Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Letter Article

Mild and Efficient Synthesis of Para-Substituted 2-Hydroxymethyl Piperazine

Author(s): Zijian Liang, Liyuan Guo, Qian Li, Chunyan Liu, Chao Liu and Shi Wu*

Volume 21, Issue 9, 2024

Published on: 20 February, 2024

Page: [737 - 743] Pages: 7

DOI: 10.2174/0115701786283816240123103232

Price: $65

Abstract

2-Hydroxymethyl piperazine is a crucial structural unit and essential intermediate in the drug development process. However, there are few reported methods for synthesizing 2- hydroxymethyl piperazine substituted at position 5. Herein, the 2-hydroxymethyl piperazines are synthesized from serine methyl ester hydrochloride and N-Boc-L-amino acids through a four-step reaction of condensation, deprotection, cyclisation, and reduction. This synthetic route has several advantages, including mild reaction conditions, availability of reagents, non-racemic composition, and the potential for gram-scale synthesis. In this study, we present a mild and effective synthetic method for preparing para-substituted 2-hydroxymethyl piperazine.

Next »
Graphical Abstract

[1]
Patel, R.; Park, S. Mini Rev. Med. Chem., 2013, 13(11), 1579-1601.
[http://dx.doi.org/10.2174/13895575113139990073] [PMID: 23895191]
[2]
Shaquiquzzaman, M.; Verma, G.; Marella, A.; Akhter, M.; Akhtar, W.; Khan, M.F.; Tasneem, S.; Alam, M.M. Eur. J. Med. Chem., 2015, 102, 487-529.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.026] [PMID: 26310894]
[3]
Magriotis, P.A. RSC Med. Chem., 2020, 11(7), 745-759. Available from:https://pubs.rsc.org/en/content/articlelanding/2020/md/d0md00053a
[4]
Chessari, G.; Buck, I.M.; Day, J.E.H.; Day, P.J.; Iqbal, A.; Johnson, C.N.; Lewis, E.J.; Martins, V.; Miller, D.; Reader, M.; Rees, D.C.; Rich, S.J.; Tamanini, E.; Vitorino, M.; Ward, G.A.; Williams, P.A.; Williams, G.; Wilsher, N.E.; Woolford, A.J.A. J. Med. Chem., 2015, 58(16), 6574-6588.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00706] [PMID: 26218264]
[5]
Douglas, J.J.; Tatton, M.R.; de Bruin, D.; Buttar, D.; Cook, C.; Dai, K.; Ferrer, C.; Leslie, K.; Morrison, J.; Munday, R.; Ronson, T.O.; Zhao, H. J. Org. Chem., 2022, 87(4), 2075-2086.
[http://dx.doi.org/10.1021/acs.joc.1c01736] [PMID: 34652911]
[6]
Sandanayaka, V.; Mamat, B.; Bhagat, N.; Bedell, L.; Halldorsdottir, G.; Sigthorsdottir, H.; Andrésson, Þ.; Kiselyov, A.; Gurney, M.; Singh, J. Bioorg. Med. Chem. Lett., 2010, 20(9), 2851-2854.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.047] [PMID: 20371179]
[7]
Wacker, D.A.; Santella, J.B., III; Gardner, D.S.; Varnes, J.G.; Estrella, M.; DeLucca, G.V.; Ko, S.S.; Tanabe, K.; Watson, P.S.; Welch, P.K.; Covington, M.; Stowell, N.C.; Wadman, E.A.; Davies, P.; Solomon, K.A.; Newton, R.C.; Trainor, G.L.; Friedman, S.M.; Decicco, C.P.; Duncia, J.V. Bioorg. Med. Chem. Lett., 2002, 12(13), 1785-1789.
[http://dx.doi.org/10.1016/S0960-894X(02)00206-8] [PMID: 12067561]
[8]
Gettys, K.; Ye, Z.; Dai, M. Synthesis, 2017, 49(12), 2589-2604.
[http://dx.doi.org/10.1055/s-0036-1589491]
[9]
Wang, Y.; Busch-Petersen, J.; Wang, F.; Kiesow, T.J.; Graybill, T.L.; Jin, J.; Yang, Z.; Foley, J.J.; Hunsberger, G.E.; Schmidt, D.B.; Sarau, H.M.; Capper-Spudich, E.A.; Wu, Z.; Fisher, L.S.; McQueney, M.S.; Rivero, R.A.; Widdowson, K.L. Bioorg. Med. Chem. Lett., 2009, 19(1), 114-118.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.008] [PMID: 19014886]
[10]
Johnson, C.N.; Ahn, J.S.; Buck, I.M.; Chiarparin, E.; Day, J.E.H.; Hopkins, A.; Howard, S.; Lewis, E.J.; Martins, V.; Millemaggi, A.; Munck, J.M.; Page, L.W.; Peakman, T.; Reader, M.; Rich, S.J.; Saxty, G.; Smyth, T.; Thompson, N.T.; Ward, G.A.; Williams, P.A.; Wilsher, N.E.; Chessari, G. J. Med. Chem., 2018, 61(16), 7314-7329.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00900] [PMID: 30091600]
[11]
Kettle, J.G.; Bagal, S.K.; Bickerton, S.; Bodnarchuk, M.S.; Breed, J.; Carbajo, R.J.; Cassar, D.J.; Chakraborty, A.; Cosulich, S.; Cumming, I.; Davies, M.; Eatherton, A.; Evans, L.; Feron, L.; Fillery, S.; Gleave, E.S.; Goldberg, F.W.; Harlfinger, S.; Hanson, L.; Howard, M.; Howells, R.; Jackson, A.; Kemmitt, P.; Kingston, J.K.; Lamont, S.; Lewis, H.J.; Li, S.; Liu, L.; Ogg, D.; Phillips, C.; Polanski, R.; Robb, G.; Robinson, D.; Ross, S.; Smith, J.M.; Tonge, M.; Whiteley, R.; Yang, J.; Zhang, L.; Zhao, X. J. Med. Chem., 2020, 63(9), 4468-4483.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01720] [PMID: 32023060]
[12]
Tullberg, M.; Grøtli, M.; Luthman, K. Tetrahedron, 2006, 62(31), 7484-7491.
[http://dx.doi.org/10.1016/j.tet.2006.05.010]
[13]
Han, S.Y.; Kim, Y.A. Tetrahedron, 2004, 60(11), 2447-2467.
[http://dx.doi.org/10.1016/j.tet.2004.01.020]
[14]
Bodanszky,; Miklos, Side Reactions in Peptide Synthesis. ; Springer Berlin Heidelberg, 1993.
[15]
Isidro-Llobet, A.; Álvarez, M.; Albericio, F. Chem. Rev., 2009, 109(6), 2455-2504.
[http://dx.doi.org/10.1021/cr800323s] [PMID: 19364121]
[16]
Li, Y.; Li, F.; Zhu, Y.; Li, X.; Zhou, Z.; Liu, C.; Zhang, W.; Tang, M. Struct. Chem., 2016, 27(4), 1165-1173.
[http://dx.doi.org/10.1007/s11224-016-0740-y]
[17]
Danger, G.; Boiteau, L.; Cottet, H.; Pascal, R. J. Am. Chem. Soc., 2006, 128(23), 7412-7413.
[http://dx.doi.org/10.1021/ja061339+] [PMID: 16756274]
[18]
Berezhkovskiy, L.; Pham, S.; Reich, E.P.; Deshpande, S. J. Pept. Res., 1999, 54(2), 112-119.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00084.x] [PMID: 10461745]
[19]
Min Yoon, N.; Tae Cho, B. Tetrahedron Lett., 1982, 23(24), 2475-2478.
[http://dx.doi.org/10.1016/S0040-4039(00)87372-4]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy