Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Isocratic RP-HPLC Method Development, Validation, and Optimization of BCS-II in Bulk and Dosage Form

Author(s): Uditi Handa*, Anuj Malik*, Kumar Guarve, Fatimah Jan and Kajal Nagpal

Volume 20, Issue 1, 2024

Published on: 25 January, 2024

Page: [37 - 45] Pages: 9

DOI: 10.2174/0115734129283491240103071614

Price: $65

Abstract

Background: Previous studies of dextromethorphan hydrobromide basically worked on simultaneous research with other compounds. So, the development of a novel method using the isocratic elution mode is needed.

Objective: For the detection of dextromethorphan hydrobromide (DXM) in diverse matrices, a straightforward, accurate, and sensitive reversed-phase HPLC technique using a Waters 2487 Dual λ Absorbance detector has been designed and validated.

Methods: In this experimental work, utilizing methanol/pH 3.0 potassium dihydrogen phosphate buffer (70:30, v/v) as the mobile phase, the separation was completed in 7 minutes on a C-18 HPLC column (4.6 cm length, 4.6 mm internal diameter; 5 μm particle size) utilizing an isocratic elution mode, flow rate of 1.0 mL/min, and UV-detection at 278 nm. Integration of the chromatography response was carried out using Empower 2.4 software.

Results: With an R2 of 0.9987, the current approach showed high linearity for DXM in the 10- 60 ppm range (retention time 4.281 ± 0.505 min). For DXM Hbr, the limits of detection (LOD & LOQ) were 10.633 μg/mL and 32.221μg/mL, respectively. Samples remained stable in the presence of the matrices without any apparent influence.

Conclusion: The novel approach, which used a straightforward liquid/liquid extraction procedure with recovery ranging from 100 ± 10 % performed by two different analytes, was accurate. The precision within and between days was ≤ 2.0% (RSD). The technique was proven to be reliable and repeatable, and it can be utilized with pharmacological (active ingredients, syrups) and also for biological (blood) matrices which can be used in future research work for bioanalytical method development such as pharmacokinetics studies.

Graphical Abstract

[1]
Sromek, A.W.; Provencher, B.A.; Russell, S.; Chartoff, E.; Knapp, B.I.; Bidlack, J.M.; Neumeyer, J.L. Preliminary pharmacological evaluation of enantiomeric morphinans. ACS Chem. Neurosci., 2014, 5(2), 93-99.
[http://dx.doi.org/10.1021/cn400205z] [PMID: 24393077]
[2]
Aumatell, A.; Wells, R.J. Chiral differentiation of the optical isomers of racemethorphan and racemorphan in urine by capillary zone electrophoresis. J. Chromatogr. Sci., 1993, 31(12), 502-508.
[http://dx.doi.org/10.1093/chromsci/31.12.502] [PMID: 8120122]
[3]
El-Naby, E.H.; Kamel, A.H. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug. Mater. Sci. Eng. C, 2015, 54, 217-224.
[http://dx.doi.org/10.1016/j.msec.2015.05.044] [PMID: 26046285]
[4]
Smith, M.J.; Javors, M.A.; Dietrich, M.S. Dextromethorphan effects on the sigma-1 receptor and outcomes in sarcoidosis-associated small nerve fiber loss. Clin. Pharmacol. Ther., 2016, 100(6), 595-603.
[5]
Babu, K.M.; McCurdy, C.R.; Boyer, E.W. Opioid receptors and legal highs: Salvia divinorum and Kratom. Clin. Toxicol., 2004, 42(2), 137-142.
[6]
Lauterbach, E.C. An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan. Med. Hypotheses, 2012, 78(6), 693-702.
[http://dx.doi.org/10.1016/j.mehy.2012.02.012] [PMID: 22401777]
[7]
Nguyen, L.; Thomas, K.L.; Lucke-Wold, B.P.; Cavendish, J.Z.; Crowe, M.S.; Matsumoto, R.R. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol. Ther., 2016, 159, 1-22.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.016] [PMID: 26826604]
[8]
Corado, C.R.; McKemie, D.S.; Knych, H.K. Pharmacokinetics of dextromethorphan and its metabolites in horses following a single oral administration. Drug Test. Anal., 2017, 9(6), 880-887.
[http://dx.doi.org/10.1002/dta.2060] [PMID: 27580591]
[9]
Taylor, C.P.; Traynelis, S.F.; Siffert, J.; Pope, L.E.; Matsumoto, R.R. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol. Ther., 2016, 164, 170-182.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.010] [PMID: 27139517]
[10]
Loyd, V.; Allen, J.; Ansel, H.C. Ansel’s pharmaceutical dosage forms and drug delivery systems; Lippincott Williams & Wilkins: Philadelphia, 2014, pp. 110-119.
[11]
Nagai, N.; Kawakubo, T.; Kaneko, F.; Ishii, M.; Shinohara, R.; Saito, Y.; Shimamura, H.; Ohnishi, A.; Ogata, H. Pharmacokinetics and polymorphic oxidation of dextromethorphan in a Japanese population. Biopharm. Drug Dispos., 1996, 17(5), 421-433.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199607)17:5<421::AID-BDD421>3.0.CO;2-9] [PMID: 8830977]
[12]
Braga, P.C.; Fossati, A.; Vimercati, M.G.; Caputo, R.; Guffanti, E.E. Dextrorphan and dextromethorphan: comparative antitussive effects on guinea pigs. Drugs Exp. Clin. Res., 1994, 20(5), 199-203.
[PMID: 7875056]
[13]
Székely, J.I.; Sharpe, L.G.; Jaffe, J.H. Induction of phencyclidine-like behavior in rats by dextrorphan but not dextromethorphan. Pharmacol. Biochem. Behav., 1991, 40(2), 381-386.
[http://dx.doi.org/10.1016/0091-3057(91)90569-N] [PMID: 1805242]
[14]
Steinberg, G.K.; Kunis, D.; DeLaPaz, R.; Poljak, A. Neuroprotection following focal cerebral ischaemia with the NMDA antagonist dextromethorphan, has a favourable dose response profile. Neurol. Res., 1993, 15(3), 174-180.
[http://dx.doi.org/10.1080/01616412.1993.11740131] [PMID: 8103583]
[15]
Jain, V.; Sharma, M.C. Validated RP-HPLC method for determining the levels of bromhexine HCl, chlorpheniramine maleate, dextromethorphan HBr and guaiphenesin in their pharmaceutical dosage forms. J. Taibah Univ. Sci., 2016, 10(1), 38-45.
[http://dx.doi.org/10.1016/j.jtusci.2015.02.019]
[16]
Patel, K.Y.; Dedania, Z.R.; Dedania, R.R.; Patel, U. QbD approach to HPLC method development and validation of ceftriaxone sodium. Futu. J. Pharm. Sci., 2021, 7(1), 141.
[http://dx.doi.org/10.1186/s43094-021-00286-4]
[17]
Sagathiya, K.; Bagada, H. Development and validation of RP-HPLC and HPTLC method of analysis for simultaneous estimation of ambroxol HCL, Dextromethorphan HBR and Guaifenesin in pharmaceutical cough cold preparation and statistical comparison of developed methods. Int. J. Pharm. Pharm. Sci., 2014, 6, 312-316.
[18]
What causes a “ghost” peak and what can I do to prevent this? Available from: https://www.wyatt.com/ask-the-expert/ask-the-expert-what-causes-a-ghost-peak-and-what-can-i-do-to-prevent-this.html
[19]
Zhong, J.S.; Huang, Y.; Wan, J.Z.; Yu, X.Y.; Yu, A.L.; Zeng, H.X.; Chen, Z.Y.; Zhou, X.R.; Ding, M. Chromatographic studies of unusual on-column degradation of cefaclor observed in the impurity separation by HPLC. J. Pharm. Biomed. Anal., 2019, 176, 112818.
[http://dx.doi.org/10.1016/j.jpba.2019.112818] [PMID: 31446297]
[20]
Shabir, G.A. HPLC method development and validation for pharmaceutical analysis. Pharm. Technol. Eur., 2004, 16(3)
[21]
Panchumarthy, R. A review on step-by-step analytical method validation. IOSR J. Pharm., 2015.
[22]
Poornima, K.; Madhusudan, Y.; Channabasavaraj, K.P. Development and Validation of Analytical Methods for Simultaneous Estimation of Dextromethorphan and Quinidine by RP-HPLC and UV-Spectrometry., 2017, 8(3), 1301-1313.
[23]
Dagariya, RK; Barad, MB; Kalele, UA Stability indicating method development and validation for simultaneous estimation of dextromethorphan hbr, phenylephrine HCl and chlorpheniramine maleate in their combined syrup dosage form by reverse phase high performance liquid chromatography. Trop. J. Pharm. Life Sci., 2021, 8(3), 01-14.
[24]
Shah, V.P.; Midha, K.K.; Dighe, S.; McGilveray, I.J.; Skelly, J.P.; Yacobi, A.; Layloff, T.; Viswanathan, C.T.; Cook, C.E.; McDowall, R.D.; Pittman, K.A.; Spector, S.; Albert, K.S.; Bolton, S.; Cook, C.E.; Dighe, S.; Dobrinska, M.; Doub, W.; Eichelbaum, M.; Findlay, J.W.A.; Gallicano, K.; Garland, W.; Hardy, D.J.; Hulse, J.D.; Karnes, H.T.; McDowall, R.D.; Lange, R.; Layloff, T.; Mason, W.D.; McKay, G.; McGilveray, I.J.; Midha, K.K.; Ormsby, E.; Overpeck, J.; Pittman, K.A.; Plattenberg, H.D.; Shah, V.P.; Shiu, G.; Sitar, D.; Skelly, J.P.; Sorgel, F.; Spector, S.; Stewart, J.T.; Viswanathan, C.T.; Yacobi, A.; Yuh, L. Analytical methods validation: Bioavailability, bioequivalence and pharmacokinetic studies. Int. J. Pharm., 1992, 82(1-2), 1-7.
[http://dx.doi.org/10.1016/0378-5173(92)90065-A]
[25]
ud Din, N.; H, S.; M, I.; M, S.; Ma, T.; S, K. Validated reversed-phase liquid chromatographic method for simultaneous determination of dextromethorphan and chlorpheniramine in non-biological and biological matrices using PDA detector. Pharm. Anal. Acta, 2018, 9(7), 590.
[http://dx.doi.org/10.4172/2153-2435.1000590]
[26]
Yuliana, T.; Gustin, S.S.N.; Alamsyah, A.; Budiman, S.; Hardian, A. HPLC method for simultaneous determination of dextromethorphan hydrobromide, chlorpheniramine maleate, and potassium sorbate in cough syrup. IOP Conf. Series: Materials Science and Engineering, 2021.
[http://dx.doi.org/10.1088/1757-899X/1115/1/012035]
[27]
Yuri, K.; Rosario, L.B. HPLC for pharmaceutical scientists; John Wiley and Sons, Inc.: Hoboken, New Jersey, 2007, pp. 92-98.
[28]
[29]
Raghava Raju, TV; Kumar, NA; Kumar, SR; Reddy, AM Development and validation of a stability-indicating RP-HPLC method for the simultaneous estimation of guaifenesin and dextromethorphan impurities in pharmaceutical formulations. Chromatogr. Res. Int., 2013, 2013
[http://dx.doi.org/10.1155/2013/315145]

© 2024 Bentham Science Publishers | Privacy Policy