Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Role of Phytoconstituents in Cancer Treatment: A Review

Author(s): Manish Kumar, Sakshi Gupta, Kamini Kalia and Dharmendra Kumar*

Volume 15, Issue 2, 2024

Published on: 26 January, 2024

Page: [115 - 137] Pages: 23

DOI: 10.2174/012772574X274566231220051254

Price: $65

Abstract

Over the years, natural compounds have become a significant advancement in cancer treatment, primarily due to their effectiveness, safety, bio-functionality, and wide range of molecular structures. They are now increasingly preferred in drug discovery due to these attributes. These compounds, whether occurring naturally or with synthetic modifications, find applications in various fields like biology, medicine, and engineering.

While chemotherapy has been a successful method for treating cancer, it comes with systemic toxicity. To address this issue, researchers and medical practitioners are exploring the concept of combinational chemotherapy. This approach aims to reduce toxicity by using a mix of natural substances and their derivatives in clinical trials and prescription medications.

Among the most extensively studied natural anticancer compounds are quercetin, curcumin, vincristine, and vinblastine. These compounds play crucial roles as immunotherapeutics and chemosensitizers, both as standalone treatments and in combination therapies with specific mechanisms. This review article provides a concise overview of the functions, potentials, and combinations of natural anticancer compounds in cancer treatment, along with their mechanisms of action and clinical applications.

Graphical Abstract

[1]
Natural Product as Anticancer Agents. Current status and future persepective. Molecules 2022; 27(23): 8367.
[2]
Cadoná FC, Dantas RF, de Mello GH. Silva-FP Jr. Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Crit Rev Food Sci Nutr 2022; 62(26): 7222-41.
[http://dx.doi.org/10.1080/10408398.2021.1913091] [PMID: 33890518]
[3]
Brennan P, Davey-Smith G. Identifying novel causes of cancers to enhance cancer prevention: New strategies are needed. J Natl Cancer Inst 2022; 114(3): 353-60.
[http://dx.doi.org/10.1093/jnci/djab204] [PMID: 34743211]
[4]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globcan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Prac 2017; 4(4): 127-9.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[6]
Rahman MM, Sarker MT, Alam Tumpa MA, et al. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13: 950109.
[http://dx.doi.org/10.3389/fphar.2022.950109] [PMID: 36160435]
[7]
Huang B, Zhang Y. Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives. Drug Discov Today 2022; 27(7): 1936-44.
[http://dx.doi.org/10.1016/j.drudis.2022.02.007] [PMID: 35182736]
[8]
Muhammad N, Usmani D, Tarique M, et al. The role of natural products and their multitargeted approach to treat solid cancer. Cells 2022; 11(14): 2209.
[http://dx.doi.org/10.3390/cells11142209] [PMID: 35883653]
[9]
Dickens E, Ahmed S. Principles of cancer treatment by chemotherapy. Surgery 2018; 36: 134-8.
[10]
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335: 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.012] [PMID: 33991600]
[11]
Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int J Mol Sci 2020; 21(3): 1102.
[http://dx.doi.org/10.3390/ijms21031102] [PMID: 32046099]
[12]
Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother 2020; 125: 110009.
[http://dx.doi.org/10.1016/j.biopha.2020.110009] [PMID: 32106381]
[13]
Sharifi-Rad J, Quispe C, Patra JK, et al. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid Med Cell Longev 2021; 2021: 1-24.
[http://dx.doi.org/10.1155/2021/3687700] [PMID: 34707776]
[14]
Nonnekens J, Hoeijmakers JHJ. After surviving cancer, what about late life effects of the cure? EMBO Mol Med 2017; 9(1): 4-6.
[http://dx.doi.org/10.15252/emmm.201607062] [PMID: 27852619]
[15]
Wigmore PM, Mustafa S, El-Beltagy M, Lyons L, Umka J, Bennett G. Effects of 5-FU. Chemo Fog. New York, NY, USA: Springer 2010; pp. 157-64.
[http://dx.doi.org/10.1007/978-1-4419-6306-2_20]
[16]
Cardona-Mendoza A, Olivares-Niño G, Díaz-Báez D, Lafaurie GI, Perdomo SJ. Chemopreventive and anti-tumor potential of natural products in oral cancer. Nutr Cancer 2022; 74(3): 779-95.
[http://dx.doi.org/10.1080/01635581.2021.1931698] [PMID: 34100309]
[17]
Gao Q, Feng J, Liu W, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188: 114445.
[http://dx.doi.org/10.1016/j.addr.2022.114445] [PMID: 35820601]
[18]
Pepper JW, Scott Findlay C, Kassen R, Spencer SL, Maley CC. SYNTHESIS: Cancer research meets evolutionary biology. Evol Appl 2009; 2(1): 62-70.
[http://dx.doi.org/10.1111/j.1752-4571.2008.00063.x] [PMID: 25567847]
[19]
Yagüe E, Arance A, Kubitza L, et al. Ability to acquire drug resistance arises early during the tumorigenesis process. Cancer Res 2007; 67(3): 1130-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2574] [PMID: 17283147]
[20]
Zhu Y, Ouyang Z, Du H, et al. New opportunities and challenges of natural products research: When target identification meets single-cell multiomics. Acta Pharm Sin B 2022; 12(11): 4011-39.
[http://dx.doi.org/10.1016/j.apsb.2022.08.022] [PMID: 36386472]
[21]
Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79(3): 629-61.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[22]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from January 1981 to September 2019. J Nat Prod 2020; 83: 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[23]
Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today 2016; 21(2): 204-7.
[http://dx.doi.org/10.1016/j.drudis.2015.01.009] [PMID: 25617672]
[24]
Dharmendra K, Pramod SK, Use T. Phytochemicals and pharmacological activity of salvadora persica: A review. Curr Nutr Food Sci 2021; 17(3)
[25]
Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan S. Berberine in human oncogenic her-pesvirus infections and their linked cancers. Viruses 2021; 13(6): 1014.
[http://dx.doi.org/10.3390/v13061014] [PMID: 34071559]
[26]
Liskova A, Samec M, Koklesova L, et al. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J 2021; 12(2): 155-76.
[http://dx.doi.org/10.1007/s13167-021-00242-5] [PMID: 34025826]
[27]
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov 2021; 20(3): 200-16.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[28]
Lachance H, Wetzel S, Kumar K, Waldmann H. Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 2012; 55(13): 5989-6001.
[http://dx.doi.org/10.1021/jm300288g] [PMID: 22537178]
[29]
Dey P, Kundu A, Kumar A, et al. Analysis of Alkaloids (Indole Alkaloids, Iso-quinoline Alkaloids, Tropane Alkaloids). In: Recent Advances in Natural Products Analysis. Amsterdam, The Netherlands: Elsevier 2020; pp. 505-67.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00015-9]
[30]
Ramos AC, Peláez R, Luis López J, Caballero E, Medarde M, San Feliciano A. Heterolignanolides. Furo- and thieno-analogues of podophyllotoxin and thuriferic acid. Tetrahedron 2001; 57(18): 3963-77.
[http://dx.doi.org/10.1016/S0040-4020(01)00271-X]
[31]
Talib WH, Daoud S, Mahmod AI, et al. Plants as a source of anticancer agents: From bench to bedside. Molecules 2022; 27(15): 4818.
[http://dx.doi.org/10.3390/molecules27154818] [PMID: 35956766]
[32]
Găman AM, Egbuna C, Găman M-A. Natural bioactive lead compounds effective against haematological malignancies. In: Phytochemicals as Lead Compounds for New Drug Discovery. Amsterdam, The Netherlands: Elsevier 2020; pp. 95-115.
[http://dx.doi.org/10.1016/B978-0-12-817890-4.00006-8]
[33]
Man-Yi W. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model Nanomedicine: Nanotechnology. Biol Med 2011; 7: 834-40.
[34]
Song XR, Cai Z, Zheng Y, et al. Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 2009; 37(3-4): 300-5.
[http://dx.doi.org/10.1016/j.ejps.2009.02.018]
[35]
YuangangZu Y. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folate conjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int J Nanomedicine 2009; 10.
[36]
Jieru L. Effective co-encapsulation of doxorubicin and irinotecan for synergistic therapy using liposomes prepared with triethylammonium sucrose octa sulfate as drug trapping agent. Int J Pharm 2019; 557: 264-72.
[37]
Kazemabadi Fatemeh Zare, Heydarinasab Amir, Akbarzadeh Azim, Preparation Mehdi Ardjmand. Preparation, characterization and In vitro evaluation of PEGylated nano liposomal containing etoposide on lung cancer. Artif Cells Nanomed Biotechnol 2019; 47(1): 3222-30.
[38]
Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release 2003; 86(1): 33-48.
[http://dx.doi.org/10.1016/S0168-3659(02)00320-6] [PMID: 12490371]
[39]
Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer 2004; 108(5): 780-9.
[http://dx.doi.org/10.1002/ijc.11615] [PMID: 14696107]
[40]
Fang S, Hou Y, Ling L, et al. Dimeric camptothecin derived phospholipid assembled liposomes with high drug loading for cancer therapy. Colloids Surf B Biointerfaces 2018; 166(1): 235-44.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.046] [PMID: 29604567]
[41]
Cheng CY, Barro L, Tsai ST, et al. Epigallocatechin-3-gallate-loaded liposomes favor anti-inflammation of microglia cells and promote neuroprotection. Int J Mol Sci 2021; 22(6): 3037.
[http://dx.doi.org/10.3390/ijms22063037] [PMID: 33809762]
[42]
Meng Jie, Guo Fangqin, Xu Haiyan, Wei Liang, Wang Chen. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells In vivo. Sci Rep 2016; 6: 22390.
[43]
Soo E, Thakur S, Qu Z, Jambhrunkar S, Parekh HS, Popat A. Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J Colloid Interface Sci 2016; 462(January): 368-74.
[http://dx.doi.org/10.1016/j.jcis.2015.10.022] [PMID: 26479200]
[44]
Ali Z. Synthesis of curcumin loaded smart pH-responsive stealth liposome as a novel nanocarrier for cancer treatment. Fiber 2021; 9(3): 19.
[45]
Chishti N. Preparation, optimization, and In vivo evaluation of nanoparticle-based formulation for pulmonary delivery of anticancer drug. Medicina 2019; 55(6): 294.
[46]
Bao Y, Deng Q, Li Y, Zhou S. Engineering docetaxel-loaded micelles for nonsmall cell lung cancer: A comparative study of microfluidic and bulk nanoparticle preparation. RSC Advances 2018; 8(56): 31950-66.
[47]
Silva EJ. Development of Topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur J Pharm Biopharm 2011; 79: 189-96.
[48]
Borhaneh Hasan N. A promising targeting system to enrich irinotecan antitumor efficacy: Folic acid targeted nanoparticles. J Drug Deliv Sci Technol 2021; 63: 102543.
[49]
Qin L, Xue M, Wang W, et al. The In vitro and In vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery for podophyllotoxin. Int J Pharm 2010; 388(1-2): 223-30.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.044]
[50]
Yury A. Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydr Polym 2017; 162(15): 49-55.
[51]
Zhang L, Yang M, Wang Q, Li Y. 10-Hydroxycamptothecin loaded nanoparticles: Preparation and antitumor activity in mice. J Control Release 2007; 119(2): 153-62.
[52]
Min KH, Park K, Kim YS, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 2008; 127(3): 208-18.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.013] [PMID: 18336946]
[53]
Yua Mian, Zhaob Miaoqing, Yua Rilei, Chua Shaochen, Xua Jiahao, Xiad Ming. Nanotechnology-mediated immunochemotherapy with ingenol-3-mebutate for systematic anti-tumor effects. J Control Release 2019; 304: 242-58.
[54]
Dong F, Dong X, Zhou L, et al. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, In vitro evaluation, and cellular uptake. Colloids Surf B Biointerfaces 2016; 140: 324-31.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.048] [PMID: 26764113]
[55]
Ozgur E. Influence of emulsifiers on the formation and In vitro anticancer activity of epirubicin loaded PLGA nanoparticles. J Drug Deliv Sci Technol 2020; 60: 102027.
[56]
Gunduz U, Keskin T. Tansık G, et al. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed Pharmacother 2014; 68(6): 729-36.
[http://dx.doi.org/10.1016/j.biopha.2014.08.013] [PMID: 25194441]
[57]
Fariza Aina AM. Drug release profiles of mitomycin c encapsulated quantum dots-chitosan nanocarrier system for the possible treatment of non-muscle invasive bladder cancer. Pharmaceutics 2021; 13(9): 1379.
[58]
Ghassan M. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, antiinfammatory and phagocytosis inducer model. Sci Report 2020; 10(1): 9362.
[59]
Oscar E-R. Rapamycin-loaded polysorbate 80-coated PLGA nanoparticles: Optimization of formulation variables and In vitro anti-glioma assessment. J Drug Deliv Sci Technol 2019; 52: 488-99.
[60]
Dog A. Bleomycin loaded magnetic chitosan nanoparticles as, multifunctional nanocarriers. J Bioact Compat Polym 2010; 25(3): 305-18.
[61]
Saha S, Mishra A. A facile preparation of rutin nanoparticles and its effects on controlled growth and morphology of calcium oxalate crystals. J Cryst Growth 2020; 540: 125635.
[http://dx.doi.org/10.1016/j.jcrysgro.2020.125635]
[62]
Dharmendra K, Pramod SK. Quercetin: A comprehensive review. Curr Nutr Food Sci 2023; 19.
[63]
Wang H, Zhang K, Liu J, et al. Curcumin regulates cancer progression: Focus on ncRNAs and molecular signaling pathways. Front Oncol 2021; 11: 660712.
[http://dx.doi.org/10.3389/fonc.2021.660712] [PMID: 33912467]
[64]
Khatoon E, Banik K, Harsha C, et al. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. In: Seminars in Cancer Biology. Cambridge, MA, USA: Academic Press 2020.
[65]
Bordoloi D, Roy NK, Monisha J, Padmavathi G, Kunnumakkara AB. Multi-targeted agents in cancer cell chemosensitiza-tion: What we learnt from curcumin thus far. Recent Pat Anti-Cancer Drug Discov 2016; 11(1): 67-97.
[PMID: 26537958]
[66]
Monisha J, Jaiswal A, Banik K, et al. Cancer cell chemoresistance: A prime obstacle in cancer therapy. In: Cancer Cell Chemoresistance and Chemosensitization. Singapore: World Scientific 2018; pp. 15-49.
[http://dx.doi.org/10.1142/9789813208575_0002]
[67]
Maurya SK, Shadab GGHA, Siddique HR. Chemosensitization of therapy resistant tumors: Targeting multiple cell signaling pathways by lupeol, a pentacyclic triterpene. Curr Pharm Des 2020; 26(4): 455-65.
[http://dx.doi.org/10.2174/1381612826666200122122804] [PMID: 31969092]
[68]
Yu J, Zhong B, Chen X. Induction of programmed necrosis by phytochemicals in colorectal cancer.In: Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies. Amsterdam, The Netherlands: Elsevier 2020; pp. 117-33.
[http://dx.doi.org/10.1016/B978-0-12-819937-4.00007-8]
[69]
Hsu YH, Chen SY, Wang SY, Lin JA, Yen GC. Pterostilbene enhances cytotoxicity and chemosensitivity in human pancreatic cancer cells. Biomolecules 2020; 10(5): 709.
[http://dx.doi.org/10.3390/biom10050709] [PMID: 32375296]
[70]
Datta S, Sinha D. EGCG maintained Nrf2-mediated redox homeostasis and minimized etoposide resistance in lung cancer cells. J Funct Foods 2019; 62: 103553.
[http://dx.doi.org/10.1016/j.jff.2019.103553]
[71]
Dharmendra Kumar, Pramod Sharma Kumar. Formulation and evaluation of quercetin-loaded banana starch nanoparticles. Nanosci Nanotechnol Asia 2023; 13: e240523217291.
[72]
Muthusamy G, Gunaseelan S, Prasad NR. Ferulic acid reverses P-glycoprotein-mediated multidrug resistance via inhibition of PI3K/Akt/NF-κB signaling pathway. J Nutr Biochem 2019; 63: 62-71.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.022] [PMID: 30342318]
[73]
Irani S. Emerging insights into the biology of metastasis: A review article. Iran J Basic Med Sci 2019; 22(8): 833-47.
[PMID: 31579438]
[74]
Dharmendra K, Pramod SK. A review on opuntia species and its chemistry, pharmacognosy, pharmacology and bioapplications. Curr Nutr Food Sci 2020; 16(8)
[75]
Yang P, Jiang Y, Pan Y, et al. Mistletoe extract Fraxini inhibits the proliferation of liver cancer by down-regulating c-Myc expression. Sci Rep 2019; 9(1): 6428.
[http://dx.doi.org/10.1038/s41598-019-41444-2] [PMID: 31015523]
[76]
Koh YC, Ho CT, Pan MH. Recent advances in cancer chemoprevention with phytochemicals. Yao Wu Shi Pin Fen Xi 2020; 28(1): 14-37.
[http://dx.doi.org/10.38212/2224-6614.1219] [PMID: 31883602]
[77]
Sun L, Chen B, Jiang R, Li J, Wang B. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell Immunol 2017; 311: 86-93.
[http://dx.doi.org/10.1016/j.cellimm.2016.11.002] [PMID: 27825563]
[78]
Loo WTY, Jin LJ, Chow LWC, Cheung MNB, Wang M. Rhodiola algida improves chemotherapy-induced oral mucositis in breast cancer patients. Expert Opin Investig Drugs 2010; 19(sup1): S91-S100.
[http://dx.doi.org/10.1517/13543781003727057 ] [PMID: 20374035]
[79]
Galluzzi L, Senovilla L, Vacchelli E, et al. Trial watch. OncoImmunology 2012; 1(7): 1111-34.
[http://dx.doi.org/10.4161/onci.21494] [PMID: 23170259]
[80]
Chang WT, Lai TH, Chyan YJ, et al. Specific medicinal plant polysaccharides effectively enhance the potency of a DC-based vaccine against mouse mammary tumor metastasis. PLoS One 2015; 10(3): e0122374.
[http://dx.doi.org/10.1371/journal.pone.0122374] [PMID: 25825910]
[81]
Huang HF, Zeng Z, Chen MQ. Roles of Kupffer cells in liver transplantation. Hepatogastroenterology 2012; 59(116): 1251-7.
[http://dx.doi.org/10.5754/hge12046] [PMID: 22440189]
[82]
Fang F, Xiao W, Tian ZNK. Cell-based immunotherapy for cancer. In: seminars in immunology. Cambridge, MA, USA: Academic Press 2017; pp. 37-54.
[83]
Wu XT, Liu JQ, Lu XT, et al. The enhanced effect of lupeol on the destruction of gastric cancer cells by NK cells. Int Immunopharmacol 2013; 16(2): 332-40.
[http://dx.doi.org/10.1016/j.intimp.2013.04.017] [PMID: 23639256]
[84]
Hou D, Wang D, Ma X, Chen W, Guo S, Guan H. Effects of total flavonoids of sea buckthorn (Hippophae rhamnoides L.) on cytotoxicity of NK92-MI cells. Int J Immunopathol Pharmacol 2017; 30(4): 353-61.
[http://dx.doi.org/10.1177/0394632017736673] [PMID: 28994628]
[85]
Zhou J, Wu J, Chen X, et al. Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions. Int Immunopharmacol 2011; 11(7): 890-8.
[http://dx.doi.org/10.1016/j.intimp.2011.01.007] [PMID: 21244860]
[86]
Lu Y-T, Li J, Qi X, Pei YX, Shi W-G, Lin H-S. Effects of Shugan Jianpi Formula () on myeloid-derived suppression cells-mediated depression breast cancer mice. Chin J Integr Med 2017; 23(6): 453-60.
[http://dx.doi.org/10.1007/s11655-016-2734-4] [PMID: 27796822]
[87]
Murakami H, Ogawara H, Hiroshi H. Th1/Th2 cells in patients with multiple myeloma. Hematology 2004; 9(1): 41-5.
[http://dx.doi.org/10.1080/10245330310001652437] [PMID: 14965867]
[88]
Wei H, Sun R, Xiao W, et al. Type two cytokines predominance of human lung cancer and its reverse by traditional Chinese medicine TTMP. Cell Mol Immunol 2004; 1(1): 63-70.
[PMID: 16212923]
[89]
Zhang M, Guo J, Hu X, Zhao S, Li S, Wang J. An In vivo anti-tumor effect of eckol from marine brown algae by improving the immune response. Food Funct 2019; 10(7): 4361-71.
[http://dx.doi.org/10.1039/C9FO00865A] [PMID: 31276149]
[90]
Takei M, Tachikawa E, Hasegawa H, Lee JJ. Dendritic cells maturation promoted by M1 and M4, end products of steroidal ginseng saponins metabolized in digestive tracts, drive a potent Th1 polarization. Biochem Pharmacol 2004; 68(3): 441-52.
[http://dx.doi.org/10.1016/j.bcp.2004.04.015] [PMID: 15242811]
[91]
Wang Y, Zhang Q, Chen Y, et al. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother 2020; 121: 109570.
[http://dx.doi.org/10.1016/j.biopha.2019.109570] [PMID: 31710893]
[92]
Li Q, Bao J-M, Li X-L, Zhang T, Shen X-H. Inhibiting effect of Astragalus polysaccharides on the functions of CD4+CD25 highTreg cells in the tumor microenvironment of human hepatocellular carcinoma. Chin Med J 2012; 125(5): 786-93.
[PMID: 22490576]
[93]
Du X, Chen X, Zhao B, et al. Astragalus polysaccharides enhance the humoral and cellular immune responses of hepatitis B surface antigen vaccination through inhibiting the expression of transforming growth factor β and the frequency of regulatory T cells. FEMS Immunol Med Microbiol 2011; 63(2): 228-35.
[http://dx.doi.org/10.1111/j.1574-695X.2011.00845.x] [PMID: 22077226]
[94]
He X, Li X, Liu B, Xu L, Zhao H, Lu A. Down-regulation of Treg cells and up-regulation of TH1/TH2 cytokine ratio were induced by polysaccharide from Radix Glycyrrhizae in H22 hepatocarcinoma bearing mice. Molecules 2011; 16(10): 8343-52.
[http://dx.doi.org/10.3390/molecules16108343] [PMID: 21963624]
[95]
Kumagai S, Kasagi S, Kawano S. PD-1 and autoimmunity. Crit Rev Immunol 2011; 31(4): 265-95.
[http://dx.doi.org/10.1615/CritRevImmunol.v31.i4.10] [PMID: 21899511]
[96]
Chikuma S, Kanamori M, Mise-Omata S, Yoshimura A. Suppressors of cytokine signaling: Potential immune checkpoint molecules for cancer immunotherapy. Cancer Sci 2017; 108(4): 574-80.
[http://dx.doi.org/10.1111/cas.13194] [PMID: 28188673]
[97]
Zhang X, Tong J, Li Z. Qiyusanlong decoction inhibits the level of PD-1/PD-L1 in mice bearing Lewis lung carcinoma. Xibao Yu Fenzi Mianyixue Zazhi 2016; 32(6): 770-4.
[PMID: 27371844]
[98]
Lv J, Jia Y, Li J, et al. Gegen Qinlian decoction enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by remodelling the gut microbiota and the tumour microenvironment. Cell Death Dis 2019; 10(6): 415.
[http://dx.doi.org/10.1038/s41419-019-1638-6] [PMID: 31138779]
[99]
Zhao G, Lu Z, Tang L, et al. Curcumin inhibits suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice In vitro. Int Immunopharmacol 2012; 14(1): 99-106.
[http://dx.doi.org/10.1016/j.intimp.2012.06.016] [PMID: 22749847]
[100]
Lin SR, Chang CH, Hsu CF, et al. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol 2020; 177(6): 1409-23.
[http://dx.doi.org/10.1111/bph.14816] [PMID: 31368509]
[101]
Bishayee A, Sethi G. Bioactive natural products in cancer prevention and therapy: Progress and promise. In: Seminars in Cancer Biology. Amsterdam, The Netherlands: Elsevier 2016; pp. 1-3.
[http://dx.doi.org/10.1016/j.semcancer.2016.08.006]
[102]
Wang L, Sun J, Gao P, et al. Wnt1-inducible signaling protein 1 regulates laryngeal squamous cell carcinoma glycolysis and chemoresistance via the YAP1/TEAD1/GLUT1 pathway. J Cell Physiol 2019; 234(9): 15941-50.
[http://dx.doi.org/10.1002/jcp.28253] [PMID: 30805937]
[103]
Zhang P, Lai ZL, Chen HF, et al. RETRACTED ARTICLE: Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice. J Exp Clin Cancer Res 2017; 36(1): 190.
[http://dx.doi.org/10.1186/s13046-017-0661-7] [PMID: 29273065]
[104]
Namkaew J, Jaroonwitchawan T, Rujanapun N, Saelee J, Noisa P. Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells. in vitro Cell Dev Biol Anim 2018; 54(9): 629-39.
[http://dx.doi.org/10.1007/s11626-018-0288-9] [PMID: 30136034 ]
[105]
Öztürk Y. Günaydın C, Yalçın F, Nazıroğlu M, Braidy N. Resveratrol enhances apoptotic and oxidant effects of paclitaxel through TRPM2 channel activation in DBTRG glioblastoma cells. Oxid Med Cell Longev 2019; 2019: 1-13.
[http://dx.doi.org/10.1155/2019/4619865] [PMID: 30984336]
[106]
Shen W, Liang B, Yin J, Li X, Cheng J. Noscapine increases the sensitivity of drug-resistant ovarian cancer cell line SKOV3/DDP to cisplatin by regulating cell cycle and activating apoptotic pathways. Cell Biochem Biophys 2015; 72(1): 203-13.
[http://dx.doi.org/10.1007/s12013-014-0438-y] [PMID: 25510462]
[107]
Sivalingam KS, Paramasivan P, Weng CF, Viswanadha V. Neferine potentiates the antitumor effect of cisplatin in human lung adenocarcinoma cells via a mitochondria-mediated apoptosis pathway. J Cell Biochem 2017; 118(9): 2865-76.
[http://dx.doi.org/10.1002/jcb.25937] [PMID: 28214344]
[108]
Wang Y, Lu H, Liu Y, et al. Cryptotanshinone sensitizes antitumor effect of paclitaxel on tongue squamous cell carcinoma growth by inhibiting the JAK/STAT3 signaling pathway. Biomed Pharmacother 2017; 95: 1388-96.
[http://dx.doi.org/10.1016/j.biopha.2017.09.062] [PMID: 28946186]
[109]
Zhang X, Ni Q, Wang Y, Fan H, Li Y. Synergistic anticancer effects of formononetin and temozolomide on glioma C6 cells. Biol Pharm Bull 2018; 41(8): 1194-202.
[http://dx.doi.org/10.1248/bpb.b18-00002] [PMID: 29848900]
[110]
Tseng HS, Wang YF, Tzeng YM, et al. Aloe-emodin enhances tamoxifen cytotoxicity by suppressing Ras/ERK and PI3K/mTOR in breast cancer cells. Am J Chin Med 2017; 45(2): 337-50.
[http://dx.doi.org/10.1142/S0192415X17500215] [PMID: 28231748]
[111]
Sánchez BG, Bort A, Mateos-Gómez PA, Rodríguez-Henche N, Díaz-Laviada I. Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase. Cancer Cell Int 2019; 19(1): 54.
[http://dx.doi.org/10.1186/s12935-019-0769-2] [PMID: 30899201]
[112]
Saikia M, Retnakumari AP, Anwar S, et al. Heteronemin, a marine natural product, sensitizes acute myeloid leukemia cells towards cytarabine chemotherapy by regulating farnesylation of Ras. Oncotarget 2018; 9(26): 18115-27.
[http://dx.doi.org/10.18632/oncotarget.24771] [PMID: 29719594]
[113]
Jiang QW, Cheng KJ, Mei XL, et al. Synergistic anticancer effects of triptolide and celastrol, two main compounds from thunder god vine. Oncotarget 2015; 6(32): 32790-804.
[http://dx.doi.org/10.18632/oncotarget.5411] [PMID: 26447544]
[114]
Huang Y, Wang K, Gu C, et al. Berberine, a natural plant alkaloid, synergistically sensitizes human liver cancer cells to sorafenib. Oncol Rep 2018; 40(3): 1525-32.
[http://dx.doi.org/10.3892/or.2018.6552] [PMID: 30015938]
[115]
Desai V, Jain A, Shaghaghi H, Summer R, Lai JCK, Bhushan A. Combination of biochanin A and temozolomide impairs tumor growth by modulating cell metabolism in glioblastoma multiforme. Anticancer Res 2019; 39(1): 57-66.
[http://dx.doi.org/10.21873/anticanres.13079] [PMID: 30591440]
[116]
du Plessis-Stoman D, du Preez J, van de Venter M. Combination treatment with oxaliplatin and mangiferin causes increased apoptosis and downregulation of NFκB in cancer cell lines. Afr J Tradit Complement Altern Med 2011; 8(2): 177-84.
[PMID: 22238500]
[117]
Lin MT, Lin CL, Lin TY, et al. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumour Biol 2016; 37(5): 6987-96.
[http://dx.doi.org/10.1007/s13277-015-4526-4] [PMID: 26662956]
[118]
Zhu Z, Du S, Ding F, Guo S, Ying G, Yan Z. Ursolic acid attenuates temozolomide resistance in glioblastoma cells by downregulating O(6)-methylguanine-DNA methyltransferase (MGMT) expression. Am J Transl Res 2016; 8(7): 3299-308.
[PMID: 27508051]
[119]
Neitzel C, Seiwert N, Göder A, et al. Lipoic acid synergizes with antineoplastic drugs in colorectal cancer by targeting p53 for proteasomal degradation. Cells 2019; 8(8): 794.
[http://dx.doi.org/10.3390/cells8080794] [PMID: 31366086]
[120]
Huang Z, Zhang Y, Li H, et al. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-κB pathway activation through RPS3. Cell Death Dis 2019; 10(12): 936.
[http://dx.doi.org/10.1038/s41419-019-2177-x] [PMID: 31819048]
[121]
Jaliani HZ, Pazhang Y, Imani M, Dariushnejad H. Synergism between NF-kappa B inhibitor, celastrol, and XIAP inhibitor, embelin, in an acute myeloid leukemia cell line, HL-60. J Cancer Res Ther 2016; 12(1): 155-60.
[http://dx.doi.org/10.4103/0973-1482.150407] [PMID: 27072230]
[122]
Li X, Zhu F, Jiang J, et al. Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett 2015; 357(1): 219-30.
[http://dx.doi.org/10.1016/j.canlet.2014.11.026] [PMID: 25444914]
[123]
Yang YI, Lee KT, Park HJ, et al. Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway. Carcinogenesis 2012; 33(12): 2488-98.
[http://dx.doi.org/10.1093/carcin/bgs302] [PMID: 23027625]
[124]
Qian J, Xia M, Liu W, et al. Glabridin resensitizes p-glycoprotein-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Eur J Pharmacol 2019; 852: 231-43.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.002] [PMID: 30959046]
[125]
Xia G, Wang H, Song Z, Meng Q, Huang X, Huang X. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). J Exp Clin Cancer Res 2017; 36(1): 107.
[http://dx.doi.org/10.1186/s13046-017-0579-0] [PMID: 28797284]
[126]
Boueroy P, Hahnvajanawong C, Boonmars T, et al. Synergistic Effect of Forbesione From Garcinia hanburyi in Combination with 5-Fluorouracil on Cholangiocarcinoma. Asian Pac J Cancer Prev 2017; 18(12): 3343-51.
[PMID: 29286229]
[127]
Su J, Zhang F, Li X, Liu Z. Osthole promotes the suppressive effects of cisplatin on NRF2 expression to prevent drug-resistant cervical cancer progression. Biochem Biophys Res Commun 2019; 514(2): 510-7.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.021] [PMID: 31056260]
[128]
Clinical trial of lurbinectedin (PM01183)/doxorubicin versus CAV or topotecan as treatment in patients with small-cell lung cancer (ATLANTIS). NCT02566993, 2021.
[129]
Adavosertib and irinotecan hydrochloride in treating younger patients with relapsed or refractory solid tumors. NCT02095132, 2014.
[130]
Effect of quercetin on green tea polyphenol uptake in prostate tissue from patients with prostate cancer undergoing surgery. NCT01912820, 2021.
[131]
Combination of hydroxyurea and verapamil for refractory meningiomas
[132]
A study of neoadjuvant nivolumab + palbociclib + anastrozole in post-menopausal women and men with primary breast cancer. NCT04075604, 2022.
[133]
A study in second line metastatic colorectal cancer. NCT01183780, 2015.
[134]
Dinutuximab and irinotecan versus irinotecan to treat subjects with relapsed or refractory small cell lung cancer. NCT03098030, 2021.
[135]
Paclitaxel-induced polyneuropathy in breast cancer: Early detection, risk factors, quality of life and lifestyle outcomes (CIPNREBECCA). NCT06052345, 2023.
[136]
A safety and efficacy study of BCD-022 with paclitaxel compared to herceptin with paclitaxel in HER2+ metastatic breast cancer patients. NCT01764022, 2018.
[137]
Topotecan hydrochloride or cyclodextrin-based polymercamptothecin CRLX101 in treating patients with recurrent small cell lung cancer. NCT01803269, 2020.
[138]
Combining CRLX101, a nanoparticle camptothecin, with enzalutamide in people with progressive metastatic castration-resistant prostate cancer following prior enzalutamide treatment. NCT03531827, 2022.
[139]
A phase 2 study of CRLX101(NLG207) in patients with advanced non-small cell lung cancer. NCT01380769, 2017.
[140]
Neoadjuvant chemoradiotherapy with CRLX-101 and capecitabine for rectal cancer - study results.
[141]
Green tea extract in treating patients with monoclonal gammopathy of undetermined significance and/or smoldering multiple myeloma. NCT00942422, 2015.
[142]
Fish oil and green tea extract in preventing prostate cancer in patients who are at risk for developing prostate cancer. NCT00253643, 2017.
[143]
Pazopanib and paclitaxel as first-line treatment for subjects with unresectable stage III and stage IV melanoma.
[144]
Safety study of pertuzumab (in combination with trastuzumab and docetaxel) in Indian participants with breast cancer.
[145]
A phase III trial of ZD4054 (zibotentan) (endothelin a antagonist) in hormone resistant prostate cancer with bone metastases (ENTHUSE M1). NCT00554229, 2016.
[146]
Proton beam radiation therapy and chemotherapy in treating patients with stage iii non-small cell lung cancer that can be removed by surgery; NCT01076231, 2021.
[147]
Cisplatin and etoposide with or without veliparib in treating patients with extensive stage small cell lung cancer. NCT01642251, 2019.
[148]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[149]
Ye W, Sun W, Chen R, et al. Pharmacokinetics in rat plasma and tissue distribution in mice of galangin determined by UHPLC–MS/MS. Acta Chromatogr 2019; 31(2): 120-5.
[http://dx.doi.org/10.1556/1326.2017.00389]
[150]
Hung JY, Yang CJ, Tsai YM, Huang HW, Huang MS. Antiproliferative activity of aucubin is through cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Clin Exp Pharmacol Physiol 2008; 35(9): 995-1001.
[http://dx.doi.org/10.1111/j.1440-1681.2008.04935.x] [PMID: 18430063]
[151]
Xu WT, Li TZ, Li SM, et al. Cytisine exerts anti-tumour effects on lung cancer cells by modulating reactive oxygen species-mediated signalling pathways. Artif Cells Nanomed Biotechnol 2020; 48(1): 84-95.
[http://dx.doi.org/10.1080/21691401.2019.1699813] [PMID: 31852250]
[152]
Han S, Yang X, Pan Y, et al. L-securinine inhibits the proliferation of A549 lung cancer cells and promotes DKK1 promoter methylation. Oncol Lett 2017; 14(4): 4243-8.
[http://dx.doi.org/10.3892/ol.2017.6693] [PMID: 28943934]
[153]
Hasan A, Haque E, Hameed R, et al. Hsp90 inhibitor gedunin causes apoptosis in A549 lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and downregulating autophagy. Life Sci 2020; 256: 118000.
[http://dx.doi.org/10.1016/j.lfs.2020.118000] [PMID: 32585246]
[154]
Srinual S, Chanvorachote P, Pongrakhananon V. Suppression of cancer stem-like phenotypes in NCI-H460 lung cancer cells by vanillin through an Akt-dependent pathway. Int J Oncol 2017; 50(4): 1341-51.
[http://dx.doi.org/10.3892/ijo.2017.3879] [PMID: 28259926]
[155]
Hua P, Sun M, Zhang G, et al. Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem Biophys Res Commun 2015; 460(2): 136-42.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.131] [PMID: 25747710]
[156]
Hutchinson L. Challenges, controversies, breakthroughs. Nat Rev Clin Oncol 2010; 7(12): 669-70.
[http://dx.doi.org/10.1038/nrclinonc.2010.192] [PMID: 21116236]
[157]
Zhou X, Yue GGL, Tsui SKW, Pu J, Fung KP, Lau CBS. Elaborating the role of natural products on the regulation of autophagy and their potentials in breast cancer therapy. Curr Cancer Drug Targets 2018; 18(3): 239-55.
[http://dx.doi.org/10.2174/1568009617666170330124819] [PMID: 28359240]
[158]
Jin ZQ, Hao J, Yang X, et al. Higenamine enhances the antitumor effects of cucurbitacin B in breast cancer by inhibiting the interaction of AKT and CDK2. Oncol Rep 2018; 40(4): 2127-36.
[http://dx.doi.org/10.3892/or.2018.6629] [PMID: 30106443]
[159]
Nigjeh SE, Yeap SK, Nordin N, Rahman H, Rosli R. In-vivo anti-tumor effects of citral on 4T1 breast cancer cells via induction of apoptosis and downregulation of aldehyde dehydrogenase activity. Molecules 2019; 24(18): 3241.
[http://dx.doi.org/10.3390/molecules24183241] [PMID: 31492037]
[160]
Wang L, Wang G, Yang D, et al. Euphol arrests breast cancer cells at the G1 phase through the modulation of cyclin D1, p21 and p27 expression. Mol Med Rep 2013; 8(4): 1279-85.
[http://dx.doi.org/10.3892/mmr.2013.1650] [PMID: 23969579]
[161]
Reddy D, Ghosh P, Kumavath R. Strophanthidin attenuates MAPK, PI3K/AKT/mTOR, and Wnt/β-Catenin Signaling pathways in human cancers. Front Oncol 2020; 9: 1469.
[http://dx.doi.org/10.3389/fonc.2019.01469] [PMID: 32010609]
[162]
Fatima I, El-Ayachi I, Taotao L, et al. The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PLoS One 2017; 12(12): e0189864.
[http://dx.doi.org/10.1371/journal.pone.0189864] [PMID: 29281678]
[163]
Deng YT, Huang HC, Lin JK. Rotenone induces apoptosis in MCF-7 human breast cancer cell-mediated ROS through JNK and p38 signaling. Mol Carcinog 2010; 49(2): 141-51.
[http://dx.doi.org/10.1002/mc.20583] [PMID: 19777565]
[164]
Dhandayuthapani S, Perez HD, Paroulek A, et al. Bromelain-induced apoptosis in GI-101A breast cancer cells. J Med Food 2012; 15(4): 344-9.
[http://dx.doi.org/10.1089/jmf.2011.0145] [PMID: 22191568]
[165]
Abu N, Akhtar MN, Yeap SK, et al. Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro. BMC Complement Altern Med 2016; 16(1): 86.
[http://dx.doi.org/10.1186/s12906-016-1046-8] [PMID: 26922065]
[166]
Stewart B, Wild CP. World Cancer Report 2014. Geneva, Switzerland: World Health Organization 2014.
[167]
Lee CS, Jang ER, Kim YJ, Myung SC, Kim W, Lee MW. Diarylheptanoid hirsutenone enhances apoptotic effect of TRAIL on epithelial ovarian carcinoma cell lines via activation of death receptor and mitochondrial pathway. Invest New Drugs 2012; 30(2): 548-57.
[http://dx.doi.org/10.1007/s10637-010-9601-5] [PMID: 21120579]
[168]
Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 2014; 25(18): 2677-81.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[169]
Zhang H, Jiao Y, Shi C, et al. Berbamine suppresses cell proliferation and promotes apoptosis in ovarian cancer partially via the inhibition of Wnt/β-catenin signaling. Acta Biochim Biophys Sin 2018; 50(6): 532-9.
[http://dx.doi.org/10.1093/abbs/gmy036] [PMID: 29701777]
[170]
Chen TG, Li LY, Wei YR, Zhang LW. (Screening, identification and activity evaluation of pancreatic lipase inhibition in Prunella vulgaris). Zhongguo Zhongyao Zazhi 2018; 43(23): 4665-71.
[PMID: 30717556]
[171]
Siegel RL, Miller KD, Jemal A. Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970–2014. JAMA 2017; 318(6): 572-4.
[http://dx.doi.org/10.1001/jama.2017.7630] [PMID: 28787497]
[172]
Sun J, Ding C, Yang Z, et al. The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition. J Transl Med 2016; 14(1): 42.
[http://dx.doi.org/10.1186/s12967-016-0786-z] [PMID: 26856330]
[173]
Imai H, Sawada K, Sato A, et al. Complete resection of liver metastases of colorectal cancer after high efficacy bevacizumab, S-1, and CPT -11 combination chemotherapy Gan To Kagaku Ryoho 2015; 42(1): 101-4.
[PMID: 25596689]
[174]
Chidambara Murthy KN, Jayaprakasha GK, Patil BS. Obacunone and obacunone glucoside inhibit human colon cancer (SW480) cells by the induction of apoptosis. Food Chem Toxicol 2011; 49(7): 1616-25.
[http://dx.doi.org/10.1016/j.fct.2011.04.014] [PMID: 21515332]
[175]
Sithara T, Arun KB, Syama HP, Reshmitha TR, Nisha P. Morin inhibits proliferation of SW480 colorectal cancer cells by inducing apoptosis mediated by reactive oxygen species formation and uncoupling of warburg effect. Front Pharmacol 2017; 8: 640.
[http://dx.doi.org/10.3389/fphar.2017.00640] [PMID: 28955240]
[176]
Ban JO, Oh JH, Hwang BY, et al. Inflexinol inhibits colon cancer cell growth through inhibition of nuclear factor-κB activity via direct interaction with p50. Mol Cancer Ther 2009; 8(6): 1613-24.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0694] [PMID: 19509257]
[177]
Ren H, Zhao J, Fan D, et al. Alkaloids from nux vomica suppresses colon cancer cell growth through Wnt/β‐catenin signaling pathway. Phytother Res 2019; 33(5): 1570-8.
[http://dx.doi.org/10.1002/ptr.6347] [PMID: 30907037]
[178]
Gao X, Wang Y, Zhang J, Lin L, Yao Q, Xiang G. Bergenin suppresses the growth of colorectal cancer cells by inhibiting PI3K/AKT/mTOR signaling pathway. Trop J Pharm Res 2017; 16(10): 2307-13.
[http://dx.doi.org/10.4314/tjpr.v16i10.1]
[179]
Jin Z, Yan W, Jin H, Ge C, Xu Y. Differential effect of psoralidin in enhancing apoptosis of colon cancer cells via nuclear factor-κB and B-cell lymphoma-2/B-cell lymphoma-2-associated X protein signaling pathways. Oncol Lett 2016; 11(1): 267-72.
[http://dx.doi.org/10.3892/ol.2015.3861] [PMID: 26870201]
[180]
Gu Y-Y, Chen M-H, May BH, Liao X-Z, Liu J-H, Tao L-T. Matrine induces apoptosis in multiple colorectal cancer cell lines In-vitro and inhibits tumour growth with minimum side effects In-vivo via Bcl-2 and caspase-3. Phytomedicine 2018; 51: 214-25.
[http://dx.doi.org/10.1016/j.phymed.2018.10.004] [PMID: 30466620]
[181]
Su CM, Weng YS, Kuan LY, Chen JH, Hsu FT. Suppression of PKCδ/NF-κB signaling and apoptosis induction through extrinsic/intrinsic pathways are associated with magnolol-inhibited tumor progression in colorectal cancer In vitro and In vivo. Int J Mol Sci 2020; 21(10): 3527.
[http://dx.doi.org/10.3390/ijms21103527] [PMID: 32429376]
[182]
Mi C, Ma J, Wang KS, et al. Imperatorin suppresses proliferation and angiogenesis of human colon cancer cell by targeting HIF-1α via the mTOR/p70S6K/4E-BP1 and MAPK pathways. J Ethnopharmacol 2017; 203: 27-38.
[http://dx.doi.org/10.1016/j.jep.2017.03.033] [PMID: 28341244]
[183]
Zhang L, Zheng Y, Deng H, Liang L, Peng J. Aloperine induces G2/M phase cell cycle arrest and apoptosis in HCT116 human colon cancer cells. Int J Mol Med 2014; 33(6): 1613-20.
[http://dx.doi.org/10.3892/ijmm.2014.1718] [PMID: 24682388]
[184]
McNeill KA. Epidemiology of brain tumors. Neurol Clin 2016; 34(4): 981-98.
[http://dx.doi.org/10.1016/j.ncl.2016.06.014] [PMID: 27720005]
[185]
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: A hope for glioblastoma patients. Oncotarget 2018; 9(31): 22194-219.
[http://dx.doi.org/10.18632/oncotarget.25175] [PMID: 29774132]
[186]
Ye ZN, Yu MY, Kong LM, et al. Biflavoneginkgetin, a novel Wnt inhibitor, suppresses the growth of medulloblastoma. Nat Prod Bioprospect 2015; 5(2): 91-7.
[http://dx.doi.org/10.1007/s13659-015-0056-4] [PMID: 25821199]
[187]
Cao L, Qu D, Wang H, et al. Toosendanin exerts an anti-cancer effect in glioblastoma by inducing estrogen receptor β- and p53-mediated apoptosis. Int J Mol Sci 2016; 17(11): 1928.
[http://dx.doi.org/10.3390/ijms17111928] [PMID: 27869737]
[188]
Noman L, Oke-Altuntas F, Zellagui A. A novel benzimidazole and other constituents with antiproliferative and antioxidant properties from Thymelaeamicrophylla Coss.et Dur. Nat Prod Res 2017; 31: 2032-41.
[http://dx.doi.org/10.1080/14786419.2016.1274888] [PMID: 28105861]
[189]
Schötterl S, Hübner M, Armento A, et al. Viscumins functionally modulate cell motility-associated gene expression. Int J Oncol 2017; 50(2): 684-96.
[http://dx.doi.org/10.3892/ijo.2017.3838] [PMID: 28101577]
[190]
Meng X, Li Y, Li S, Gan RY, Li HB. Natural products for prevention and treatment of chemical-induced liver injuries. Compr Rev Food Sci Food Saf 2018; 17(2): 472-95.
[http://dx.doi.org/10.1111/1541-4337.12335] [PMID: 33350084]
[191]
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence. Oncotarget 2016; 7(32): 52517-29.
[http://dx.doi.org/10.18632/oncotarget.9593] [PMID: 27232756]
[192]
Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li HB. Dietary natural products for prevention and treatment of liver cancer. Nutrients 2016; 8(3): 156.
[http://dx.doi.org/10.3390/nu8030156] [PMID: 26978396]
[193]
Zhao Q, Xue Y, Wang J, et al. In vitro and In vivo anti-tumour activities of echinoside A and ds -echinoside A from Pearsonothuria graeffei. J Sci Food Agric 2012; 92(4): 965-74.
[http://dx.doi.org/10.1002/jsfa.4678] [PMID: 22012678]
[194]
Yan CM, Chai EQ, Cai HY, Miao GY, Ma W. Oleuropein induces apoptosis via activation of caspases and suppression of phosphatidylinositol 3-kinase/protein kinase B pathway in HepG2 human hepatoma cell line. Mol Med Rep 2015; 11(6): 4617-24.
[http://dx.doi.org/10.3892/mmr.2015.3266] [PMID: 25634350]
[195]
Yao C, Liu BB, Qian XD, et al. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity. OncoTargets Ther 2018; 11: 2017-28.
[http://dx.doi.org/10.2147/OTT.S154586] [PMID: 29670377]
[196]
Hui F, Qin X, Zhang Q, et al. Alpinia oxyphylla oil induces apoptosis of hepatocellular carcinoma cells via PI3K/Akt pathway In vitro and In vivo. Biomed Pharmacother 2019; 109: 2365-74.
[http://dx.doi.org/10.1016/j.biopha.2018.11.124] [PMID: 30551496]
[197]
García-Fernández LF, Losada A, Alcaide V, et al. Aplidin™ induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C δ. Oncogene 2002; 21(49): 7533-44.
[http://dx.doi.org/10.1038/sj.onc.1205972] [PMID: 12386816]
[198]
Ming Y, Zheng Z, Chen L, et al. Corilagin inhibits hepatocellular carcinoma cell proliferation by inducing G2/M phase arrest. Cell Biol Int 2013; 37(10): 1046-54.
[http://dx.doi.org/10.1002/cbin.10132] [PMID: 23686743]
[199]
Alsahafi E, Begg K, Amelio I, et al. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019; 10(8): 540.
[http://dx.doi.org/10.1038/s41419-019-1769-9] [PMID: 31308358]
[200]
Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol 2019; 16(11): 669-83.
[http://dx.doi.org/10.1038/s41571-019-0227-z] [PMID: 31189965]
[201]
Yang IH, Shin JA, Kim LH, Kwon KH, Cho SD. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells. J Clin Biochem Nutr 2016; 58(1): 40-7.
[http://dx.doi.org/10.3164/jcbn.15-7] [PMID: 26798196]
[202]
Kwak H-H, Kim I-R, Kim H-J, Park B-S, Yu S-B. α mangostin induces apoptosis and cell cycle arrest in oral squamous cell carcinoma cell. Evid Based Complement Altern Med 2016; p. 9060649.
[203]
De La Chapa JJ, Singha PK, Lee DR, Gonzales CB. Thymol inhibits oral squamous cell carcinoma growth via mitochondria-mediated apoptosis. J Oral Pathol Med 2018; 47(7): 674-82.
[http://dx.doi.org/10.1111/jop.12735] [PMID: 29777637]
[204]
Chattopadhyay I. Role of nutrigenetics and nutrigenomics in cancer chemoprevention. In: Pharmacotherapeutic Botanicals for Cancer Chemoprevention. Singapore: Springer 2020; pp. 167-88.
[http://dx.doi.org/10.1007/978-981-15-5999-0_7]
[205]
Katiyar S. Emerging phytochemicals for the prevention and treatment of head and neck cancer. Molecules 2016; 21(12): 1610.
[http://dx.doi.org/10.3390/molecules21121610] [PMID: 27886147]
[206]
Rawla P. Epidemiology of prostate cancer. World J Oncol 2019; 10(2): 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[207]
Salehi B, Fokou PVT, Yamthe LRT, et al. Phytochemicals in prostate cancer: From bioactive molecules to upcoming therapeutic agents. Nutrients 2019; 11(7): 1483.
[http://dx.doi.org/10.3390/nu11071483] [PMID: 31261861]
[208]
Zaidi S, Gandhi J, Joshi G, Smith NL, Khan SA. The anticancer potential of metformin on prostate cancer. Prostate Cancer Prostatic Dis 2019; 22(3): 351-61.
[http://dx.doi.org/10.1038/s41391-018-0085-2] [PMID: 30651580]
[209]
Shukla S, Shankar E, Fu P, MacLennan GT, Gupta S. Suppression of NF-κB and NF-κB-regulated gene expression by apigenin through IκBα and IKK pathway in TRAMP mice. PLoS One 2015; 10(9): e0138710.
[http://dx.doi.org/10.1371/journal.pone.0138710] [PMID: 26379052]
[210]
Zhu KC, Sun JM, Shen JG, et al. Afzelin exhibits anti-cancer activity against androgen-sensitive LNCaP and androgen-independent PC-3 prostate cancer cells through the inhibition of LIM domain kinase 1. Oncol Lett 2015; 10(4): 2359-65.
[http://dx.doi.org/10.3892/ol.2015.3619] [PMID: 26622852]
[211]
Akhtar N, Syed DN, Khan MI, Adhami VM, Mirza B, Mukhtar H. The pentacyclic triterpenoid, plectranthoic acid, a novel activator of AMPK induces apoptotic death in prostate cancer cells. Oncotarget 2016; 7(4): 3819-31.
[http://dx.doi.org/10.18632/oncotarget.6625] [PMID: 26683363]
[212]
Tan J, Jiang X, Yin G, et al. Anacardic acid induces cell apoptosis of prostatic cancer through autophagy by ER stress/DAPK3/Akt signaling pathway. Oncol Rep 2017; 38(3): 1373-82.
[http://dx.doi.org/10.3892/or.2017.5841] [PMID: 28731173]
[213]
Jeong MH, Ko H, Jeon H, et al. Delphinidin induces apoptosis via cleaved HDAC3-mediated p53 acetylation and oligomerization in prostate cancer cells. Oncotarget 2016; 7(35): 56767-80.
[http://dx.doi.org/10.18632/oncotarget.10790] [PMID: 27462923]
[214]
Hu M, Peng S, He Y, et al. Lycorine is a novel inhibitor of the growth and metastasis of hormone-refractory prostate cancer. Oncotarget 2015; 6(17): 15348-61.
[http://dx.doi.org/10.18632/oncotarget.3610] [PMID: 25915156]
[215]
Lall RK, Syed DN, Khan MI, et al. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis. Carcinogenesis 2016; 37(9): 918-28.
[http://dx.doi.org/10.1093/carcin/bgw071] [PMID: 27335141]
[216]
Adaramoye O, Erguen B, Nitzsche B, Höpfner M, Jung K, Rabien A. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells. Chem Biol Interact 2017; 274: 100-6.
[http://dx.doi.org/10.1016/j.cbi.2017.07.009] [PMID: 28709945]
[217]
Zeng S, Zhu B, Zeng J, Wu W, Jiang C. Zeylenone represses the progress of human prostate cancer by downregulating the Wnt/β- catenin pathway. Mol Med Rep 2018; 18(6): 5572-8.
[http://dx.doi.org/10.3892/mmr.2018.9564] [PMID: 30365080]
[218]
Núñez Selles AJ, Daglia M, Rastrelli L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors 2016; 42(5): 475-91.
[http://dx.doi.org/10.1002/biof.1299] [PMID: 27219221]
[219]
Elkady AI. Anethole inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and apoptosis. Anti-Cancer Agents Med. Chem Former Anticancer Agents Med Chem 2018; 18(2): 216-36.
[http://dx.doi.org/10.2174/1871520617666170725165717] [PMID: 28745237]
[220]
Xu Y, Zhu J, Lei Z, et al. Anti-proliferative effects of paeonol on human prostate cancer cell lines DU145 and PC-3. J Physiol Biochem 2017; 73(2): 157-65.
[http://dx.doi.org/10.1007/s13105-016-0537-x] [PMID: 27834040]
[221]
Kanwal N, Rasul A, Hussain G, et al. Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways. Food Chem Toxicol 2020; 143: 111570.
[http://dx.doi.org/10.1016/j.fct.2020.111570] [PMID: 32640345]
[222]
Ramamoorthy MD, Kumar A, Ayyavu M, Dhiraviam KN, Ayyau M. Reserpine induces apoptosis and cell cycle arrest in hormone independent prostate cancer cells through mitochondrial membrane potential failure. Anticancer Agents Med Chem 2019; 18(9): 1313-22.
[http://dx.doi.org/10.2174/1871520618666180209152215] [PMID: 29424320]
[223]
Royston KJ, Tollefsbol TO. The epigenetic impact of cruciferous vegetables on cancer prevention. Curr Pharmacol Rep 2015; 1(1): 46-51.
[http://dx.doi.org/10.1007/s40495-014-0003-9] [PMID: 25774338]
[224]
Doll R, Peto R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 1981; 66(6): 1192-308.
[http://dx.doi.org/10.1093/jnci/66.6.1192] [PMID: 7017215]
[225]
Kang B, Park H, Kim B. Anticancer activity and underlying mechanism of phytochemicals against multiple myeloma. Int J Mol Sci 2019; 20(9): 2302.
[http://dx.doi.org/10.3390/ijms20092302] [PMID: 31075954]
[226]
Wu Y, Giaisi M, Köhler R, Chen WM, Krammer PH, Li-Weber M. Rocaglamide breaks TRAIL-resistance in human multiple myeloma and acute T-cell leukemia In vivo in a mouse xenogtraft model. Cancer Lett 2017; 389: 70-7.
[http://dx.doi.org/10.1016/j.canlet.2016.12.010] [PMID: 27998762]
[227]
Ishii N, Araki K, Yokobori T, et al. Conophylline suppresses pancreatic cancer desmoplasia and cancer-promoting cytokines produced by cancer-associated fibroblasts. Cancer Sci 2019; 110(1): 334-44.
[http://dx.doi.org/10.1111/cas.13847] [PMID: 30353606]
[228]
Kim BH, Yi EH, Jee JG, et al. Tubulosine selectively inhibits JAK3 signalling by binding to the ATP-binding site of the kinase of JAK3. J Cell Mol Med 2020; 24(13): 7427-38.
[http://dx.doi.org/10.1111/jcmm.15362] [PMID: 32558259]
[229]
Karami A, Hamzeloo-Moghadam M, Yami A, Barzegar M, Mashati P, Gharehbaghian A. Antiproliferative effect of gaillardin from inula oculus-christi in human leukemic cells. Nutr Cancer 2020; 72(6): 1043-56.
[http://dx.doi.org/10.1080/01635581.2019.1665188] [PMID: 31544515]
[230]
Trivedi R, Maurya R, Mishra DP. Medicarpin, a legume phytoalexin sensitizes myeloid leukemia cells to TRAIL-induced apoptosis through the induction of DR5 and activation of the ROS-JNK-CHOP pathway. Cell Death Dis 2014; 5(10): e1465.
[http://dx.doi.org/10.1038/cddis.2014.429] [PMID: 25321472]
[231]
Uchihara Y, Tago K, Funakoshi-Tago M. The mechanisms of taxodione-induced apoptosis in BCR-ABL-positive leukemia cells. Nippon Yakurigaku Zasshi 2019; 153(4): 147-54.
[http://dx.doi.org/10.1254/fpj.153.147] [PMID: 30971653]
[232]
Wu C, Li M, Meng H, et al. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci China Life Sci 2019; 62(5): 640-7.
[http://dx.doi.org/10.1007/s11427-018-9461-5] [PMID: 30900169]
[233]
Chakkere Shivamadhu M, Srinivas BK, Jayarama S, Angatahalli Chandrashekaraiah S. Anti-cancer and anti-angiogenic effects of partially purified lectin from Praecitrullus fistulosus fruit on In vitro and In vivo model. Biomed Pharmacother 2017; 96: 1299-309.
[http://dx.doi.org/10.1016/j.biopha.2017.11.082] [PMID: 29174033]
[234]
Lee SR, Park JY, Yu JS, et al. Odisolane, a novel oxolane derivative, and antiangiogenic constituents from the fruits of mulberry (Morus alba L.). J Agric Food Chem 2016; 64(19): 3804-9.
[http://dx.doi.org/10.1021/acs.jafc.6b01461] [PMID: 27115720]
[235]
Yap VA, Loong BJ, Ting KN, et al. Hispidacine, an unusual 8,4′-oxyneolignan-alkaloid with vasorelaxant activity, and hispiloscine, an antiproliferative phenanthroindolizidine alkaloid, from Ficus hispida Linn. Phytochemistry 2015; 109: 96-102.
[http://dx.doi.org/10.1016/j.phytochem.2014.10.032] [PMID: 25468714]
[236]
Kim JE, Kim JH, Lee Y, et al. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase. Oncotarget 2016; 7(12): 14616-27.
[http://dx.doi.org/10.18632/oncotarget.7524] [PMID: 26910280]
[237]
Pal H, Katiyar S. Cryptolepine, a plant alkaloid, inhibits the growth of non-melanoma skin cancer cells through inhibition of topoisomerase and induction of DNA damage. Molecules 2016; 21(12): 1758.
[http://dx.doi.org/10.3390/molecules21121758] [PMID: 28009843]
[238]
Xu J, Chen Y, Yang R, et al. Cucurbitacin B inhibits gastric cancer progression by suppressing STAT3 activity. Arch Biochem Biophys 2020; 684: 108314.
[http://dx.doi.org/10.1016/j.abb.2020.108314] [PMID: 32088220]
[239]
Jiang L, Wang Y, Yin Q, et al. Phycocyanin: A potential drug for cancer treatment. J Cancer 2017; 8(17): 3416-29.
[http://dx.doi.org/10.7150/jca.21058] [PMID: 29151925]
[240]
Liang X, Xu C, Cao X, Wang W. Isovitexin suppresses cancer stemness property and induces apoptosis of osteosarcoma cells by disruption of The DNMT1/miR-34a/Bcl-2 axis. Cancer Manag Res 2019; 11: 8923-36.
[http://dx.doi.org/10.2147/CMAR.S222708] [PMID: 31686915]
[241]
Talib W. Melatonin and cancer hallmarks. Molecules 2018; 23(3): 518.
[http://dx.doi.org/10.3390/molecules23030518] [PMID: 29495398]
[242]
Xie X, Zu X, Liu F, et al. Purpurogallin is a novel mitogen-activated protein kinase kinase 1/2 inhibitor that suppresses esophageal squamous cell carcinoma growth In vitro and In vivo. Mol Carcinog 2019; 58(7): 1248-59.
[http://dx.doi.org/10.1002/mc.23007] [PMID: 31100197]
[243]
Xie H, Zhang T, Yang N, Li Z, Liu Y. Anticancer effects of Mahanimbine alkaloid on the human bladder cancer cells are due to the induction of G0/G1 cell cycle arrest, apoptosis and autophagy. J BUON 2020; 25(2): 1166-71.
[PMID: 32521922]
[244]
Tu S, Zhang XL, Wan HF, et al. Effect of taurine on cell proliferation and apoptosis human lung cancer A549 cells. Oncol Lett 2018; 15(4): 5473-80.
[http://dx.doi.org/10.3892/ol.2018.8036] [PMID: 29552188]
[245]
Kashyap D, Tuli HS, Yerer MB, et al. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. In: Seminars in Cancer Biology. Cambridge, MA, USA: Academic Press 2019.
[246]
Srinivasan M, Rajabi M, Mousa SA. Nanobiomaterials in cancer therapy. In: Nanobiomaterials in Cancer Therapy. Amsterdam, The Netherlands: Elsevier 2016; pp. 57-89.
[http://dx.doi.org/10.1016/B978-0-323-42863-7.00003-7]
[247]
Mousa DS, El-Far AH, Saddiq AA, Sudha T, Mousa SA. Nanoformulated bioactive compounds derived from different natural products combat pancreatic cancer cell proliferation. Int J Nanomedicine 2020; 15: 2259-68.
[http://dx.doi.org/10.2147/IJN.S238256] [PMID: 32280218]
[248]
Andima M, Costabile G, Isert L, Ndakala A, Derese S, Merkel O. Evaluation of β-Sitosterol loaded PLGA and PEG- PLA nanoparticles for effective treatment of breast cancer: Preparation, physicochemical characterization, and antitumor activity. Pharmaceutics 2018; 10(4): 232.
[http://dx.doi.org/10.3390/pharmaceutics10040232] [PMID: 30445705]
[249]
Feng J, Xu M, Wang J, et al. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials 2020; 241: 119907.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119907] [PMID: 32120315]
[250]
Liu Y, Gao D, Zhang X, et al. Antitumor drug effect of betulinic acid mediated by polyethylene glycol modified liposomes. Mater Sci Eng C 2016; 64: 124-32.
[http://dx.doi.org/10.1016/j.msec.2016.03.080] [PMID: 27127036]
[251]
Liu Y, Zhao L, Shen G, Chang R, Zhang Y, Yan X. Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced In vitro chemo and photothermal cancer therapy. Colloids Surf A Physicochem Eng Asp 2020; 598: 124805.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124805]
[252]
Ahmadi E, Zarghami N, Jafarabadi MA, et al. Enhanced anticancer potency by combination chemotherapy of HT-29 cells with biodegradable, pH-sensitive nanoparticles for co-delivery of hydroxytyrosol and doxorubicin. J Drug Deliv Sci Technol 2019; 51: 721-35.
[http://dx.doi.org/10.1016/j.jddst.2019.03.003]
[253]
Abdelaziz HM, Elzoghby AO, Helmy MW, Samaha MW, Fang JY, Freag MS. Liquid crystalline assembly for potential combinatorial chemo-herbal drug delivery to lung cancer cells. Int J Nanomedicine 2019; 14: 499-517.
[http://dx.doi.org/10.2147/IJN.S188335] [PMID: 30666110]
[254]
Xia Q, Ling L, Ismail M, et al. Paclitaxel encapsulated in artesunate-phospholipid liposomes for combinatorial delivery. J Drug Deliv Sci Technol 2019; 51: 372-82.
[http://dx.doi.org/10.1016/j.jddst.2019.03.010]
[255]
Wang S, Shao M, Zhong Z, et al. Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Deliv 2017; 24(1): 1791-800.
[http://dx.doi.org/10.1080/10717544.2017.1406558] [PMID: 29172759]
[256]
Bian Y, Guo D. Targeted therapy for hepatocellular carcinoma: Co-delivery of sorafenib and curcumin using lactosylated ph-responsive nanoparticles. Drug Des Devel Ther 2020; 14: 647-59.
[http://dx.doi.org/10.2147/DDDT.S238955] [PMID: 32109990]
[257]
Wang D, Zhou J, Chen R, et al. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials 2016; 100: 27-40.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.027] [PMID: 27240160]
[258]
Wang J, Muhammad N, Li T, et al. Hyaluronic acid-coated camptothecin nanocrystals for targeted drug delivery to enhance anticancer efficacy. Mol Pharm 2020; 17(7): 2411-25.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00161] [PMID: 32437163]
[259]
Gupta L, Sharma AK, Gothwal A, et al. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving In vivo pharmacokinetics. Int J Pharm 2017; 528(1-2): 88-99.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.073] [PMID: 28533175]
[260]
Ding J, Liang T, Min Q, Jiang L, Zhu JJ. “Stealth and fully-laden” drug carriers: Self-assembled nanogels encapsulated with epigallocatechin gallate and sirna for drug-resistant breast cancer therapy. ACS Appl Mater Interfaces 2018; 10(12): 9938-48.
[http://dx.doi.org/10.1021/acsami.7b19577] [PMID: 29436217]
[261]
Naeem A, Hu P, Yang M, et al. Natural products as anticancer agents: Current status and future perspectives. Molecules 2022; 27(23): 8367.
[http://dx.doi.org/10.3390/molecules27238367] [PMID: 36500466]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy