Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Part 2, Studies on the Synthesis of Quinolone Derivatives with their Biological Activity

Author(s): Nishtha Saxena, Swapnil Shankhdhar, Anil Kumar and Nivedita Srivastava*

Volume 28, Issue 3, 2024

Published on: 29 January, 2024

Page: [185 - 212] Pages: 28

DOI: 10.2174/0113852728271272231124042138

Price: $65

Abstract

Quinolones are among the class of antibiotics that are used most frequently worldwide and are used for treating a variety of bacterial diseases in humans. Recent research has shown that new, improved analogues of quinolones are being used as anticancer, antifungal, antiviral and other antimicrobial agents. In an earlier review (Part 1), we discussed the synthesis and antibacterial activity of quinolones in detail. This review focuses on the detailed study of newly synthesized quinolone compounds and their biological activity in different dimensions.

Graphical Abstract

[1]
Senerovic, L.; Opsenica, D.; Moric, I.; Aleksic, I.; Spasić, M.; Vasiljevic, B. Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. In: Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology; Donelli, G., Ed.; Springer: Cham, 2019; p. 1282.
[http://dx.doi.org/10.1007/5584_2019_428]
[2]
Emmerson, A.M.; Jones, A.M. The quinolones: Decades of development and use. J. Antimicrob. Chemother., 2003, 51(90001), 13-20.
[http://dx.doi.org/10.1093/jac/dkg208] [PMID: 12702699]
[3]
Andersson, M.I.; MacGowan, A.P. Development of the quinolones. J. Antimicrob. Chemother., 2003, 51(90001), 1-11.
[http://dx.doi.org/10.1093/jac/dkg212] [PMID: 12702698]
[4]
Mitscher, L.A. Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. Chem. Rev., 2005, 105(2), 559-592.
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
[5]
Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. MedChemComm, 2019, 10(10), 1719-1739.
[http://dx.doi.org/10.1039/C9MD00120D] [PMID: 31803393]
[6]
King, D.E.; Malone, R.; Lilley, S.H. New classification and update on the quinolone antibiotics. Am. Fam. Physician, 2000, 61(9), 2741-2748.
[PMID: 10821154]
[7]
Idowu, T.; Schweizer, F. Ubiquitous nature of fluoroquinolones: The oscillation between antibacterial and anticancer activities. Antibiotics, 2017, 6(4), 26.
[http://dx.doi.org/10.3390/antibiotics6040026] [PMID: 29112154]
[8]
Kumar, A.; Saxena, N.; Mehrotra, A.; Srivastava, N. Studies on the synthesis of quinolone derivatives with their antibacterial activity (Part 1). Curr. Org. Chem., 2020, 24(8), 817-854.
[http://dx.doi.org/10.2174/1385272824999200427082108]
[9]
von Rosenstiel, N.; Adam, D. Quinolone antibacterials. Drugs, 1994, 47(6), 872-901.
[http://dx.doi.org/10.2165/00003495-199447060-00003] [PMID: 7521829]
[10]
Drlica, K.; Malik, M.; Kerns, R.J.; Zhao, X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother., 2008, 52(2), 385-392.
[http://dx.doi.org/10.1128/AAC.01617-06] [PMID: 17724149]
[11]
Makhanya, T.R.; Gengan, R.M.; Pandian, P.; Chuturgoon, A.A.; Tiloke, C.; Atar, A. Phosphotungstic acid catalyzed one pot synthesis of 4,8,8-Trimethyl-5-phenyl-5,5a,8,9-tetrahydrobenzo[b] [1,8]Naphthyridin-6(7H)-one derivatives and their biological evaluation against A549 lung cancer cells. J. Het. Chem., 2018, 55(5), 1193-1204.
[http://dx.doi.org/10.1002/jhet.3153]
[12]
Hawtin, R.E.; Stockett, D.E.; Byl, J.A.W.; McDowell, R.S.; Tan, N.; Arkin, M.R.; Conroy, A.; Yang, W.; Osheroff, N.; Fox, J.A. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One, 2010, 5(4), e10186.
[http://dx.doi.org/10.1371/journal.pone.0010186] [PMID: 20419121]
[13]
Batalha, P.; Vieira de Souza, M.C.; Peña-Cabrera, E.; Cruz, D.; Santos, B.F. Quinolones in the search for new anticancer agents. Curr. Pharm. Des., 2016, 22(39), 6009-6020.
[http://dx.doi.org/10.2174/1381612822666160715115025] [PMID: 27426131]
[14]
Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed. Pharmacother., 2019, 111, 934-946.
[http://dx.doi.org/10.1016/j.biopha.2018.12.119] [PMID: 30841473]
[15]
Richter, S.; Parolin, C.; Palumbo, M.; Palù, G. Antiviral properties of quinolone-based drugs. Curr. Drug Targets Infect. Disord., 2004, 4(2), 111-116.
[http://dx.doi.org/10.2174/1568005043340920] [PMID: 15180459]
[16]
Zhang, B. Quinolone derivatives and their antifungal activities: An overview. Arch. Pharm., 2019, 352(5), 1800382.
[http://dx.doi.org/10.1002/ardp.201800382] [PMID: 31021468]
[17]
Hu, Y.Q.; Zhang, S.; Xu, Z.; Lv, Z.S.; Liu, M.L.; Feng, L.S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 2017, 141(141), 335-345.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.050] [PMID: 29031077]
[18]
Bremner, J.; Ambrus, J.; Samosorn, S. Dual action-based approaches to antibacterial agents. Curr. Med. Chem., 2007, 14(13), 1459-1477.
[http://dx.doi.org/10.2174/092986707780831168] [PMID: 17584056]
[19]
Pokrovskaya, V.; Baasov, T. Dual-acting hybrid antibiotics: A promising strategy to combat bacterial resistance. Expert Opin. Drug Discov., 2010, 5(9), 883-902.
[http://dx.doi.org/10.1517/17460441.2010.508069] [PMID: 22823262]
[20]
Chepyala, N.K.R.; Durgi, R.R.; Tatini, L.; Subbaraju, G.V.; Hindupur, R.M.; Dhanvada, M.R. Quinolone dimers as potential antibacterial agents. Lett. Org. Chem., 2011, 8, 637.
[http://dx.doi.org/10.2174/157017811799304322]
[21]
Özyanik, M.; Demi̇rci̇, S.; Bektaş, H.; Demi̇rbaş, N.; Demi̇rbaş, A.; Karaoğlu, Ş.A. Preparation and antimicrobial activity evaluation of some quinoline derivatives containing an azole nucleus. Turk. J. Chem., 2012, 36, 233-246.
[http://dx.doi.org/10.3906/kim-1109-9]
[22]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.031] [PMID: 19647905]
[23]
Kassab, A.E.; Gedawy, E.M. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Eur. J. Med. Chem., 2018, 150, 403-418.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.026] [PMID: 29547830]
[24]
Cramariuc, O.; Rog, T.; Javanainen, M.; Monticelli, L.; Polishchuk, A.V.; Vattulainen, I. Mechanism for translocation of fluoroquinolones across lipid membranes. Biochim. Biophys. Acta Biomembr., 2012, 1818(11), 2563-2571.
[http://dx.doi.org/10.1016/j.bbamem.2012.05.027] [PMID: 22664062]
[25]
Mikirova, N.; Riordan, H.D.; Jackson, J.A.; Wong, K.; Miranda-Massari, J.R.; Gonzalez, M.J. Erythrocyte membrane fatty acid composition in cancer patients. P. R. Health Sci. J., 2004, 23(2), 107-113.
[PMID: 15377058]
[26]
Bradley, M.O.; Webb, N.L.; Anthony, F.H.; Devanesan, P.; Witman, P.A.; Hemamalini, S.; Chander, M.C.; Baker, S.D.; He, L.; Horwitz, S.B.; Swindell, C.S. Tumor targeting by covalent conjugation of a natural fatty acid to paclitaxel. Clin. Cancer Res., 2001, 7(10), 3229-3238.
[PMID: 11595719]
[27]
Chrzanowska, A.; Roszkowski, P.; Bielenica, A.; Olejarz, W.; Struga, M. Anticancer and antimicrobial effects of novel ciprofloxacin fatty acids conjugates. Eur. J. Med. Chem., 2020, 185, 111810.
[http://dx.doi.org/10.1016/j.ejmech.2019.111810] [PMID: 31678743]
[28]
Ezelarab, H.A.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.D.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm., 2018, 351(9), 1800141.
[http://dx.doi.org/10.1002/ardp.201800141] [PMID: 30048015]
[29]
Emami, S.; Shafiee, A.; Fourumadi, A. Quinolones: Recent structural and clinical developments. Iran. J. Pharm. Res., 2005, 4(3), 123-136.
[http://dx.doi.org/10.22037/IJPR.2010.628]
[30]
Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother., 1972, 2(1), 23-28.
[http://dx.doi.org/10.1128/AAC.2.1.23] [PMID: 4670656]
[31]
Ōmura, S.; Katagiri, M.; Awaya, J.; Furukawa, T.; Umezawa, I.; Ōi, N.; Mizoguchi, M.; Aoki, B.; Shindo, M. Relationship between the structures of fatty acid amide derivatives and their antimicrobial activities. Antimicrob. Agents Chemother., 1974, 6(2), 207-215.
[http://dx.doi.org/10.1128/AAC.6.2.207] [PMID: 15828193]
[32]
Venepally, V.; Prasad, R.B.N.; Poornachandra, Y.; Kumar, C.G.; Jala, R.C.R. Synthesis of novel ethyl 1-ethyl-6-fluoro-7-(fatty amido)-1,4-dihydro-4-oxoquinoline-3-carboxylate derivatives and their biological evaluation. Bioorg. Med. Chem. Lett., 2016, 26(2), 613-617.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.063] [PMID: 26646219]
[33]
Lungu, I.A.; Moldovan, O.L.; Biriș, V.; Rusu, A. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance. Pharmaceutics, 2022, 14(8), 1749.
[http://dx.doi.org/10.3390/pharmaceutics14081749] [PMID: 36015376]
[34]
Qandil, A.; Al-Zoubi, L.; Al-Bakri, A.; Amawi, H.; Al-Balas, Q.; Alkatheri, A.; Albekairy, A. Synthesis, antibacterial evaluation and QSAR of α-substituted-n4-acetamides of ciprofloxacin and norfloxacin. Antibiotics, 2014, 3(3), 244-269.
[http://dx.doi.org/10.3390/antibiotics3030244] [PMID: 27025747]
[35]
Dennis Hall, C.; Panda, S.S. Advances in heterocyclic chemistry, heterocyclic chemistry in the 21st century: A tribute to alan katritzsky. In: The Benzotriazole Story, Advances in Heterocyclic Chemistry; Eric, F.V.S.; Christopher, A.R., Eds.; , 2016; 119, pp. 1-23.
[http://dx.doi.org/10.1016/bs.aihch.2016.01.001]
[36]
Salahuddin; Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compounds. Arab. J. Chem., 2017, 10, S157-S173.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.017]
[37]
Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2016, 25(2), 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5]
[38]
Mantu, D.; Antoci, V.; Moldoveanu, C.; Zbancioc, G.; Mangalagiu, I.I. Hybrid imidazole (Benzimidazole)/Pyridine (Quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. J. Enzyme Inhib. Med. Chem., 2016, 31(S2), 96-103.
[http://dx.doi.org/10.1080/14756366.2016.1190711]
[39]
Wang, Y.N.; Bheemanaboina, R.R.Y.; Gao, W.W.; Kang, J.; Cai, G.X.; Zhou, C.H. Discovery of benzimidazole-quinolone hybrids as new cleaving agents toward drug‐resistant Pseudomonas aeruginosa DNA. ChemMedChem, 2018, 13(10), 1004-1017.
[http://dx.doi.org/10.1002/cmdc.201700739] [PMID: 29512892]
[40]
Zhang, L.; Addla, D.; Ponmani, J.; Wang, A.; Xie, D.; Wang, Y.N.; Zhang, S.L.; Geng, R.X.; Cai, G.X.; Li, S.; Zhou, C.H. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents. Eur. J. Med. Chem., 2016, 111, 160-182.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.052] [PMID: 26871658]
[41]
Tahir, S.; Mahmood, T.; Dastgir, F.; Haq, I.; Waseem, A.; Rashid, U. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria. Eur. J. Med. Chem., 2019, 166, 224-231.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.062] [PMID: 30711832]
[42]
Panda, S.S.; Liaqat, S.; Girgis, A.S.; Samir, A.; Hall, C.D.; Katritzky, A.R. Novel antibacterial active quinolone-fluoroquinolone conjugates and 2D-QSAR studies. Bioorg. Med. Chem. Lett., 2015, 25(18), 3816-3821.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.077] [PMID: 26253630]
[43]
Zhang, L.; Kumar, K.V.; Geng, R.X.; Zhou, C.H. Design and biological evaluation of novel quinolone-based metronidazole derivatives as potent Cu2+ mediated DNA-targeting antibacterial agents. Bioorg. Med. Chem. Lett., 2015, 25(17), 3699-3705.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.041] [PMID: 26149183]
[44]
Fan, Y.L.; Cheng, X.W.; Wu, J.B.; Liu, M.; Zhang, F.Z.; Xu, Z.; Feng, L.S. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview. Eur. J. Med. Chem., 2018, 146, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.039] [PMID: 29360043]
[45]
Kochi, A. The global tuberculosis situation and the new control strategy of the World Health Organization. 1991. 2001. Available from: https://apps.who.int/iris/handle/10665/268234
[46]
Lowther, J.; Bryskier, A. Fluoroquinolones and tuberculosis. Expert Opin. Investig. Drugs, 2002, 11(2), 233-258.
[http://dx.doi.org/10.1517/13543784.11.2.233] [PMID: 11829714]
[47]
Takiff, H.; Guerrero, E. Current prospects for the fluoroquinolones as first-lien tuberculosis therapy. Antimicrob. Agents Chemother., 2011, 55(12), 5421-5429.
[http://dx.doi.org/10.1128/AAC.00695-11]
[48]
Hong, W.D.; Gibbons, P.D.; Leung, S.C.; Amewu, R.; Stocks, P.A.; Stachulski, A.; Horta, P.; Cristiano, M.L.S.; Shone, A.E.; Moss, D.; Ardrey, A.; Sharma, R.; Warman, A.J.; Bedingfield, P.T.P.; Fisher, N.E.; Aljayyoussi, G.; Mead, S.; Caws, M.; Berry, N.G.; Ward, S.A.; Biagini, G.A.; O’Neill, P.M.; Nixon, G.L. Rational design, synthesis, and biological evaluation of heterocyclic quinolones targeting the respiratory chain of Mycobacterium tuberculosis. J. Med. Chem., 2017, 60(9), 3703-3726.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01718] [PMID: 28304162]
[49]
Mohammed, A.A.M.; Suaifan, G.A.R.Y.; Shehadeh, M.B.; Okechukwu, P.N. Design, synthesis and antimicrobial evaluation of novel glycosylated-fluoroquinolones derivatives. Eur. J. Med. Chem., 2020, 202, 112513.
[http://dx.doi.org/10.1016/j.ejmech.2020.112513] [PMID: 32623216]
[50]
Applewhite, T.H.; Nelson, J.S. Preparation of amides. US Patent 3264281A, 1966.
[51]
Kim, S.; Lee, J.I.; Kim, Y.C. A simple and mild esterification method for carboxylic acids using mixed carboxylic-carbonic anhydrides. J. Org. Chem., 1985, 50(5), 560-565.
[http://dx.doi.org/10.1021/jo00205a004]
[52]
Fairweather, J.K.; Liu, L.; Karoli, T.; Ferro, V. Synthesis of disaccharides containing 6-deoxy-α-L-talose as potential heparan sulfate mimetics. Molecules, 2012, 17(8), 9790-9802.
[http://dx.doi.org/10.3390/molecules17089790] [PMID: 22895025]
[53]
Wang, R.; Xu, K.; Shi, W. Quinolone derivatives: Potential anti‐HIV agent-development and application. Arch. Pharm. (Weinheim), 2019, 352(9), 1900045.
[http://dx.doi.org/10.1002/ardp.201900045] [PMID: 31274223]
[54]
Jassem, A.M.; Dhumad, A.M.; Almashal, F.A.; Alshawi, J.M. Microwave-assisted synthesis, molecular docking and anti-HIV activities of some drug-like quinolone derivatives. Med. Chem. Res., 2020, 29(6), 1067-1076.
[http://dx.doi.org/10.1007/s00044-020-02546-z]
[55]
Marra, R.K.F.; Kümmerle, A.E.; Guedes, G.P.; Barros, C.S.; Gomes, R.S.P.; Santos, C.C.C.; Paixão, I.C.N.P.; Neves, A.P. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(2), 126881.
[http://dx.doi.org/10.1016/j.bmcl.2019.126881]
[56]
Pei, D.; Zhang, F.; Liu, J.; Zhang, D.L.; Yang, R.; Zhong, L.K.; Tan, C.X.; Xu, T.M. Synthesis and fungicidal activities of 2,3‐dimethyl‐4‐(1‐acyloxy)alkoxy‐6‐tert‐butyl‐8‐fluoroquinolines. J. Heterocycl. Chem., 2019, 56(4), 1383-1387.
[http://dx.doi.org/10.1002/jhet.3515]
[57]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[58]
Chu, X.M.; Wang, C.; Liu, W.; Liang, L.L.; Gong, K.K.; Zhao, C.Y.; Sun, K.L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem., 2019, 161, 101-117.
[59]
Arora, D.; Dwivedi, J.; Arora, S.; Kumar, S.; Kishore, D. Organocatalyzed synthesis and antibacterial activity of novel quinolino annulated analogues of azepinones. J. Heterocycl. Chem., 2018, 55(9), 2178-2187.
[http://dx.doi.org/10.1002/jhet.3260]
[60]
Sivaswami, T.S.; Iyer, B.H. Studies with methone: Part I. Curr. Sci., 1950, 19(6), 180-181.
[PMID: 15427365]
[61]
Susse, M.; Johne, S. Quinazoline carboxylic-acids. 6. synthesis of substituted 2-amino-1,4-dihydrochinazoline-4-on-1-yl-acetic acid-esters. Z. Chem., 1985, 25(8), 286-287.
[http://dx.doi.org/10.1002/zfch.19850250804]
[62]
Kesten, S.J.; Degnan, M.J.; Hung, J.; McNamara, D.J.; Ortwine, D.F.; Uhlendorf, S.E.; Werbel, L.M. Antimalarial drugs. 64. Synthesis and antimalarial properties of 1-imino derivatives of 7-chloro-3-substituted-3,4-dihydro-1,9 92H, 10H)-acridineones and related structure. J. Med. Chem., 1992, 35(19), 3429-3447.
[http://dx.doi.org/10.1021/jm00097a001] [PMID: 1404226]
[63]
Wu, C.; Huang, P.; Sun, Z.; Lin, M.; Jiang, Y.; Tong, J.; Ge, C. Synthesis of 4-quinolones via triflic anhydride-mediated intramolecular Houben-Hoesch reaction of β-arylamino acrylonitriles. Tetrahedron, 2016, 72(11), 1461-1466.
[http://dx.doi.org/10.1016/j.tet.2016.01.051]
[64]
Sommen, G.; Comel, A.; Kirsch, G. Preparation of thieno[2,3-b]pyrroles starting from ketene-N,S-acetals. Tetrahedron, 2003, 59(9), 1557-1564.
[http://dx.doi.org/10.1016/S0040-4020(03)00054-1]
[65]
Wolfbeis, O.S. β,β‐Diacyl‐enamine und‐enole, 9: Zur Darstellung von Aminomethylenderivaten offenkettiger CH2‐acider Verbindungen. Chem. Ber., 1981, 114(11), 3471-3484.
[http://dx.doi.org/10.1002/cber.19811141102]
[66]
Andriollo, P.; Hind, C.K.; Picconi, P.; Nahar, K.S.; Jamshidi, S.; Varsha, A.; Clifford, M.; Sutton, J.M.; Rahman, K.M. C8-Linked pyrrolobenzodiazepine monomers with inverted building blocks show selective activity against multidrug resistant gram-positive bacteria. ACS Infect. Dis., 2018, 4(2), 158-174.
[http://dx.doi.org/10.1021/acsinfecdis.7b00130] [PMID: 29260545]
[67]
Hadjivassileva, T.; Thurston, D.E.; Taylor, P.W. Pyrrolobenzodiazepine dimers: novel sequence-selective, DNA-interactive, cross-linking agents with activity against Gram-positive bacteria. J. Antimicrob. Chemother., 2005, 56(3), 513-518.
[http://dx.doi.org/10.1093/jac/dki256] [PMID: 16024592]
[68]
Mantaj, J.; Jackson, P.J.M.; Rahman, K.M.; Thurston, D.E. From anthramycin to pyrrolobenzodiazepine (PBD)‐containing antibody-drug conjugates (ADCs). Angew. Chem. Int. Ed., 2017, 56(2), 462-488.
[http://dx.doi.org/10.1002/anie.201510610] [PMID: 27862776]
[69]
Rahman, K.M.; Rosado, H.; Moreira, J.B.; Feuerbaum, E.A.; Fox, K.R.; Stecher, E.; Howard, P.W.; Gregson, S.J.; James, C.H.; de la Fuente, M.; Waldron, D.E.; Thurston, D.E.; Taylor, P.W. Antistaphylococcal activity of DNA-interactive pyrrolobenzodiazepine (PBD) dimers and PBD-biaryl conjugates. J. Antimicrob. Chemother., 2012, 67(7), 1683-1696.
[http://dx.doi.org/10.1093/jac/dks127] [PMID: 22547662]
[70]
Kotecha, M.; Kluza, J.; Wells, G.; O’Hare, C.C.; Forni, C.; Mantovani, R.; Howard, P.W.; Morris, P.; Thurston, D.E.; Hartley, J.A.; Hochhauser, D. Inhibition of DNA binding of the NF-Y transcription factor by the pyrrolobenzodiazepine-polyamide conjugate GWL-78. Mol. Cancer Ther., 2008, 7(5), 1319-1328.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0475] [PMID: 18483319]
[71]
Thurston, D.E.; Bose, D.S. Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines. Chem. Rev., 1994, 94(2), 433-465.
[http://dx.doi.org/10.1021/cr00026a006]
[72]
Cipolla, L.; Araújo, A.C.; Airoldi, C.; Bini, D. Pyrrolo[2,1-c][1,4]benzodiazepine as a scaffold for the design and synthesis of anti-tumour drugs. Anticancer. Agents Med. Chem., 2009, 9(1), 1-31.
[http://dx.doi.org/10.2174/187152009787047743] [PMID: 19149479]
[73]
Picconi, P.; Jeeves, R.; Moon, C.W.; Jamshidi, S.; Nahar, K.S.; Laws, M.; Bacon, J.; Rahman, K.M. Noncytotoxic pyrrolobenzodiazepine-ciprofloxacin conjugate with activity against Mycobacterium tuberculosis. ACS Omega, 2019, 4(25), 20873-20881.
[http://dx.doi.org/10.1021/acsomega.9b00834] [PMID: 31867477]
[74]
Rahman, K.M.; Jackson, P.J.M.; James, C.H.; Basu, B.P.; Hartley, J.A.; de la Fuente, M.; Schatzlein, A.; Robson, M.; Pedley, R.B.; Pepper, C.; Fox, K.R.; Howard, P.W.; Thurston, D.E. GC-targeted C8-linked pyrrolobenzodiazepine-biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models. J. Med. Chem., 2013, 56(7), 2911-2935.
[http://dx.doi.org/10.1021/jm301882a] [PMID: 23514599]
[75]
Gao, F.; Zhang, X.; Wang, T.; Xiao, J. Quinolone hybrids and their anti-cancer activities: An overview. Eur. J. Med. Chem., 2019, 165, 59-79.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.017] [PMID: 30660827]
[76]
Abdel-Aziz, M.; Park, S.E.; Abuo-Rahma, G.E.D.A.A.; Sayed, M.A.; Kwon, Y. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: Synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. Eur. J. Med. Chem., 2013, 69, 427-438.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.040] [PMID: 24090914]
[77]
Yadav, V.; Varshney, P.; Sultana, S.; Yadav, J.; Saini, N. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer, 2015, 15(1), 581.
[http://dx.doi.org/10.1186/s12885-015-1560-y] [PMID: 26260159]
[78]
Yu, F.; Zhang, Z.; Li, W.; Tian, H.; Xu, J.; Bao, Y. Synthesis and evaluation of moxifloxacin derivatives for effects on proliferation and apoptosis of NCI-H1299 cells. Tetrahedron Lett., 2020, 61(21), 151873.
[http://dx.doi.org/10.1016/j.tetlet.2020.151873]
[79]
Claudio Viegas-Junior; Danuello, A.; da Silva, B.V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[80]
Sunil, R.; Pal, S.; Jayashree, A. Molecular hybridization - An emanating tool in drug design. Med. Chem., 2019, 9, 93-95.
[81]
Perrone, M.G.; Vitale, P.; Panella, A.; Fortuna, C.G.; Scilimati, A. General role of the amino and methylsulfamoyl groups in selective cyclooxygenase(COX)-1 inhibition by 1,4-diaryl-1,2,3-triazoles and validation of a predictive pharmacometric PLS model. Eur. J. Med. Chem., 2015, 94(94), 252-264.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.049] [PMID: 25768707]
[82]
Sambasiva Rao, P.; Kurumurthy, C.; Veeraswamy, B.; Santhosh Kumar, G.; Poornachandra, Y.; Ganesh Kumar, C.; Vasamsetti, S.B.; Kotamraju, S.; Narsaiah, B. Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity. Eur. J. Med. Chem., 2014, 80(80), 184-191.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.052] [PMID: 24780595]
[83]
Maračić, S.; Kraljević, T.G.; Paljetak, H.Č.; Perić, M.; Matijašić, M.; Verbanac, D.; Cetina, M.; Raić-Malić, S. 1,2,3-Triazole pharmacophore-based benzofused nitrogen/sulfur heterocycles with potential anti-Moraxella catarrhalis activity. Bioorg. Med. Chem., 2015, 23(23), 7448-7463.
[http://dx.doi.org/10.1016/j.bmc.2015.10.042] [PMID: 26578325]
[84]
Mareddy, J.; Nallapati, S.B.; Anireddy, J.; Devi, Y.P.; Mangamoori, L.N.; Kapavarapu, R.; Pal, S. Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells. Bioorg. Med. Chem. Lett., 2013, 23(24), 6721-6727.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.035] [PMID: 24215890]
[85]
Tiberi, S.; Muñoz-Torrico, M.; Duarte, R.; Dalcolmo, M.; D’Ambrosio, L.; Migliori, G.B. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology, 2018, 24(2), 86-98.
[http://dx.doi.org/10.1016/j.rppnen.2017.10.009]
[86]
Carta, A.; Bua, A.; Corona, P.; Piras, S.; Briguglio, I.; Molicotti, P.; Zanetti, S.; Laurini, E.; Aulic, S.; Fermeglia, M.; Pricl, S. Design, synthesis and antitubercular activity of 4-alkoxy-triazoloquinolones able to inhibit the M. tuberculosis DNA gyrase. Eur. J. Med. Chem., 2019, 161, 399-415.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.031] [PMID: 30384044]
[87]
Shen, Z.; Xu, W.; Yu, J.; Chen, L.; Zhang, J.; Sheng, S.; Dong, X.; Bian, H. Synthesis and in vitro antibacterial activity of new aminothiazole-oximepiperidone cephalosporins. Bioorg. Med. Chem. Lett., 2021, 40, 127928.
[http://dx.doi.org/10.1016/j.bmcl.2021.127928] [PMID: 33705899]
[88]
Minickaitė, R.; Grybaitė, B.; Vaickelionienė, R.; Kavaliauskas, P.; Petraitis, V.; Petraitienė, R.; Tumosienė, I.; Jonuškienė, I.; Mickevičius, V. Synthesis of novel aminothiazole derivatives as promising antiviral, antioxidant and antibacterial candidates. Int. J. Mol. Sci., 2022, 23(14), 7688.
[http://dx.doi.org/10.3390/ijms23147688] [PMID: 35887038]
[89]
Wang, L.L.; Battini, N.; Bheemanaboina, R.R.Y.; Ansari, M.F.; Chen, J.P.; Xie, Y.P.; Cai, G.X.; Zhang, S.L.; Zhou, C.H. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV. Eur. J. Med. Chem., 2019, 179, 166-181.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.046] [PMID: 31254919]
[90]
Cui, S.F.; Addla, D.; Zhou, C.H. Novel 3-aminothiazolquinolones: Design, synthesis, bioactive evaluation, sars, and preliminary antibacterial mechanism. J. Med. Chem., 2016, 59(10), 4488-4510.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01678] [PMID: 27115717]
[91]
Sączewski, J.; Hinc, K.; Obuchowski, M.; Gdaniec, M. The tandem Mannich-electrophilic amination reaction: A versatile platform for fluorescent probing and labeling. Chemistry, 2013, 19(35), 11531-11535.
[http://dx.doi.org/10.1002/chem.201302085] [PMID: 23893376]
[92]
Fedorowicz, J.; Sączewski, J.; Drażba, Z.; Wiśniewska, P.; Gdaniec, M.; Wicher, B.; Suwiński, G.; Jalińska, A. Synthesis and fluorescence of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium-carboxylates: An experimental and TD-DFT comparative study. Dyes Pigments, 2019, 161, 347-359.
[http://dx.doi.org/10.1016/j.dyepig.2018.09.005]
[93]
Fedorowicz, J.; Sączewski, J.; Konopacka, A.; Waleron, K.; Lejnowski, D.; Ciura, K.; Tomašič, T.; Skok, Ž.; Savijoki, K.; Morawska, M.; Gilbert-Girard, S.; Fallarero, A. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. Eur. J. Med. Chem., 2019, 179, 576-590.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.071] [PMID: 31279292]
[94]
Emami, S.; Shahrokhirad, N.; Foroumadi, A.; Faramarzi, M.A.; Samadi, N.; Soltani-Ghofrani, N. 7-Piperazinylquinolones with methylene-bridged nitrofuran scaffold as new antibacterial agents. Med. Chem. Res., 2013, 22(12), 5940-5947.
[http://dx.doi.org/10.1007/s00044-013-0581-9]
[95]
Garrison, M.W. Comparative antimicrobial activity of levofloxacin and ciprofloxacin against Streptococcus pneumoniae. J. Antimicrob. Chemother., 2003, 52(3), 503-506.
[http://dx.doi.org/10.1093/jac/dkg380] [PMID: 12917240]
[96]
Odenholt, I.; Löwdin, E.; Cars, O. Bactericidal effects of levofloxacin in comparison with those of ciprofloxacin and sparfloxacin. Clin. Microbiol. Infect., 1998, 4(5), 264-270.
[http://dx.doi.org/10.1111/j.1469-0691.1998.tb00054.x] [PMID: 11864341]
[97]
Croom, K.F.; Goa, K.L. Levofloxacin. Drugs, 2003, 63(24), 2769-2802.
[http://dx.doi.org/10.2165/00003495-200363240-00008] [PMID: 14664657]
[98]
Huang, X.; Bao, Y.; Zhu, S.; Zhang, X.; Lan, S.; Wang, T. Synthesis and biological evaluation of levofloxacin core-based derivatives with potent antibacterial activity against resistant Gram-positive pathogens. Bioorg. Med. Chem. Lett., 2015, 25(18), 3928-3932.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.044] [PMID: 26238324]
[99]
Yassien, M.; Khardori, N.; Ahmedy, A.; Toama, M. Modulation of biofilms of Pseudomonas aeruginosa by quinolones. Antimicrob. Agents Chemother., 1995, 39(10), 2262-2268.
[http://dx.doi.org/10.1128/AAC.39.10.2262] [PMID: 8619580]
[100]
Rasamiravaka, T.; Labtani, Q.; Duez, P.; El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Int., 2015, 2015, 1-17.
[http://dx.doi.org/10.1155/2015/759348] [PMID: 25866808]
[101]
Long, T.E.; Keding, L.C.; Lewis, D.D.; Anstead, M.I.; Withers, T.R.; Yu, H.D. Anionic fluoroquinolones as antibacterials against biofilm-producing Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett., 2016, 26(4), 1305-1309.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.012] [PMID: 26826023]
[102]
Chambers, R.D.; Sargent, C.R. Polyfluoroheteroaromatic compounds. Adv. Heterocycl. Chem., 1981, 28, 1-71.
[http://dx.doi.org/10.1016/S0065-2725(08)60040-9]
[103]
Brooke, G.M. The preparation and properties of polyfluoro aromatic and heteroaromatic compounds. J. Fluor. Chem., 1997, 86(1), 1-76.
[http://dx.doi.org/10.1016/S0022-1139(97)00006-7]
[104]
Darehkordi, A.; Ramezani, M.; Rahmani, F.; Ramezani, M. Design, synthesis and evaluation of antibacterial effects of a new class of piperazinylquinolone derivatives. J. Heterocycl. Chem., 2016, 53(1), 89-94.
[http://dx.doi.org/10.1002/jhet.2391]
[105]
Peterson, L.R. Quinolone molecular structure-activity relationships: What we have learned about improving antimicrobial activity. Clin. Infect. Dis., 2001, 33(S3), S180-S186.
[http://dx.doi.org/10.1086/321846] [PMID: 11524717]
[106]
Jiang, D.; Wang, G.Q.; Liu, X.; Zhang, Z.; Feng, L.S.; Liu, M.L. Isatin derivatives with potential antitubercular activities. J. Heterocycl. Chem., 2018, 55(6), 1263-1279.
[http://dx.doi.org/10.1002/jhet.3189]
[107]
Guo, H. Design, synthesis, and antibacterial evaluation of propylene‐tethered 8‐methoxyl ciprofloxacin‐isatin hybrids. J. Heterocycl. Chem., 2018, 55(10), 2434-2440.
[http://dx.doi.org/10.1002/jhet.3279]
[108]
Xu, Z.; Song, X.F.; Qiang, M.; Lv, Z.S. 1H‐1,2,3‐triazole‐tethered 8‐ome ciprofloxacin and isatin hybrids: Design, synthesis and in vitro anti‐mycobacterial activities. J. Heterocycl. Chem., 2017, 54(6), 3735-3741.
[http://dx.doi.org/10.1002/jhet.2980]
[109]
Jain, A.K.; Sharma, S.; Vaidya, A.; Ravichandran, V.; Agrawal, R.K. 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities. Chem. Biol. Drug Des., 2013, 81(5), 557-576.
[http://dx.doi.org/10.1111/cbdd.12125] [PMID: 23452185]
[110]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[111]
Dang, Z.; Yang, Y.; Ji, R.; Zhang, S. Synthesis and antibacterial activity of novel fluoroquinolones containing substituted piperidines. Bioorg. Med. Chem. Lett., 2007, 17(16), 4523-4526.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.093] [PMID: 17566733]
[112]
Saczewski, J.; Paluchowska, A.; Klenc, J.; Raux, E.; Barnes, S.; Sullivan, S.; Duszynska, B.; Bojarski, A.J.; Strekowski, L. Synthesis of 4‐substituted 2‐(4‐methylpiperazino)pyrimidines and quinazoline analogs as serotonin 5‐HT2A receptor ligands. J. Heterocycl. Chem., 2009, 46(6), 1259-1265.
[http://dx.doi.org/10.1002/jhet.236]
[113]
Mirzaie, Y.; Lari, J.; Vahedi, H.; Hakimi, M. Conventional and microwave-assisted synthesis of quinolone carboxylic acid derivatives. Russ. J. Gen. Chem., 2016, 86(12), 2865-2869.
[http://dx.doi.org/10.1134/S1070363216120525]
[114]
Menteşe, M.; Beriş, F.Ş.; Demirbaş, N. Synthesis of some new ciprofloxacin hybrids as potential antimicrobial agents. J. Heterocycl. Chem., 2017, 54(6), 2996-3007.
[http://dx.doi.org/10.1002/jhet.2907]
[115]
Bryskier, A. Development of an Antibiotic: Microbiology. In: Antimicrobial Agents: Antibacterials and Antifungals; Wiley, 2005.
[http://dx.doi.org/10.1128/9781555815929]
[116]
Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci., 2015, 22(1), 90-101.
[http://dx.doi.org/10.1016/j.sjbs.2014.08.002] [PMID: 25561890]
[117]
Al-Hasan, M.N.; Wilson, J.W.; Lahr, B.D.; Thomsen, K.M.; Eckel-Passow, J.E.; Vetter, E.A.; Tleyjeh, I.M.; Baddour, L.M. β-lactam and fluoroquino lone combination antibiotic therapy for bacteremia caused by gram-negative bacilli. Antimicrob. Agents Chemother., 2009, 53(4), 1386-1394.
[http://dx.doi.org/10.1128/AAC.01231-08] [PMID: 19164144]
[118]
Evans, L.E.; Krishna, A.; Ma, Y.; Webb, T.E.; Marshall, D.C.; Tooke, C.L.; Spencer, J.; Clarke, T.B.; Armstrong, A.; Edwards, A.M. Exploitation of antibiotic resistance as a novel drug target: Development of a β-lactamaseactivated antibacterial prodrug. J. Med. Chem., 2019, 62(9), 4411-4425.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01923] [PMID: 31009558]
[119]
Albelda-Berenguer, M.; Monachon, M.; Joseph, E. Siderophores: From natural roles to potential applications. Adv. Appl. Microbiol., 2019, 106, 193-225.
[http://dx.doi.org/10.1016/bs.aambs.2018.12.001] [PMID: 30798803]
[120]
Kelson, A.B.; Carnevali, M.; Truong-Le, V. Gallium-based anti-infectives: Targeting microbial iron-uptake mechanisms. Curr. Opin. Pharmacol., 2013, 13(5), 707-716.
[http://dx.doi.org/10.1016/j.coph.2013.07.001] [PMID: 23876838]
[121]
Pandey, A.; Savino, C.; Ahn, S.H.; Yang, Z.; Van Lanen, S.G.; Boros, E. Theranostic gallium siderophore ciprofloxacin conjugate with broad spectrum antibiotic potency. J. Med. Chem., 2019, 62(21), 9947-9960.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01388] [PMID: 31580658]
[122]
Mogle, B.T.; Steele, J.M.; Thomas, S.J.; Bohan, K.H.; Kufel, W.D. Clinical review of delafloxacin: A novel anionic fluoroquinolone. J. Antimicrob. Chemother., 2018, 73(6), 1439-1451.
[http://dx.doi.org/10.1093/jac/dkx543] [PMID: 29425340]
[123]
Kirk, R.; Betson, M.; Bingham, M.; Doyle, P.; Harvey, R.; Huxley, A.; Moat, J.; Pesnot, T.; Tait, M.; Hallworth, S.; Nelson, G. Novel C-7 carbon substituted fourth generation fluoroquinolones targeting N. Gonorrhoeae infections. Bioorg. Med. Chem. Lett., 2020, 30(20), 127428.
[http://dx.doi.org/10.1016/j.bmcl.2020.127428] [PMID: 32799032]
[124]
Srivastava, N.; Kumar, A. Synthesis and study of 1-ethyl-3-carbohydrazide and 3-[1-oxo-2-hydrazino-3-{p-toluenesulfon}]quinolone derivatives against bacterial infections. Eur. J. Med. Chem., 2013, 67, 464-468.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.056]
[125]
Srivastava, N.; Kumar, A.; Mehrotra, A. Synthesis and antibacterial studies on some new thiazole moiety based quinolone derivatives. Ind. J. Chem., 2019, 58B, 1413-1415.
[126]
Srivatava, N.; Kumar, A. Synthesis of substituted-4-oxo-1, 4-dihydro-3-[1-oxo-2-hydrazino-3-ptoluenesulfon]quinoline derivatives and their biological activity against bacterial infections. Orient. J. Chem., 2013, 29(2), 507-511.
[http://dx.doi.org/10.13005/ojc/290216]
[127]
Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev., 2021, 13(2), 259-272.
[http://dx.doi.org/10.1007/s12551-021-00795-9]
[128]
Saxena, N.; Kumar, A.; Srivastava, N. Computational studies of N-1 substituted quinolone derivatives as potent inhibitors of GyrB subunit of Escherichia coli K-12. Orient. J. Chem., 2022, 38(2), 465-469.
[http://dx.doi.org/10.13005/ojc/380232]
[129]
Saxena, N.; Kumar, R.; Shankhdhar, S.; Srivastava, N. Synthesis of new 3-substituted quinolone derivatives with benzene sulfonamide group using hydrazine linker with their docking and antibacterial studies in vitro. Results Chem., 2022, 4, 100397.
[http://dx.doi.org/10.1016/j.rechem.2022.100397]
[130]
Shin, Y.S.; Lee, J.Y.; Jeon, S.; Myung, S.; Gong, H.J.; Kim, S.; Kim, H.R.; Jeong, L.S.; Park, C.M. Discovery of 2-aminoquinolone acid derivatives as potent inhibitors of SARS-CoV-2. Bioorg. Med. Chem. Lett., 2023, 85, 129214.
[http://dx.doi.org/10.1016/j.bmcl.2023.129214] [PMID: 36870624]
[131]
Ahmadi, A.; Moradi, S. In silico analysis suggests the RNAi-enhancing antibiotic enoxacin as a potential inhibitor of SARS-CoV-2 infection. Sci. Rep., 2021, 11(1), 10271.
[http://dx.doi.org/10.1038/s41598-021-89605-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy