Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets

Author(s): Seyed Hossein Shahcheraghi, Elmira Roshani Asl, Malihe Lotfi, Jamshid Ayatollahi, Seyed Hossein Khaleghinejad, Alaa A.A. Aljabali, Hamid A. Bakshi, Mohamed El-Tanani, Nitin B. Charbe, Ángel Serrano-Aroca, Vijay Mishra, Yachana Mishra, Rohit Goyal, Altijana Hromić-Jahjefendić, Vladimir N. Uversky*, Marzieh Lotfi* and Murtaza M. Tambuwala*

Volume 23, Issue 10, 2024

Published on: 24 January, 2024

Page: [1203 - 1216] Pages: 14

DOI: 10.2174/0118715273277458231213063147

Price: $65

Abstract

Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation. The Notch signaling pathway, which plays a critical role in cellular homeostasis, becomes deregulated in GBM, leading to increased expression of pathway target genes such as MYC, Hes1, and Hey1, thereby promoting cellular proliferation and differentiation. Recent research has highlighted the regulatory role of non-coding RNAs (ncRNAs) in modulating Notch signaling by targeting critical mRNA expression at the post-transcriptional or transcriptional levels. Specifically, various types of ncRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to control multiple target genes and significantly contribute to the carcinogenesis of GBM. Furthermore, these ncRNAs hold promise as prognostic and predictive markers for GBM. This review aims to summarize the latest studies investigating the regulatory effects of ncRNAs on the Notch signaling pathway in GBM.

Graphical Abstract

[1]
Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114(2): 97-109.
[http://dx.doi.org/10.1007/s00401-007-0243-4] [PMID: 17618441]
[2]
Anton K, Baehring JM, Mayer T. Glioblastoma multiforme. Hematol Oncol Clin North Am 2012; 26(4): 825-53.
[http://dx.doi.org/10.1016/j.hoc.2012.04.006] [PMID: 22794286]
[3]
Zhang Y, Zhang Z, Mousavi M, Moliani A, Bahman Y, Bagheri H. Resveratrol inhibits glioblastoma cells and chemoresistance progression through blockade P-glycoprotein and targeting AKT/PTEN signaling pathway. Chem Biol Interact 2023; 376: 110409.
[http://dx.doi.org/10.1016/j.cbi.2023.110409] [PMID: 36804490]
[4]
Gupta S, Challagundla K. Clinical Applications of Noncoding RNAs in Cancer. Academic Press 2022.
[5]
Parashar D, Singh A, Gupta S, et al. Emerging roles and potential applications of non-coding RNAs in cervical cancer. Genes 2022; 13(7): 1254.
[http://dx.doi.org/10.3390/genes13071254] [PMID: 35886037]
[6]
Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology. Cell 2019; 179(5): 1033-55.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[7]
Di Bari M, Bevilacqua V, De Jaco A, et al. Mir-34a-5p mediates cross-talk between m2 muscarinic receptors and Notch-1/EGFR pathways in U87MG glioblastoma cells: Implication in cell proliferation. Int J Mol Sci 2018; 19(6): 1631.
[http://dx.doi.org/10.3390/ijms19061631] [PMID: 29857516]
[8]
Cenciarelli C, Marei HE, Zonfrillo M, et al. The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets. Oncotarget 2017; 8(11): 17873-86.
[http://dx.doi.org/10.18632/oncotarget.15013] [PMID: 28157712]
[9]
Reicher A, Foßelteder J, Kwong LN, Pichler M. Crosstalk between the Notch signaling pathway and long non-coding RNAs. Cancer Lett 2018; 420: 91-6.
[http://dx.doi.org/10.1016/j.canlet.2018.01.070] [PMID: 29409809]
[10]
Yu JB, Jiang H, Zhan RY. Aberrant Notch signaling in glioblastoma stem cells contributes to tumor recurrence and invasion. Mol Med Rep 2016; 14(2): 1263-8.
[http://dx.doi.org/10.3892/mmr.2016.5391] [PMID: 27315154]
[11]
Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci 2018; 75(3): 467-84.
[http://dx.doi.org/10.1007/s00018-017-2626-6] [PMID: 28840253]
[12]
Rynkeviciene R, Simiene J, Strainiene E, et al. Non-coding RNAs in glioma. Cancers 2018; 11(1): 17.
[http://dx.doi.org/10.3390/cancers11010017] [PMID: 30583549]
[13]
Du Y, Li J, Xu T, Zhou DD, Zhang L, Wang X. MicroRNA-145 induces apoptosis of glioma cells by targeting BNIP3 and Notch signaling. Oncotarget 2017; 8(37): 61510-27.
[http://dx.doi.org/10.18632/oncotarget.18604] [PMID: 28977881]
[14]
Prokopi M, Kousparou CA, Epenetos AA. The secret role of microRNAs in cancer stem cell development and potential therapy: A notch-pathway approach. Front Oncol 2015; 4: 389.
[http://dx.doi.org/10.3389/fonc.2014.00389] [PMID: 25717438]
[15]
Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006; 15(S1): R17-29.
[http://dx.doi.org/10.1093/hmg/ddl046] [PMID: 16651366]
[16]
Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 2016; 73(13): 2491-509.
[http://dx.doi.org/10.1007/s00018-016-2174-5] [PMID: 27007508]
[17]
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2018; 19(3): 143-57.
[http://dx.doi.org/10.1038/nrm.2017.104] [PMID: 29138516]
[18]
Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10(1): 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[19]
Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010; 1338: 20-35.
[http://dx.doi.org/10.1016/j.brainres.2010.03.110] [PMID: 20380817]
[20]
Costa FF. Non-coding RNAs: Lost in translation? Gene 2007; 386(1-2): 1-10.
[http://dx.doi.org/10.1016/j.gene.2006.09.028] [PMID: 17113247]
[21]
Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA. The fusion of two worlds: Non-coding RNAs and extracellular vesicles - diagnostic and therapeutic implications (Review). Int J Oncol 2015; 46(1): 17-27.
[http://dx.doi.org/10.3892/ijo.2014.2712] [PMID: 25338714]
[22]
Staněk D. Long non-coding RNAs and splicing. Essays Biochem 2021; 65(4): 723-9.
[http://dx.doi.org/10.1042/EBC20200087] [PMID: 33835135]
[23]
Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M. A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 2013; 47(1): 131-44.
[http://dx.doi.org/10.1007/s12035-012-8349-7] [PMID: 23054677]
[24]
Masoudi MS, Mehrabian E, Mirzaei H. MiR‐21: A key player in glioblastoma pathogenesis. J Cell Biochem 2018; 119(2): 1285-90.
[http://dx.doi.org/10.1002/jcb.26300] [PMID: 28727188]
[25]
Tivnan A, McDonald KL. Current progress for the use of miRNAs in glioblastoma treatment. Mol Neurobiol 2013; 48(3): 757-68.
[http://dx.doi.org/10.1007/s12035-013-8464-0] [PMID: 23625340]
[26]
Liu S, Mitra R, Zhao MM, et al. The potential roles of long noncoding RNAs (lncRNA) in glioblastoma development. Mol Cancer Ther 2016; 15(12): 2977-86.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0320] [PMID: 27784795]
[27]
Gao K, Ji Z, She K, Yang Q, Shao L. Long non-coding RNA ZFAS1 is an unfavourable prognostic factor and promotes glioma cell progression by activation of the Notch signaling pathway. Biomed Pharmacother 2017; 87: 555-60.
[http://dx.doi.org/10.1016/j.biopha.2017.01.014]
[28]
Rezaei O, Tamizkar KH, Sharifi G, Taheri M, Ghafouri-Fard S. Emerging role of long non-coding RNAs in the pathobiology of glioblastoma. Front Oncol 2021; 10: 625884.
[http://dx.doi.org/10.3389/fonc.2020.625884] [PMID: 33634032]
[29]
Liu G, Pan Y, Li Y, Xu H. lncRNA and mRNA signature for prognosis prediction of glioblastoma. Future Oncol 2020; 16(13): 837-48.
[http://dx.doi.org/10.2217/fon-2019-0538] [PMID: 32250161]
[30]
Liu Q, Qi C, Li G, Su W. Prediction of the outcome for patients with glioblastoma with lncRNA expression profiles. Biomed Res Int 2019; 2019: 5076467.
[http://dx.doi.org/10.1155/2019/5076467]
[31]
Wang D, Tang L, Wu Y, et al. Abnormal X chromosome inactivation and tumor development. Cell Mol Life Sci 2020; 77(15): 2949-58.
[http://dx.doi.org/10.1007/s00018-020-03469-z] [PMID: 32040694]
[32]
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20(3): 300-7.
[http://dx.doi.org/10.1038/nsmb.2480] [PMID: 23463315]
[33]
Lee JT. Epigenetic regulation by long noncoding RNAs. Science 2012; 338(6113): 1435-9.
[http://dx.doi.org/10.1126/science.1231776] [PMID: 23239728]
[34]
Feng W, Li L, Xu X, Jiao Y, Du W. Up-regulation of the long non-coding RNA RMRP contributes to glioma progression and promotes glioma cell proliferation and invasion. Arch Med Sci 2017; 6(6): 1315-21.
[http://dx.doi.org/10.5114/aoms.2017.66747] [PMID: 29181061]
[35]
Cai J, Zuo X, Chen Z, et al. Prognostic value and clinical significance of long noncoding RNA CASC2 in human malignancies: A meta-analysis. Cancer Manag Res 2018; 10: 1403-12.
[http://dx.doi.org/10.2147/CMAR.S161373] [PMID: 29910638]
[36]
Wang R, Li Y, Zhu G, et al. Long noncoding RNA CASC2 predicts the prognosis of glioma patients and functions as a suppressor for gliomas by suppressing Wnt/β-catenin signaling pathway. Neuropsychiatr Dis Treat 2017; 13: 1805-13.
[http://dx.doi.org/10.2147/NDT.S137171] [PMID: 28744130]
[37]
Siebel C, Lendahl U. Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 2017; 97(4): 1235-94.
[http://dx.doi.org/10.1152/physrev.00005.2017] [PMID: 28794168]
[38]
Nandagopal N, Santat LA, LeBon L, Sprinzak D, Bronner ME, Elowitz MB. Dynamic ligand discrimination in the notch signaling pathway. Cell 2018; 172: 869-80.
[http://dx.doi.org/10.1016/j.cell.2018.01.002]
[39]
Henrique D, Schweisguth F. Mechanisms of Notch signaling: A simple logic deployed in time and space. Development 2019; 146(3): dev172148.
[http://dx.doi.org/10.1242/dev.172148] [PMID: 30709911]
[40]
Meurette O, Mehlen P. Notch signaling in the tumor microenvironment. Cancer Cell 2018; 34(4): 536-48.
[http://dx.doi.org/10.1016/j.ccell.2018.07.009] [PMID: 30146333]
[41]
Kovall RA, Gebelein B, Sprinzak D, Kopan R. The canonical Notch signaling pathway: Structural and biochemical insights into shape, sugar, and force. Dev Cell 2017; 41(3): 228-41.
[http://dx.doi.org/10.1016/j.devcel.2017.04.001] [PMID: 28486129]
[42]
Sivasankaran B, Degen M, Ghaffari A, et al. Tenascin-C is a novel RBPJkappa-induced target gene for Notch signaling in gliomas. Cancer Res 2009; 69(2): 458-65.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2610] [PMID: 19147558]
[43]
Fan X, Mikolaenko I, Elhassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004; 64(21): 7787-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1446] [PMID: 15520184]
[44]
Purow BW, Sundaresan TK, Burdick MJ, et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 2008; 29(5): 918-25.
[http://dx.doi.org/10.1093/carcin/bgn079] [PMID: 18359760]
[45]
Merlo A. Genes and pathways driving glioblastomas in humans and murine disease models. Neurosurg Rev 2003; 26(3): 145-58.
[http://dx.doi.org/10.1007/s10143-003-0267-8] [PMID: 12783270]
[46]
Libermann TA, Nusbaum HR, Razon N, et al. Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 1985; 313(5998): 144-7.
[http://dx.doi.org/10.1038/313144a0] [PMID: 2981413]
[47]
Libermann TA, Nusbaum HR, Razon N, et al. Amplification and overexpression of the EGF receptor gene in primary human glioblastomas. J Cell Sci 1985; 1985(S3): 161-72.
[http://dx.doi.org/10.1242/jcs.1985.Supplement_3.16]
[48]
Zhen Y, Zhao S, Li Q, Li Y, Kawamoto K. Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett 2010; 292(1): 64-72.
[http://dx.doi.org/10.1016/j.canlet.2009.11.005] [PMID: 19962820]
[49]
Wu J, Ji Z, Liu H, et al. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicol Lett 2013; 220(1): 61-9.
[http://dx.doi.org/10.1016/j.toxlet.2013.03.019] [PMID: 23542114]
[50]
Guichet PO, Guelfi S, Teigell M, et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells 2015; 33(1): 21-34.
[http://dx.doi.org/10.1002/stem.1767] [PMID: 24898819]
[51]
Hulleman E, Quarto M, Vernell R, et al. A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med 2009; 13(1): 136-46.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00307.x] [PMID: 18363832]
[52]
Park NI, Guilhamon P, Desai K, et al. ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. Cell Stem Cell 2017; 21(2): 209-224.e7.
[http://dx.doi.org/10.1016/j.stem.2017.06.004] [PMID: 28712938]
[53]
Brun M, Jain S, Monckton EA, Godbout R. Nuclear factor I represses the notch effector HEY1 in glioblastoma. Neoplasia 2018; 20(10): 1023-37.
[http://dx.doi.org/10.1016/j.neo.2018.08.007] [PMID: 30195713]
[54]
Lin J, Zhang XM, Yang JC, Ye YB, Luo SQ. γ-secretase inhibitor-I enhances radiosensitivity of glioblastoma cell lines by depleting CD133+ tumor cells. Arch Med Res 2010; 41(7): 519-29.
[http://dx.doi.org/10.1016/j.arcmed.2010.10.006] [PMID: 21167391]
[55]
Schreck KC, Taylor P, Marchionni L, et al. The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 2010; 16(24): 6060-70.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1624] [PMID: 21169257]
[56]
Cheng W, Zhang C, Ren X, et al. Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma. J Neurosurg 2017; 126(1): 249-59.
[http://dx.doi.org/10.3171/2015.11.JNS15432] [PMID: 26967788]
[57]
Phillips E, Lang V, Bohlen J, et al. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem‐like cells via a notch signaling mechanism. Int J Cancer 2016; 139(8): 1776-87.
[http://dx.doi.org/10.1002/ijc.30234] [PMID: 27299852]
[58]
Chigurupati S, Venkataraman R, Barrera D, et al. Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 2010; 70(1): 418-27.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2654] [PMID: 20028870]
[59]
Liu M, Inoue K, Leng T, Guo S, Xiong Z. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways. Cell Signal 2014; 26(12): 2773-81.
[http://dx.doi.org/10.1016/j.cellsig.2014.08.020] [PMID: 25192910]
[60]
Clark K, Langeslag M, van Leeuwen B, et al. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 2006; 25(2): 290-301.
[http://dx.doi.org/10.1038/sj.emboj.7600931] [PMID: 16407977]
[61]
Takezawa R, Schmitz C, Demeuse P, Scharenberg AM, Penner R, Fleig A. Receptor-mediated regulation of the TRPM7 channel through its endogenous protein kinase domain. Proc Natl Acad Sci 2004; 101(16): 6009-14.
[http://dx.doi.org/10.1073/pnas.0307565101] [PMID: 15069188]
[62]
Schmitz C, Perraud AL, Johnson CO, et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 2003; 114(2): 191-200.
[http://dx.doi.org/10.1016/S0092-8674(03)00556-7] [PMID: 12887921]
[63]
Shen F, Song C, Liu Y, Zhang J, Wei Song S. IGFBP2 promotes neural stem cell maintenance and proliferation differentially associated with glioblastoma subtypes. Brain Res 2019; 1704: 174-86.
[http://dx.doi.org/10.1016/j.brainres.2018.10.018] [PMID: 30347220]
[64]
Chen J, Kesari S, Rooney C, et al. Inhibition of notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes Cancer 2010; 1(8): 822-35.
[http://dx.doi.org/10.1177/1947601910383564] [PMID: 21127729]
[65]
Floyd DH, Kefas B, Seleverstov O, et al. Alpha-secretase inhibition reduces human glioblastoma stem cell growth in vitro and in vivo by inhibiting Notch. Neuro-oncol 2012; 14(10): 1215-26.
[http://dx.doi.org/10.1093/neuonc/nos157] [PMID: 22962413]
[66]
Panza S, Russo U, Giordano F, et al. Leptin and notch signaling cooperate in sustaining glioblastoma multiforme progression. Biomolecules 2020; 10(6): 886.
[http://dx.doi.org/10.3390/biom10060886] [PMID: 32526957]
[67]
Aithal MGS, Rajeswari N, Bacoside A. Bacoside a induced Sub-G0 arrest and early apoptosis in human glioblastoma cell line U-87 MG through notch signaling pathway. Brain Tumor Res Treat 2019; 7(1): 25-32.
[http://dx.doi.org/10.14791/btrt.2019.7.e21] [PMID: 31062528]
[68]
Min C, Fu T, Tan W, Wang T, Du Y, Huang X. Two weeks of high glucose intake is enough to induce intestinal mucosal damage and disturb the balance of the gut microbiota of rats. Biomed Rep 2022; 18(1): 9.
[http://dx.doi.org/10.3892/br.2022.1591] [PMID: 36570801]
[69]
Abe M, Kamiyama T, Izumi Y, et al. Shortened lifespan induced by a high-glucose diet is associated with intestinal immune dysfunction in Drosophila sechellia. J Exp Biol 2022; 225(21): jeb244423.
[http://dx.doi.org/10.1242/jeb.244423] [PMID: 36226701]
[70]
Do M, Lee E, Oh MJ, Kim Y, Park HY. High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 2018; 10(6): 761.
[http://dx.doi.org/10.3390/nu10060761] [PMID: 29899272]
[71]
Ercolini D, Fogliano V. Food design to feed the human gut microbiota. J Agric Food Chem 2018; 66(15): 3754-8.
[http://dx.doi.org/10.1021/acs.jafc.8b00456] [PMID: 29565591]
[72]
Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol 2021; 27(25): 3837-50.
[http://dx.doi.org/10.3748/wjg.v27.i25.3837] [PMID: 34321848]
[73]
Malik VS, Hu FB. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat Rev Endocrinol 2022; 18(4): 205-18.
[http://dx.doi.org/10.1038/s41574-021-00627-6] [PMID: 35064240]
[74]
Makarem N, Bandera EV, Nicholson JM, Parekh N. Consumption of sugars, sugary foods, and sugary beverages in relation to cancer risk: A systematic review of longitudinal studies. Annu Rev Nutr 2018; 38(1): 17-39.
[http://dx.doi.org/10.1146/annurev-nutr-082117-051805] [PMID: 29801420]
[75]
Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010; 121(11): 1356-64.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.876185] [PMID: 20308626]
[76]
Ringel AE, Drijvers JM, Baker GJ, et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 2020; 183(7): 1848-1866.e26.
[http://dx.doi.org/10.1016/j.cell.2020.11.009]
[77]
Peck B, Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer 2019; 5(11): 693-703.
[http://dx.doi.org/10.1016/j.trecan.2019.09.007] [PMID: 31735288]
[78]
Kim J, Kim Y, La J, et al. Supplementation with a high-glucose drink stimulates anti-tumor immune responses to glioblastoma via gut microbiota modulation. Cell Rep 2023; 42(10): 113220.
[http://dx.doi.org/10.1016/j.celrep.2023.113220] [PMID: 37804509]
[79]
Hiddingh L, Tannous BA, Teng J, et al. EFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma. Oncotarget 2014; 5(2): 363-74.
[http://dx.doi.org/10.18632/oncotarget.1620] [PMID: 24495907]
[80]
Dantas-Barbosa C, Bergthold G, Daudigeos-Dubus E, et al. Inhibition of the NOTCH pathway using γ-secretase inhibitor RO4929097 has limited antitumor activity in established glial tumors. Anticancer Drugs 2015; 26(3): 272-83.
[http://dx.doi.org/10.1097/CAD.0000000000000190] [PMID: 25486598]
[81]
Ma Y, Cheng Z, Liu J, et al. Inhibition of farnesyltransferase potentiates NOTCH-targeted therapy against glioblastoma stem cells. Stem Cell Reports 2017; 9(6): 1948-60.
[http://dx.doi.org/10.1016/j.stemcr.2017.10.028] [PMID: 29198824]
[82]
Opačak-Bernardi T, Ryu JS, Raucher D. Effects of cell penetrating Notch inhibitory peptide conjugated to elastin-like polypeptide on glioblastoma cells. J Drug Target 2017; 25(6): 523-31.
[http://dx.doi.org/10.1080/1061186X.2017.1289537] [PMID: 28140690]
[83]
Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci 2000; 97(16): 9082-7.
[http://dx.doi.org/10.1073/pnas.97.16.9082] [PMID: 10922063]
[84]
Moutal A, Honnorat J, Massoma P, et al. CRMP5 controls glioblastoma cell proliferation and survival through notch-dependent signaling. Cancer Res 2015; 75(17): 3519-28.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0631] [PMID: 26122847]
[85]
Zong H, Xu H, Geng Z, et al. Reproductive factors in relation to risk of brain tumors in women: An updated meta-analysis of 27 independent studies. Tumour Biol 2014; 35(11): 11579-86.
[http://dx.doi.org/10.1007/s13277-014-2448-1] [PMID: 25135427]
[86]
Molina-Botello D, Rodríguez-Sanchez JR, Cuevas-García J, et al. Pregnancy and brain tumors; a systematic review of the literature. J Clin Neurosci 2021; 86: 211-6.
[http://dx.doi.org/10.1016/j.jocn.2021.01.048] [PMID: 33775330]
[87]
Singh P, Mantilla E, Sewell J, Hatanpaa KJ, Pan E. Occurrence of glioma in pregnant patients: An institutional case series and review of the literature. Anticancer Res 2020; 40(6): 3453-7.
[http://dx.doi.org/10.21873/anticanres.14331] [PMID: 32487644]
[88]
Yust-Katz S, de Groot JF, Liu D, et al. Pregnancy and glial brain tumors. Neuro-oncol 2014; 16(9): 1289-94.
[http://dx.doi.org/10.1093/neuonc/nou019] [PMID: 24615863]
[89]
van Westrhenen A, Senders JT, Martin E, DiRisio AC, Broekman MLD. Clinical challenges of glioma and pregnancy: A systematic review. J Neurooncol 2018; 139(1): 1-11.
[http://dx.doi.org/10.1007/s11060-018-2851-3] [PMID: 29623596]
[90]
Dunham C, Pillai S, Steinbok P. Infant brain tumors: A neuropathologic population-based institutional reappraisal. Hum Pathol 2012; 43(10): 1668-76.
[http://dx.doi.org/10.1016/j.humpath.2011.12.011] [PMID: 22497851]
[91]
Ceglie G, Vinci M, Carai A, et al. Infantile/congenital high-grade gliomas: Molecular features and therapeutic perspectives. Diagnostics 2020; 10(9): 648.
[http://dx.doi.org/10.3390/diagnostics10090648] [PMID: 32872331]
[92]
Guerreiro Stucklin AS, Ryall S, Fukuoka K, et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 2019; 10(1): 4343.
[http://dx.doi.org/10.1038/s41467-019-12187-5] [PMID: 31554817]
[93]
Greenfield JJA, High S. The Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment. J Cell Sci 1999; 112(10): 1477-86.
[http://dx.doi.org/10.1242/jcs.112.10.1477] [PMID: 10212142]
[94]
Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 2015; 10(1): 173-94.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104649] [PMID: 25387057]
[95]
Liu Y, Ji W, Shergalis A, et al. Activation of the unfolded protein response via inhibition of protein disulfide isomerase decreases the capacity for DNA repair to sensitize glioblastoma to radiotherapy. Cancer Res 2019; 79(11): 2923-32.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2540] [PMID: 30996048]
[96]
Liu B, Liu J, Liao Y, et al. Identification of SEC61G as a novel prognostic marker for predicting survival and response to therapies in patients with glioblastoma. Med Sci Monit 2019; 25: 3624-35.
[http://dx.doi.org/10.12659/MSM.916648] [PMID: 31094363]
[97]
Guo J, Li P, Liu X, Li Y. NOTCH signaling pathway and non-coding RNAs in cancer. Pathol Res Pract 2019; 215(11): 152620.
[http://dx.doi.org/10.1016/j.prp.2019.152620] [PMID: 31564572]
[98]
Wang X, Yan Y, Zhang C, et al. Upregulation of lncRNA PlncRNA-1 indicates the poor prognosis and promotes glioma progression by activation of Notch signal pathway. Biomed Pharmacother 2018; 103: 216-21.
[http://dx.doi.org/10.1016/j.biopha.2018.03.150] [PMID: 29653367]
[99]
Sun T, Patil R, Galstyan A, et al. Blockade of a laminin-411-notch axis with CRISPR/Cas9 or a nanobioconjugate inhibits glioblastoma growth through tumor-microenvironment cross-talk. Cancer Res 2019; 79(6): 1239-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2725] [PMID: 30659021]
[100]
Xue W, Chen J, Liu X, et al. PVT1 regulates the malignant behaviors of human glioma cells by targeting miR-190a-5p and miR-488-3p. Biochim Biophys Acta Mol Basis Dis 2018; 1864(5): 1783-94.
[http://dx.doi.org/10.1016/j.bbadis.2018.02.022] [PMID: 29501773]
[101]
Luo L, Zhang Y, He H, Chen C, Zhang B, Cai M. LncRNA FEZF1-AS1 sponges miR-34a to upregulate Notch-1 in glioblastoma. Cancer Manag Res 2020; 12: 1827-33.
[http://dx.doi.org/10.2147/CMAR.S240531] [PMID: 32210625]
[102]
Tsai YL, Chang HH, Chen YC, Chang YC, Chen Y, Tsai WC. Molecular mechanisms of KDELC2 on glioblastoma tumorigenesis and temozolomide resistance. Biomedicines 2020; 8(9): 339.
[http://dx.doi.org/10.3390/biomedicines8090339] [PMID: 32927743]
[103]
Matsuno K, Diederich RJ, Go MJ, Blaumueller CM, Artavanis-Tsakonas S. Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 1995; 121(8): 2633-44.
[http://dx.doi.org/10.1242/dev.121.8.2633] [PMID: 7671825]
[104]
Huber RM, Rajski M, Sivasankaran B, Moncayo G, Hemmings BA, Merlo A. Deltex-1 activates mitotic signaling and proliferation and increases the clonogenic and invasive potential of U373 and LN18 glioblastoma cells and correlates with patient survival. PLoS One 2013; 8(2): e57793.
[http://dx.doi.org/10.1371/journal.pone.0057793] [PMID: 23451269]
[105]
Biondi A, Emanuele Liardo RL, Borzì AM, et al. Effects of infections on the pathogenesis of cancer. Indian J Med Res 2021; 153(4): 431-45.
[http://dx.doi.org/10.4103/ijmr.IJMR_339_19] [PMID: 34380789]
[106]
Newman JH, Zloza A. Infection: A Cause of and Cure for Cancer. Curr Pharmacol Rep 2017; 3(6): 315-20.
[http://dx.doi.org/10.1007/s40495-017-0109-y] [PMID: 29201631]
[107]
Mager DL. Bacteria and cancer: Cause, coincidence or cure? A review. J Transl Med 2006; 4(1): 14.
[http://dx.doi.org/10.1186/1479-5876-4-14] [PMID: 16566840]
[108]
Hoption Cann SA, van Netten JP, van Netten C. Acute infections as a means of cancer prevention: Opposing effects to chronic infections? Cancer Detect Prev 2006; 30(1): 83-93.
[http://dx.doi.org/10.1016/j.cdp.2005.11.001] [PMID: 16490323]
[109]
Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802(4): 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
[110]
Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022; 11: e73557.
[http://dx.doi.org/10.7554/eLife.73557] [PMID: 35285800]
[111]
Singh S, Singh TG. Emerging perspectives on mitochondrial dysfunctioning and inflammation in epileptogenesis. Inflamm Res 2021; 70(10-12): 1027-42.
[http://dx.doi.org/10.1007/s00011-021-01511-9] [PMID: 34652489]
[112]
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: Therapeutic perspectives. Pharmacol Ther 2014; 144(2): 202-25.
[http://dx.doi.org/10.1016/j.pharmthera.2014.05.013] [PMID: 24924700]
[113]
Wortzel I, Seger R. The ERK Cascade: Distinct functions within various subcellular organelles. Genes Cancer 2011; 2(3): 195-209.
[http://dx.doi.org/10.1177/1947601911407328] [PMID: 21779493]
[114]
Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro 2010; 2(5): AN20100019.
[http://dx.doi.org/10.1042/AN20100019] [PMID: 20957078]
[115]
Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood 2001; 98(9): 2603-14.
[http://dx.doi.org/10.1182/blood.V98.9.2603] [PMID: 11675328]
[116]
Akbari M, Kirkwood TBL, Bohr VA. Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev 2019; 54: 100940.
[http://dx.doi.org/10.1016/j.arr.2019.100940] [PMID: 31415807]
[117]
Bozkulak EC, Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol 2009; 29(21): 5679-95.
[http://dx.doi.org/10.1128/MCB.00406-09] [PMID: 19704010]
[118]
Chen X, Chen L, Zhang R, et al. ADAM17 regulates self-renewal and differentiation of U87 glioblastoma stem cells. Neurosci Lett 2013; 537: 44-9.
[http://dx.doi.org/10.1016/j.neulet.2013.01.021] [PMID: 23356982]
[119]
Dadey DYA, Kapoor V, Khudanyan A, et al. The ATF6 pathway of the ER stress response contributes to enhanced viability in glioblastoma. Oncotarget 2016; 7(2): 2080-92.
[http://dx.doi.org/10.18632/oncotarget.6712] [PMID: 26716508]
[120]
Li Y, He ZC, Zhang XN, et al. Stanniocalcin-1 augments stem-like traits of glioblastoma cells through binding and activating NOTCH1. Cancer Lett 2018; 416: 66-74.
[http://dx.doi.org/10.1016/j.canlet.2017.11.033] [PMID: 29196129]
[121]
Ylivinkka I, Hu Y, Chen P, et al. Netrin-1 induced activation of Notch signaling mediates glioblastoma cell invasion. J Cell Sci 2013; 126(Pt 11): jcs.120022.
[http://dx.doi.org/10.1242/jcs.120022] [PMID: 23549787]
[122]
Sarkar S, Mirzaei R, Zemp FJ, et al. Activation of NOTCH Signaling by Tenascin-C promotes growth of human brain tumor-initiating cells. Cancer Res 2017; 77(12): 3231-43.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2171] [PMID: 28416488]
[123]
Nickoloff BJ, Qin J-Z, Chaturvedi V, Denning MF, Bonish B, Miele L. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-κB and PPARγ. Cell Death Differ 2002; 9(8): 842-55.
[http://dx.doi.org/10.1038/sj.cdd.4401036] [PMID: 12107827]
[124]
Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: From past to present. Eur J Med Chem 2017; 126: 879-93.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.020] [PMID: 27988463]
[125]
Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 1993; 32(21): 5598-604.
[http://dx.doi.org/10.1021/bi00072a015] [PMID: 7684926]
[126]
Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347(6294): 645-50.
[http://dx.doi.org/10.1038/347645a0] [PMID: 2129546]
[127]
Miyachi H. Structural biology-based exploration of subtype-selective agonists for peroxisome proliferator-activated receptors. Int J Mol Sci 2021; 22(17): 9223.
[http://dx.doi.org/10.3390/ijms22179223] [PMID: 34502131]
[128]
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator‐activated receptors as therapeutic target for cancer. J Cell Mol Med 2023; jcmm.17931.
[http://dx.doi.org/10.1111/jcmm.17931] [PMID: 37700501]
[129]
Basilotta R, Lanza M, Casili G, et al. Potential therapeutic effects of PPAR ligands in glioblastoma. Cells 2022; 11(4): 621.
[http://dx.doi.org/10.3390/cells11040621] [PMID: 35203272]
[130]
Hua TNM, Oh J, Kim S, et al. Peroxisome proliferator-activated receptor gamma as a theragnostic target for mesenchymal-type glioblastoma patients. Exp Mol Med 2020; 52(4): 629-42.
[http://dx.doi.org/10.1038/s12276-020-0413-1] [PMID: 32280134]
[131]
Fidoamore A, Cristiano L, Laezza C, et al. Energy metabolism in glioblastoma stem cells: PPARα a metabolic adaptor to intratumoral microenvironment. Oncotarget 2017; 8(65): 108430-50.
[http://dx.doi.org/10.18632/oncotarget.19086] [PMID: 29312541]
[132]
Pagano E, Venneri T, Lucariello G, et al. Palmitoylethanolamide reduces colon cancer cell proliferation and migration, influences tumor cell cycle and exerts in vivo chemopreventive effects. Cancers 2021; 13(8): 1923.
[http://dx.doi.org/10.3390/cancers13081923] [PMID: 33923494]
[133]
Fraguas-Sánchez AI, Martín-Sabroso C, Torres-Suárez AI. Insights into the effects of the endocannabinoid system in cancer: a review. Br J Pharmacol 2018; 175(13): 2566-80.
[http://dx.doi.org/10.1111/bph.14331] [PMID: 29663308]
[134]
Hamtiaux L, Masquelier J, Muccioli GG, et al. The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action. BMC Cancer 2012; 12(1): 92.
[http://dx.doi.org/10.1186/1471-2407-12-92] [PMID: 22429826]
[135]
Stock K, Kumar J, Synowitz M, et al. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat Med 2012; 18(8): 1232-8.
[http://dx.doi.org/10.1038/nm.2827] [PMID: 22820645]
[136]
Maccarrone M, Attinà M, Cartoni A, Bari M, Finazzi-Agrò A. Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. J Neurochem 2001; 76(2): 594-601.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00092.x] [PMID: 11208922]
[137]
De Petrocellis L, Bisogno T, Ligresti A, Bifulco M, Melck D, Di Marzo V. Effect on cancer cell proliferation of palmitoylethanolamide, a fatty acid amide interacting with both the cannabinoid and vanilloid signalling systems. Fundam Clin Pharmacol 2002; 16(4): 297-302.
[http://dx.doi.org/10.1046/j.1472-8206.2002.00094.x] [PMID: 12570018]
[138]
Kefas B, Comeau L, Floyd DH, et al. The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci 2009; 29(48): 15161-8.
[http://dx.doi.org/10.1523/JNEUROSCI.4966-09.2009] [PMID: 19955368]
[139]
Katsushima K, Kondo Y. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation. Front Genet 2014; 5: 14.
[http://dx.doi.org/10.3389/fgene.2014.00014] [PMID: 24550934]
[140]
Cristofaro I, Alessandrini F, Spinello Z, et al. Cross interaction between M2 muscarinic receptor and Notch1/EGFR pathway in human glioblastoma cancer stem cells: Effects on cell cycle progression and survival. Cells 2020; 9(3): 657.
[http://dx.doi.org/10.3390/cells9030657] [PMID: 32182759]
[141]
Xing Z, Sun L, Guo W. Elevated expression of Notch-1 and EGFR induced apoptosis in glioblastoma multiforme patients. Clin Neurol Neurosurg 2015; 131: 54-8.
[http://dx.doi.org/10.1016/j.clineuro.2015.01.018] [PMID: 25704190]
[142]
Pang RTK, Leung CON, Ye TM, et al. MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis 2010; 31(6): 1037-44.
[http://dx.doi.org/10.1093/carcin/bgq066] [PMID: 20351093]
[143]
Li X, Ji M, Zhong S, et al. MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Arch Med Res 2012; 43(7): 514-21.
[http://dx.doi.org/10.1016/j.arcmed.2012.09.007] [PMID: 23085450]
[144]
Zhou J, Zhou W, Kong F, Xiao X, Kuang H, Zhu Y. microRNA 34a overexpression inhibits cell migration and invasion via regulating SIRT1 in hepatocellular carcinoma. Oncol Lett 2017; 14(6): 6950-4.
[http://dx.doi.org/10.3892/ol.2017.7090] [PMID: 29344126]
[145]
Guessous F, Zhang Y, Kofman A, et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 2010; 9(6): 1031-6.
[http://dx.doi.org/10.4161/cc.9.6.10987] [PMID: 20190569]
[146]
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA. org resource: Targets and expression. Nucleic Acids Res 2007; 36(Database): D149-53.
[http://dx.doi.org/10.1093/nar/gkm995] [PMID: 18158296]
[147]
Wang P, Liang X, Lu Y, Zhao X, Liang J. MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway. Neurochem Res 2016; 41(10): 2627-35.
[http://dx.doi.org/10.1007/s11064-016-1975-0] [PMID: 27300700]
[148]
Zhu T, Yao Q, Wang W, Yao H, Chao J. iNOS induces vascular endothelial cell migration and apoptosis via autophagy in ischemia/reperfusion injury. Cell Physiol Biochem 2016; 38(4): 1575-88.
[http://dx.doi.org/10.1159/000443098]
[149]
Rayner BS, Duong TTH, Myers SJ, Witting PK. Protective effect of a synthetic anti‐oxidant on neuronal cell apoptosis resulting from experimental hypoxia re‐oxygenation injury. J Neurochem 2006; 97(1): 211-21.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03726.x] [PMID: 16524376]
[150]
Jiang Y, Li L, Ma J, et al. Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model. Neurochem Int 2016; 97: 73-82.
[http://dx.doi.org/10.1016/j.neuint.2016.02.009] [PMID: 26964767]
[151]
Bacon A, Harris A. Hypoxia-inducible factors and hypoxic cell death in tumour physiology. Ann Med 2004; 36(7): 530-9.
[http://dx.doi.org/10.1080/07853890410018231] [PMID: 15513303]
[152]
Burton TR, Henson ES, Baijal P, Eisenstat DD, Gibson SB. The pro‐cell death Bcl‐2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survival under hypoxia. Int J Cancer 2006; 118(7): 1660-9.
[http://dx.doi.org/10.1002/ijc.21547] [PMID: 16217754]
[153]
Zhao K, Wang Q, Wang Y, et al. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett 2017; 406: 12-21.
[http://dx.doi.org/10.1016/j.canlet.2017.07.022] [PMID: 28778566]
[154]
Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res 2015; 25(8): 981-4.
[http://dx.doi.org/10.1038/cr.2015.82] [PMID: 26138677]
[155]
Xu H, Zhang Y, Qi L, Ding L, Jiang H, Yu H. NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via notch signaling pathway. Front Mol Neurosci 2018; 11: 225.
[http://dx.doi.org/10.3389/fnmol.2018.00225] [PMID: 30072869]
[156]
Zhao X, Shen F, Yang B. LncRNA LINC01410 induced by MYC accelerates glioma progression via sponging miR-506-3p and modulating NOTCH2 expression to motivate notch signaling pathway. Cell Mol Neurobiol 2021.
[http://dx.doi.org/10.1007/s10571-021-01042-1] [PMID: 33712887]
[157]
Zhang S, Guo S, Liang C, Lian M. Long intergenic noncoding RNA 00021 promotes glioblastoma temozolomide resistance by epigenetically silencing p21 through Notch pathway. IUBMB Life 2020; 72(8): 1747-56.
[http://dx.doi.org/10.1002/iub.2301] [PMID: 32449315]
[158]
Freitas MRP, Malheiros SMF, Stávale JN, et al. Expression of cancer/testis antigens is correlated with improved survival in glioblastoma. Oncotarget 2013; 4(4): 636-46.
[http://dx.doi.org/10.18632/oncotarget.950] [PMID: 23592437]
[159]
Hu G, Wu L, Kuang W, et al. Knockdown of linc-OIP5 inhibits proliferation and migration of glioma cells through down-regulation of YAP-NOTCH signaling pathway. Gene 2017; 610: 24-31.
[http://dx.doi.org/10.1016/j.gene.2017.02.006] [PMID: 28189759]
[160]
Wang J, Su Z, Lu S, et al. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer. Clin Chim Acta 2018; 485: 229-33.
[http://dx.doi.org/10.1016/j.cca.2018.07.004]
[161]
Wu L, Zhu X, Song Z, et al. Long non-coding RNA HOXA-AS2 enhances the malignant biological behaviors in glioma by epigenetically regulating RND3 expression. OncoTargets Ther 2019; 12: 9407-19.
[http://dx.doi.org/10.2147/OTT.S225678] [PMID: 31819475]
[162]
Zhu Z, Dai J, Liao Y, Ma J, Zhou W. [ARTICLE WITHDRAWN] knockdown of long noncoding RNA LINC00152 suppresses cellular proliferation and invasion in glioma cells by regulating miR-4775. Oncol Res 2018; 26(6): 857-67.
[http://dx.doi.org/10.3727/096504017X15016337254597] [PMID: 28800786]
[163]
Díaz-Trelles R, Scimia MC, Bushway P, et al. Notch-independent RBPJ controls angiogenesis in the adult heart. Nat Commun 2016; 7(1): 12088.
[http://dx.doi.org/10.1038/ncomms12088] [PMID: 27357444]
[164]
Hori K, Cholewa-Waclaw J, Nakada Y, et al. A nonclassical bHLH-Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes Dev 2008; 22(2): 166-78.
[http://dx.doi.org/10.1101/gad.1628008] [PMID: 18198335]
[165]
Masui T, Long Q, Beres TM, Magnuson MA, MacDonald RJ. Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes Dev 2007; 21(20): 2629-43.
[http://dx.doi.org/10.1101/gad.1575207] [PMID: 17938243]
[166]
Zhang G, Tanaka S, Jiapaer S, et al. RBPJ contributes to the malignancy of glioblastoma and induction of proneural‐mesenchymal transition via IL‐6‐STAT3 pathway. Cancer Sci 2020; 111(11): 4166-76.
[http://dx.doi.org/10.1111/cas.14642] [PMID: 32885530]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy