals correlation with clinical prognosis and immune profile. Int Immunopharmacol 2023; 120110368.
[http://dx.doi.org/10.1016/j.intimp.2023.110368] [PMID: 37247499]
[28]
Mitra A, Sarkar N. The role of intra and inter-molecular disulfide bonds in modulating amyloidogenesis: A review. Arch Biochem Biophys 2022; 716109113.
[http://dx.doi.org/10.1016/j.abb.2021.109113] [PMID: 34958750]
[29]
Ma S, Wang D, Xie D. Identification of disulfidptosis-related genes and subgroups in Alzheimer’s disease. Front Aging Neurosci 2023; 151236490.
[http://dx.doi.org/10.3389/fnagi.2023.1236490] [PMID: 37600517]
[30]
Stamova B, Jickling GC, Ander BP, et al. Gene expression in peripheral immune cells following cardioembolic stroke is sexually dimorphic. PLoS One 2014; 9(7): e102550.
[http://dx.doi.org/10.1371/journal.pone.0102550] [PMID: 25036109]
[31]
Barr TL, Conley Y, Ding J, et al. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology 2010; 75(11): 1009-14.
[http://dx.doi.org/10.1212/WNL.0b013e3181f2b37f] [PMID: 20837969]
[32]
Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res 2018; 46(W1): W60-4.
[http://dx.doi.org/10.1093/nar/gky311] [PMID: 29912392]
[33]
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[34]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[35]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[36]
Hardcastle TJ. Generalized empirical Bayesian methods for discovery of differential data in high-throughput biology. Bioinformatics 2016; 32(2): 195-202.
[http://dx.doi.org/10.1093/bioinformatics/btv569] [PMID: 26428289]
[37]
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9(1): 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[38]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[39]
Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 2017; 18(1): 220.
[http://dx.doi.org/10.1186/s13059-017-1349-1] [PMID: 29141660]
[40]
Wilkerson MD, Hayes DN. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010; 26(12): 1572-3.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[41]
Neuhaus AA, Couch Y, Hadley G, Buchan AM. Neuroprotection in stroke: The importance of collaboration and reproducibility. Brain 2017; 140(8): 2079-92.
[http://dx.doi.org/10.1093/brain/awx126] [PMID: 28641383]
[42]
Carayannopoulos MO, Xiong F, Jensen P, et al. GLUT3 gene expression is critical for embryonic growth, brain development and survival. Mol Genet Metab 2014; 111(4): 477-83.
[http://dx.doi.org/10.1016/j.ymgme.2014.01.013] [PMID: 24529979]
[43]
Hollist M, Morgan L, Cabatbat R, Au K, Kirmani MF, Kirmani BF. Acute stroke management: Overview and recent updates. Aging Dis 2021; 12(4): 1000-9.
[http://dx.doi.org/10.14336/AD.2021.0311] [PMID: 34221544]
[44]
Amir Shaghaghi M, Zhouyao H, Tu H, et al. The SLC2A14 gene, encoding the novel glucose/dehydroascorbate transporter GLUT14, is associated with inflammatory bowel disease. Am J Clin Nutr 2017; 106(6): 1508-13.
[http://dx.doi.org/10.3945/ajcn.116.147603] [PMID: 28971850]
[45]
Conrad M, Kagan VE, Bayir H, et al. Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 2018; 32(9-10): 602-19.
[http://dx.doi.org/10.1101/gad.314674.118] [PMID: 29802123]
[46]
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021; 12(8): 599-620.
[http://dx.doi.org/10.1007/s13238-020-00789-5] [PMID: 33000412]
[47]
Tower J. Programmed cell death in aging. Ageing Research Reviews 2015; 23: 90-100.
[http://dx.doi.org/10.1016/j.arr.2015.04.002]
[48]
Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol 2020; 21(11): 678-95.
[http://dx.doi.org/10.1038/s41580-020-0270-8] [PMID: 32873928]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy