Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Nanotechnology Utilizing Ferroptosis Inducers in Cancer Treatment

Author(s): Soghra Farzipour, Fatemeh Jalali Zefrei, Saeed Bahadorikhalili, Maryam Alvandi, Arsalan Salari and Zahra Shaghaghi*

Volume 24, Issue 8, 2024

Published on: 24 January, 2024

Page: [571 - 589] Pages: 19

DOI: 10.2174/0118715206278427231215111526

Price: $65

Abstract

Current cancer treatment options have presented numerous challenges in terms of reaching high efficacy. As a result, an immediate step must be taken to create novel therapies that can achieve more than satisfying outcomes in the fight against tumors. Ferroptosis, an emerging form of regulated cell death (RCD) that is reliant on iron and reactive oxygen species, has garnered significant attention in the field of cancer therapy. Ferroptosis has been reported to be induced by a variety of small molecule compounds known as ferroptosis inducers (FINs), as well as several licensed chemotherapy medicines. These compounds' low solubility, systemic toxicity, and limited capacity to target tumors are some of the significant limitations that have hindered their clinical effectiveness. A novel cancer therapy paradigm has been created by the hypothesis that ferroptosis induced by nanoparticles has superior preclinical properties to that induced by small drugs and can overcome apoptosis resistance. Knowing the different ideas behind the preparation of nanomaterials that target ferroptosis can be very helpful in generating new ideas. Simultaneously, more improvement in nanomaterial design is needed to make them appropriate for therapeutic treatment. This paper first discusses the fundamentals of nanomedicine-based ferroptosis to highlight the potential and characteristics of ferroptosis in the context of cancer treatment. The latest study on nanomedicine applications for ferroptosis-based anticancer therapy is then highlighted.

Graphical Abstract

[1]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[2]
Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer, 2022, 21(1), 47.
[http://dx.doi.org/10.1186/s12943-022-01530-y] [PMID: 35151318]
[3]
Hosseinimehr, S.J.; Allahgholipour, S.Z.; Farzipour, S.; Ghasemi, A.; Asgarian-Omran, H. The radiosensitizing effect of olanzapine as an antipsychotic medication on glioblastoma cell. Curr. Radiopharm., 2022, 15(1), 50-55.
[http://dx.doi.org/10.2174/1874471014666210120100448] [PMID: 33494694]
[4]
Mancardi, D.; Mezzanotte, M.; Arrigo, E.; Barinotti, A.; Roetto, A. Iron overload, oxidative stress, and ferroptosis in the failing heart and liver. Antioxidants, 2021, 10(12), 1864.
[http://dx.doi.org/10.3390/antiox10121864] [PMID: 34942967]
[5]
Shaghaghi, Z.; Farzipour, S.; Jalali, F.; Alvandi, M. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(1), 2-9.
[http://dx.doi.org/10.2174/1871525720666220713101736] [PMID: 35838214]
[6]
Kulik, L.; El-Serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology, 2019, 156(2), 477-491.e1.
[http://dx.doi.org/10.1053/j.gastro.2018.08.065] [PMID: 30367835]
[7]
Nie, Q.; Hu, Y.; Yu, X.; Li, X.; Fang, X. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int., 2022, 22(1), 12.
[http://dx.doi.org/10.1186/s12935-021-02366-0] [PMID: 34996454]
[8]
Clemente, S.M.; Martínez-Costa, O.H.; Monsalve, M.; Samhan-Arias, A.K. Targeting lipid peroxidation for cancer treatment. Molecules, 2020, 25(21), 5144.
[http://dx.doi.org/10.3390/molecules25215144] [PMID: 33167334]
[9]
Lee, J.J.; Chang-Chien, G.P.; Lin, S.; Hsiao, Y.T.; Ke, M.C.; Chen, A.; Lin, T.K. 5-Lipoxygenase inhibition protects retinal pigment epithelium from sodium iodate-induced ferroptosis and prevents retinal degeneration. Oxid. Med. Cell. Longev., 2022, 2022, 1-21.
[http://dx.doi.org/10.1155/2022/1792894] [PMID: 35251467]
[10]
Farzipour, S.; Shaghaghi, Z.; Motieian, S.; Alvandi, M.; Yazdi, A.; Asadzadeh, B.; Abbasi, S. Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease. Mini Rev. Med. Chem., 2022, 22(17), 2271-2286.
[http://dx.doi.org/10.2174/1389557522666220218123404] [PMID: 35184711]
[11]
Tu, H.; Tang, L.J.; Luo, X.J.; Ai, K.L.; Peng, J. Insights into the novel function of system Xc- in regulated cell death. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1650-1662.
[http://dx.doi.org/10.26355/eurrev_202102_24876] [PMID: 33629335]
[12]
Li, F.J.; Long, H.Z.; Zhou, Z.W.; Luo, H.Y.; Xu, S.G.; Gao, L.C. System Xc/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front. Pharmacol., 2022, 13, 910292.
[http://dx.doi.org/10.3389/fphar.2022.910292] [PMID: 36105219]
[13]
Sodani, K.; Patel, A.; Kathawala, R.J.; Chen, Z.S. Multidrug resistance associated proteins in multidrug resistance. Chin. J. Cancer, 2012, 31(2), 58-72.
[http://dx.doi.org/10.5732/cjc.011.10329] [PMID: 22098952]
[14]
Liang, X.; You, Z.; Chen, X.; Li, J. Targeting ferroptosis in colorectal cancer. Metabolites, 2022, 12(8), 745.
[http://dx.doi.org/10.3390/metabo12080745] [PMID: 36005616]
[15]
Daher, B.; Parks, S.K.; Durivault, J.; Cormerais, Y.; Baidarjad, H.; Tambutte, E. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res., 2022, 79(15), 3877-3890.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3855]
[16]
Panieri, E.; Buha, A.; Telkoparan-Akillilar, P.; Cevik, D.; Kouretas, D.; Veskoukis, A.; Skaperda, Z.; Tsatsakis, A.; Wallace, D.; Suzen, S.; Saso, L. Potential applications of NRF2 modulators in cancer therapy. Antioxidants, 2020, 9(3), 193.
[http://dx.doi.org/10.3390/antiox9030193] [PMID: 32106613]
[17]
Zhang, J.; Gao, M.; Niu, Y.; Sun, J. Identification of a novel ferroptosis inducer for gastric cancer treatment using drug repurposing strategy. Front. Mol. Biosci., 2022, 9, 860525.
[http://dx.doi.org/10.3389/fmolb.2022.860525] [PMID: 35860356]
[18]
Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[19]
Bao, Z.; Hua, L.; Ye, Y.; Wang, D.; Li, C.; Xie, Q.; Wakimoto, H.; Gong, Y.; Ji, J. MEF2C silencing downregulates NF2 and E-cadherin and enhances Erastin-induced ferroptosis in meningioma. Neuro-oncol., 2021, 23(12), 2014-2027.
[http://dx.doi.org/10.1093/neuonc/noab114] [PMID: 33984142]
[20]
Li, R.; Guiney, L.M.; Chang, C.H.; Mansukhani, N.D.; Ji, Z.; Wang, X.; Liao, Y.P.; Jiang, W.; Sun, B.; Hersam, M.C.; Nel, A.E.; Xia, T. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano, 2018, 12(2), 1390-1402.
[http://dx.doi.org/10.1021/acsnano.7b07737] [PMID: 29328670]
[21]
Zhang, X.; Ma, Y.; Wan, J.; Yuan, J.; Wang, D.; Wang, W.; Sun, X.; Meng, Q. Biomimetic nanomaterials triggered ferroptosis for cancer theranostics. Front Chem., 2021, 9, 768248.
[http://dx.doi.org/10.3389/fchem.2021.768248] [PMID: 34869212]
[22]
Portilla, Y.; Mulens-Arias, V.; Paradela, A.; Ramos-Fernández, A.; Pérez-Yagüe, S.; Morales, M.P.; Barber, D.F. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials, 2022, 281, 121365.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121365] [PMID: 35038611]
[23]
Wang, J.; Sui, L.; Huang, J.; Miao, L.; Nie, Y.; Wang, K.; Yang, Z.; Huang, Q.; Gong, X.; Nan, Y.; Ai, K. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact. Mater., 2021, 6(11), 4209-4242.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.021] [PMID: 33997503]
[24]
Zheng, H.; Jiang, J.; Xu, S.; Liu, W.; Xie, Q.; Cai, X.; Zhang, J.; Liu, S.; Li, R. Nanoparticle induced ferroptosis: detection methods, mechanisms and applications. Nanoscale, 2021, 13(4), 2266-2285.
[http://dx.doi.org/10.1039/D0NR08478F] [PMID: 33480938]
[25]
Allemailem, K.S.; Almatroudi, A.; Alrumaihi, F.; Almatroodi, S.A.; Alkurbi, M.O.; Basfar, G.T.; Rahmani, A.H.; Khan, A.A. Novel approaches of dysregulating lysosome functions in cancer cells by specific drugs and its nanoformulations: A smart approach of modern therapeutics. Int. J. Nanomed., 2021, 16, 5065-5098.
[http://dx.doi.org/10.2147/IJN.S321343] [PMID: 34345172]
[26]
Wang, F.; Salvati, A.; Boya, P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol., 2018, 8(4), 170271.
[http://dx.doi.org/10.1098/rsob.170271] [PMID: 29643148]
[27]
Meyer-Schwesinger, C. Lysosome function in glomerular health and disease. Cell Tissue Res., 2021, 385(2), 371-392.
[http://dx.doi.org/10.1007/s00441-020-03375-7] [PMID: 33433692]
[28]
Yuan, Z.; Liu, T.; Wang, H.; Xue, L.; Wang, J. Fatty acids metabolism: The bridge between ferroptosis and ionizing radiation. Front. Cell Dev. Biol., 2021, 9, 675617.
[http://dx.doi.org/10.3389/fcell.2021.675617] [PMID: 34249928]
[29]
Zhang, D.; Cui, P.; Dai, Z.; Yang, B.; Yao, X.; Liu, Q.; Hu, Z.; Zheng, X. Tumor microenvironment responsive FePt/MoS2 nanocomposites with chemotherapy and photothermal therapy for enhancing cancer immunotherapy. Nanoscale, 2019, 11(42), 19912-19922.
[http://dx.doi.org/10.1039/C9NR05684J] [PMID: 31599915]
[30]
Liu, M.; Xu, Y.; Zhao, Y.; Wang, Z.; Shi, D. Hydroxyl radical-involved cancer therapy via Fenton reactions. Front. Chem. Sci. Eng., 2022, 16(3), 345-363.
[http://dx.doi.org/10.1007/s11705-021-2077-3]
[31]
Wang, F.; Franco, R.; Skotak, M.; Hu, G.; Chandra, N. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress. Neurotoxicology, 2014, 41, 54-63.
[http://dx.doi.org/10.1016/j.neuro.2014.01.002] [PMID: 24462953]
[32]
Zhao, Y.; Zhao, W.; Lim, Y.C.; Liu, T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol. Pharm., 2019, 16(6), 2532-2539.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00132] [PMID: 31009228]
[33]
Zhou, J.; Lei, M.; Peng, X.L.; Wei, D.X.; Yan, L.K. Fenton reaction induced by fe-based nanoparticles for tumor therapy. J. Biomed. Nanotechnol., 2021, 17(8), 1510-1524.
[http://dx.doi.org/10.1166/jbn.2021.3130] [PMID: 34544529]
[34]
Wang, Y.; Gao, F.; Li, X.; Niu, G.; Yang, Y.; Li, H.; Jiang, Y. Tumor microenvironment-responsive fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnology, 2022, 20(1), 69.
[http://dx.doi.org/10.1186/s12951-022-01278-z] [PMID: 35123493]
[35]
Sagasser, J.; Ma, B.N.; Baecker, D.; Salcher, S.; Hermann, M.; Lamprecht, J.; Angerer, S.; Obexer, P.; Kircher, B.; Gust, R. A new approach in cancer treatment: Discovery of chlorido[N, N ′-disalicylidene-1,2-phenylenediamine]iron(III) Complexes as Ferroptosis Inducers. J. Med. Chem., 2019, 62(17), 8053-8061.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00814] [PMID: 31369259]
[36]
Liang, H.; Guo, J.; Shi, Y.; Zhao, G.; Sun, S.; Sun, X. Porous yolk-shell Fe/Fe3O4 nanoparticles with controlled exposure of highly active Fe(0) for cancer therapy. Biomaterials, 2021, 268, 120530.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120530] [PMID: 33296795]
[37]
Huang, K.J.; Wei, Y.H.; Chiu, Y.C.; Wu, S.R.; Shieh, D.B. Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater. Sci., 2019, 7(4), 1311-1322.
[http://dx.doi.org/10.1039/C8BM01525B] [PMID: 30734774]
[38]
Wen, J.; Chen, H.; Ren, Z.; Zhang, P.; Chen, J.; Jiang, S. Ultrasmall iron oxide nanoparticles induced ferroptosis via Beclin1/ATG5-dependent autophagy pathway. Nano Converg., 2021, 8(1), 10.
[http://dx.doi.org/10.1186/s40580-021-00260-z] [PMID: 33796911]
[39]
Zhao, Y.; Huang, Z.; Peng, H. Molecular mechanisms of ferroptosis and its roles in hematologic malignancies. Front. Oncol., 2021, 11, 743006.
[http://dx.doi.org/10.3389/fonc.2021.743006] [PMID: 34778060]
[40]
Chen, S.; Yang, J.; Liang, Z.; Li, Z.; Xiong, W.; Fan, Q.; Shen, Z.; Liu, J.; Xu, Y. Synergistic functional nanomedicine enhances ferroptosis therapy for breast tumors by a blocking defensive redox system. ACS Appl. Mater. Interfaces, 2023, 15(2), 2705-2713.
[http://dx.doi.org/10.1021/acsami.2c19585] [PMID: 36622364]
[41]
Yang, H.; Yao, X.; Liu, Y.; Shen, X.; Li, M.; Luo, Z. Ferroptosis nanomedicine: Clinical challenges and opportunities for modulating tumor metabolic and immunological landscape. ACS Nano, 2023, 17(16), 15328-15353.
[http://dx.doi.org/10.1021/acsnano.3c04632] [PMID: 37573530]
[42]
Klein, S.; Dell’Arciprete, M.L.; Wegmann, M.; Distel, L.V.R.; Neuhuber, W.; Gonzalez, M.C.; Kryschi, C. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem. Biophys. Res. Commun., 2013, 434(2), 217-222.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.042] [PMID: 23535374]
[43]
Benavides, B.S.; Valandro, S.; Cioloboc, D.; Taylor, A.B.; Schanze, K.S.; Kurtz, D.M., Jr Structure of a zinc porphyrin-substituted bacterioferritin and photophysical properties of iron reduction. Biochemistry, 2020, 59(16), 1618-1629.
[http://dx.doi.org/10.1021/acs.biochem.9b01103] [PMID: 32283930]
[44]
Chu, H.; Cao, T.; Dai, G.; Liu, B.; Duan, H.; Kong, C. Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv., 2021, 11, 35472-35488.
[http://dx.doi.org/10.1039/D1RA05638G]
[45]
Meng, Z.; Xue, H.; Wang, T.; Chen, B.; Dong, X.; Yang, L.; Dai, J.; Lou, X.; Xia, F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: From chemical to clinical. J. Nanobiotechnol., 2022, 20(1), 344.
[http://dx.doi.org/10.1186/s12951-022-01553-z] [PMID: 35883086]
[46]
Hu, P.; Wu, T.; Fan, W.; Chen, L.; Liu, Y.; Ni, D.; Bu, W.; Shi, J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials, 2017, 141, 86-95.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.035] [PMID: 28668609]
[47]
Zhu, J.; Dai, P.; Liu, F.; Li, Y.; Qin, Y.; Yang, Q.; Tian, R.; Fan, A.; Medeiros, S.F.; Wang, Z.; Zhao, Y. Upconverting nanocarriers enable triggered microtubule inhibition and concurrent ferroptosis induction for selective treatment of triple-negative breast cancer. Nano Lett., 2020, 20(9), 6235-6245.
[http://dx.doi.org/10.1021/acs.nanolett.0c00502] [PMID: 32804509]
[48]
Li, D.; Ren, J.; Li, J.; Zhang, Y.; Lou, Y.; Zhu, J.; Liu, P.; Chen, Y.; Yu, Z.; Zhao, L.; Zhang, L.; Chen, X.; Zhu, J.; Tao, J. Ferroptosis-apoptosis combined anti-melanoma immunotherapy with a NIR-responsive upconverting mSiO2 photodynamic platform. Chem. Eng. J., 2021, 419, 129557.
[http://dx.doi.org/10.1016/j.cej.2021.129557]
[49]
Li, J.; Zhou, Y.; Liu, J.; Yang, X.; Zhang, K.; Lei, L.; Hu, H.; Zhang, H.; Ouyang, L.; Gao, H. Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J. Control. Release, 2022, 352, 313-327.
[http://dx.doi.org/10.1016/j.jconrel.2022.10.025] [PMID: 36272661]
[50]
Liang, X.; Mu, M.; Chen, B.; Chuan, D.; Zhao, N.; Fan, R.; Tang, X.; Chen, H.; Han, B.; Guo, G. BSA-assisted synthesis of nanoreactors with dual pH and glutathione responses for ferroptosis and photodynamic synergistic therapy of colorectal cancer. Mat. Tod. Adv., 2022, 16, 100308.
[http://dx.doi.org/10.1016/j.mtadv.2022.100308]
[51]
Al Sharabati, M.; Sabouni, R.; Husseini, G.A. Biomedical applications of metal−organic frameworks for disease diagnosis and drug delivery: A review. Nanomaterials, 2022, 12(2), 277.
[http://dx.doi.org/10.3390/nano12020277] [PMID: 35055294]
[52]
Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W. Metal organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett., 2020, 12(1), 103.
[http://dx.doi.org/10.1007/s40820-020-00423-3] [PMID: 34138099]
[53]
Dai, H.; Yan, H.; Dong, F.; Zhang, L.; Du, N.; Sun, L. Tumor-targeted biomimetic nanoplatform precisely integrates photodynamic therapy and autophagy inhibition for collaborative treatment of oral cancer. Biomater. Sci., 2022, 10, 1456-1469.
[http://dx.doi.org/10.1039/D1BM01780B]
[54]
Saeb, M.R.; Rabiee, N.; Mozafari, M.; Mostafavi, E. Metal organic frameworks (MOFs) based nanomaterials for drug delivery. Materials, 2021, 14(13), 3652.
[http://dx.doi.org/10.3390/ma14133652] [PMID: 34208958]
[55]
Wan, X.; Song, L.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-targeted cascade nanoreactor based on metal–organic frameworks for synergistic ferroptosis–starvation anticancer therapy. ACS Nano, 2020, 14(9), 11017-11028.
[http://dx.doi.org/10.1021/acsnano.9b07789] [PMID: 32786253]
[56]
He, H.; Du, L.; Guo, H.; An, Y.; Lu, L.; Chen, Y.; Wang, Y.; Zhong, H.; Shen, J.; Wu, J.; Shuai, X. Redox responsive metal organic framework nanoparticles induces ferroptosis for cancer therapy. Small, 2020, 16(33), 2001251.
[http://dx.doi.org/10.1002/smll.202001251] [PMID: 32677157]
[57]
Bao, W.; Liu, M.; Meng, J.; Liu, S.; Wang, S.; Jia, R.; Wang, Y.; Ma, G.; Wei, W.; Tian, Z. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat. Commun., 2021, 12(1), 6399.
[http://dx.doi.org/10.1038/s41467-021-26655-4] [PMID: 34737274]
[58]
Xu, W.; Wang, T.; Qian, J.; Wang, J.; Hou, G.; Wang, Y.; Cui, X.; Suo, A.; Wu, D. Fe(II)-hydrazide coordinated all-active metal organic framework for photothermally enhanced tumor penetration and ferroptosis-apoptosis synergistic therapy. Chem. Eng. J., 2022, 437, 135311.
[http://dx.doi.org/10.1016/j.cej.2022.135311]
[59]
Pan, W.L.; Tan, Y.; Meng, W.; Huang, N.H.; Zhao, Y.B.; Yu, Z.Q.; Huang, Z.; Zhang, W.H.; Sun, B.; Chen, J.X. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials, 2022, 283, 121449.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121449] [PMID: 35247637]
[60]
Dong, J.; Ma, K.; Pei, Y.; Pei, Z. Core shell metal organic frameworks with pH/GSH dual-responsiveness for combined chemo–chemodynamic therapy. Chem. Commun., 2022, 58(88), 12341-12344.
[http://dx.doi.org/10.1039/D2CC04218E] [PMID: 36259985]
[61]
Jasim, K.A.; Gesquiere, A.J. Ultrastable and biofunctionalizable conjugated polymer nanoparticles with encapsulated iron for ferroptosis assisted chemodynamic therapy. Mol. Pharm., 2019, 16(12), 4852-4866.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00737] [PMID: 31613630]
[62]
Li, J.; Li, J.; Pu, Y.; Li, S.; Gao, W.; He, B. PDT-enhanced ferroptosis by a polymer nanoparticle with ph-activated singlet oxygen generation and superb biocompatibility for cancer therapy. Biomacromolecules, 2021, 22(3), 1167-1176.
[http://dx.doi.org/10.1021/acs.biomac.0c01679] [PMID: 33566577]
[63]
Gao, M.; Deng, J.; Liu, F.; Fan, A.; Wang, Y.; Wu, H.; Ding, D.; Kong, D.; Wang, Z.; Peer, D.; Zhao, Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials, 2019, 223, 119486.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119486] [PMID: 31520887]
[64]
Zhang, Z.; Ding, Y.; Li, J.; Wang, L.; Xin, X.; Yan, J.; Wu, J.; Yuan, A.; Hu, Y. Versatile iron-vitamin K3 derivative-based nanoscale coordination polymer augments tumor ferroptotic therapy. Nano Res., 2021, 14(7), 2398-2409.
[http://dx.doi.org/10.1007/s12274-020-3241-7]
[65]
Xu, L.; Wang, J.; Wang, J.; Lu, S.Y.; Yang, Q.; Chen, C.; Yang, H.; Hong, F.; Wu, C.; Zhao, Q.; Cao, Y.; Liu, H. Polypyrrole-iron phosphate-glucose oxidase-based nanocomposite with cascade catalytic capacity for tumor synergistic apoptosis-ferroptosis therapy. Chem. Eng. J., 2022, 427, 131671.
[http://dx.doi.org/10.1016/j.cej.2021.131671]
[66]
Yu, Y.; Meng, Y.; Xu, X.; Tong, T.; He, C.; Wang, L.; Wang, K.; Zhao, M.; You, X.; Zhang, W.; Jiang, L.; Wu, J.; Zhao, M. A ferroptosis-inducing and leukemic cell-targeting drug nanocarrier formed by redox-responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano, 2023, 17(4), 3334-3345.
[http://dx.doi.org/10.1021/acsnano.2c06313] [PMID: 36752654]
[67]
Ding, Y.; Wan, J.; Zhang, Z.; Wang, F.; Guo, J.; Wang, C. Localized Fe(II)-induced cytotoxic reactive oxygen species generating nanosystem for enhanced anticancer therapy. ACS Appl. Mater. Interfaces, 2018, 10(5), 4439-4449.
[http://dx.doi.org/10.1021/acsami.7b16999] [PMID: 29337533]
[68]
Shen, Z.; Liu, T.; Li, Y.; Lau, J.; Yang, Z.; Fan, W.; Zhou, Z.; Shi, C.; Ke, C.; Bregadze, V.I.; Mandal, S.K.; Liu, Y.; Li, Z.; Xue, T.; Zhu, G.; Munasinghe, J.; Niu, G.; Wu, A.; Chen, X. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 2018, 12(11), 11355-11365.
[http://dx.doi.org/10.1021/acsnano.8b06201] [PMID: 30375848]
[69]
Zhang, Z.; Pan, Y.; Cun, J.E.; Li, J.; Guo, Z.; Pan, Q.; Gao, W.; Pu, Y.; Luo, K.; He, B. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy. Acta Biomater., 2022, 151, 480-490.
[http://dx.doi.org/10.1016/j.actbio.2022.07.055] [PMID: 35926781]
[70]
Yu, Y.; Huang, Z.; Chen, Q.; Zhang, Z.; Jiang, H.; Gu, R.; Ding, Y.; Hu, Y. Iron-based nanoscale coordination polymers synergistically induce immunogenic ferroptosis by blocking dihydrofolate reductase for cancer immunotherapy. Biomaterials, 2022, 288, 121724.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121724] [PMID: 36038420]
[71]
Lin, J.; Zhang, J.; Wang, K.; Guo, S.; Yang, W. Zwitterionic polymer coated sorafenib-loaded Fe3O4 composite nanoparticles induced ferroptosis for cancer therapy. J. Mater. Chem. B., 2022, 10, 5784-5795.
[http://dx.doi.org/10.1039/D2TB01242A]
[72]
Sun, X.; Yang, X.; Wang, J.; Shang, Y.; Wang, P.; Sheng, X.; Liu, X.; Sun, J.; He, Z.; Zhang, S.; Luo, C. Self-engineered lipid peroxidation nano-amplifier for ferroptosis-driven antitumor therapy. Chem. Eng. J., 2023, 451, 138991.
[http://dx.doi.org/10.1016/j.cej.2022.138991]
[73]
Bae, C.; Kim, H.; Kook, Y.M.; Lee, C.; Kim, C.; Yang, C.; Park, M.H.; Piao, Y.; Koh, W.G.; Lee, K. Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Mater. Today Bio, 2022, 17, 100457.
[http://dx.doi.org/10.1016/j.mtbio.2022.100457] [PMID: 36388450]
[74]
Fernández-Acosta, R.; Iriarte-Mesa, C.; Alvarez-Alminaque, D.; Hassannia, B.; Wiernicki, B.; Díaz-García, A.M.; Vandenabeele, P.; Vanden, B.T.; Pardo, A.G.L. Novel iron oxide nanoparticles induce ferroptosis in a panel of cancer cell lines. Molecules, 2022, 27(13), 3970.
[http://dx.doi.org/10.3390/molecules27133970] [PMID: 35807217]
[75]
Li, P.; Gao, M.; Hu, Z.; Xu, T.; Chen, J.; Ma, Y.; Li, S.; Gu, Y. Synergistic ferroptosis and macrophage re-polarization using engineering exosome-mimic M1 nanovesicles for cancer metastasis suppression. Chem. Eng. J., 2021, 409, 128217.
[http://dx.doi.org/10.1016/j.cej.2020.128217]
[76]
Jiang, Q.; Wang, K.; Zhang, X.; Ouyang, B.; Liu, H.; Pang, Z.; Yang, W. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small, 2020, 16(22), 2001704.
[http://dx.doi.org/10.1002/smll.202001704] [PMID: 32338436]
[77]
Yang, J.; Ma, S.; Xu, R.; Wei, Y.; Zhang, J.; Zuo, T.; Wang, Z.; Deng, H.; Yang, N.; Shen, Q. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release, 2021, 334, 21-33.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.013] [PMID: 33872626]
[78]
Yang, R.Z.; Xu, W.N.; Zheng, H.L.; Zheng, X.F.; Li, B.; Jiang, L.S.; Jiang, S.D. Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J. Cell. Physiol., 2021, 236(4), 2725-2739.
[http://dx.doi.org/10.1002/jcp.30039] [PMID: 32892384]
[79]
Zhu, L.; Zhong, Y.; Wu, S.; Yan, M.; Cao, Y.; Mou, N.; Wang, G.; Sun, D.; Wu, W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater. Today Bio, 2022, 14, 100228.
[http://dx.doi.org/10.1016/j.mtbio.2022.100228] [PMID: 35265826]
[80]
Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392.
[http://dx.doi.org/10.1021/acsnano.8b06399] [PMID: 30495919]
[81]
Xu, T.; Ma, Y.; Yuan, Q.; Hu, H.; Hu, X.; Qian, Z.; Rolle, J.K.; Gu, Y.; Li, S. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano, 2020, 14(3), 3414-3425.
[http://dx.doi.org/10.1021/acsnano.9b09426] [PMID: 32155051]
[82]
Wang, X.; Wu, M.; Zhang, X.; Li, F.; Zeng, Y.; Lin, X.; Liu, X.; Liu, J. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. J. Nanobiotechnol., 2021, 19(1), 204.
[http://dx.doi.org/10.1186/s12951-021-00952-y] [PMID: 34238297]
[83]
Xu, R.; Yang, J.; Qian, Y.; Deng, H.; Wang, Z.; Ma, S.; Wei, Y.; Yang, N.; Shen, Q. Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz., 2021, 6(4), 348-356.
[http://dx.doi.org/10.1039/D0NH00674B] [PMID: 33687417]
[84]
Xue, C.C.; Li, M.H.; Zhao, Y.; Zhou, J.; Hu, Y.; Cai, K.Y.; Zhao, Y.; Yu, S.H.; Luo, Z. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Sci. Adv., 2020, 6(18), eaax1346.
[http://dx.doi.org/10.1126/sciadv.aax1346] [PMID: 32494659]
[85]
Ou, W.; Mulik, R.S.; Anwar, A.; McDonald, J.G.; He, X.; Corbin, I.R. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic. Biol. Med., 2017, 112, 597-607.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.09.002] [PMID: 28893626]
[86]
Chen, Z.; Wang, W.; Abdul Razak, S.R.; Han, T.; Ahmad, N.H.; Li, X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis., 2023, 14(7), 460.
[http://dx.doi.org/10.1038/s41419-023-05930-w] [PMID: 37488128]
[87]
Liu, Y.; Zhu, X.; Lu, Y.; Wang, X.; Zhang, C.; Sun, H.; Ma, G. Antigen-inorganic hybrid flowers-based vaccines with enhanced room temperature stability and effective anticancer immunity. Adv. Healthc. Mater., 2019, 8(21), 1900660.
[http://dx.doi.org/10.1002/adhm.201900660] [PMID: 31583853]
[88]
Liu, Y.H.; Zang, X.Y.; Wang, J.C.; Huang, S.S.; Xu, J.; Zhang, P. Diagnosis and management of immune related adverse events (irAEs) in cancer immunotherapy. Biomed. Pharmacother., 2019, 120, 109437.
[http://dx.doi.org/10.1016/j.biopha.2019.109437] [PMID: 31590992]
[89]
Fu, L.H.; Hu, Y.R.; Qi, C.; He, T.; Jiang, S.; Jiang, C.; He, J.; Qu, J.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano, 2019, 13(12), 13985-13994.
[http://dx.doi.org/10.1021/acsnano.9b05836] [PMID: 31833366]
[90]
Cioloboc, D.; Kennedy, C.; Boice, E.N.; Clark, E.R.; Kurtz, D.M., Jr Trojan horse for light-triggered bifurcated production of singlet oxygen and fenton-reactive iron within cancer cells. Biomacromolecules, 2018, 19(1), 178-187.
[http://dx.doi.org/10.1021/acs.biomac.7b01433] [PMID: 29192767]
[91]
Zhang, K.; Meng, X.; Yang, Z.; Cao, Y.; Cheng, Y.; Wang, D.; Lu, H.; Shi, Z.; Dong, H.; Zhang, X. Cancer cell membrane camouflaged nanoprobe for catalytic ratiometric photoacoustic imaging of MicroRNA in living mice. Adv. Mater., 2019, 31(12), 1807888.
[http://dx.doi.org/10.1002/adma.201807888] [PMID: 30730070]
[92]
Yang, Z.; Du, Y.; Sun, Q.; Peng, Y.; Wang, R.; Zhou, Y.; Wang, Y.; Zhang, C.; Qi, X. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano, 2020, 14(5), 6191-6212.
[http://dx.doi.org/10.1021/acsnano.0c02249] [PMID: 32320600]
[93]
An, P.; Gu, D.; Gao, Z.; Fan, F.; Jiang, Y.; Sun, B. Hypoxia-augmented and photothermally enhanced ferroptotic therapy with high specificity and efficiency. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(1), 78-87.
[http://dx.doi.org/10.1039/C9TB02268F] [PMID: 31769461]
[94]
Li, Z.; Chen, L.; Chen, C.; Zhou, Y.; Hu, D.; Yang, J.; Chen, Y.; Zhuo, W.; Mao, M.; Zhang, X.; Xu, L.; Wang, L.; Zhou, J. Targeting ferroptosis in breast cancer. Biomark. Res., 2020, 8(1), 58.
[http://dx.doi.org/10.1186/s40364-020-00230-3] [PMID: 33292585]
[95]
Wang, J.; Wang, Z.; Zhong, Y.; Zou, Y.; Wang, C.; Wu, H.; Lee, A.; Yang, W.; Wang, X.; Liu, Y.; Zhang, D.; Yan, J.; Hao, M.; Zheng, M.; Chung, R.; Bai, F.; Shi, B. Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic therapy. Biomaterials, 2020, 229, 119576.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119576] [PMID: 31704467]
[96]
Li, L.; Fu, J.; Wang, X.; Chen, Q.; Zhang, W.; Cao, Y.; Ran, H. Biomimetic “Nanoplatelets” as a targeted drug delivery platform for breast cancer theranostics. ACS Appl. Mater. Interfaces, 2021, 13(3), 3605-3621.
[http://dx.doi.org/10.1021/acsami.0c19259] [PMID: 33449625]
[97]
Guan, Q.; Zhou, L.L.; Dong, Y.B. Ferroptosis in cancer therapeutics: A materials chemistry perspective. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(43), 8906-8936.
[http://dx.doi.org/10.1039/D1TB01654G] [PMID: 34505861]
[98]
Niu, W.; Xiao, Q.; Wang, X.; Zhu, J.; Li, J.; Liang, X.; Peng, Y.; Wu, C.; Lu, R.; Pan, Y.; Luo, J.; Zhong, X.; He, H.; Rong, Z.; Fan, J.B.; Wang, Y. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett., 2021, 21(3), 1484-1492.
[http://dx.doi.org/10.1021/acs.nanolett.0c04753] [PMID: 33475372]
[99]
Bahmani, B.; Gong, H.; Luk, B.T.; Haushalter, K.J.; DeTeresa, E.; Previti, M.; Zhou, J.; Gao, W.; Bui, J.D.; Zhang, L.; Fang, R.H.; Zhang, J. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat. Commun., 2021, 12(1), 1999.
[http://dx.doi.org/10.1038/s41467-021-22311-z] [PMID: 33790276]
[100]
Fang, X.; Wu, X.; Li, Z.; Jiang, L.; Lo, W.S.; Chen, G.; Gu, Y.; Wong, W.T. Biomimetic Anti-PD-1 Peptide-Loaded 2D FePSe 3 nanosheets for efficient photothermal and enhanced immune therapy with multimodal MR/PA/Thermal Imaging. Adv. Sci., 2021, 8(2), 2003041.
[http://dx.doi.org/10.1002/advs.202003041] [PMID: 33511018]
[101]
Wang, S.; Yang, X.; Zhou, L.; Li, J.; Chen, H. 2D nanostructures beyond graphene: Preparation, biocompatibility and biodegradation behaviors. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2974-2989.
[http://dx.doi.org/10.1039/C9TB02845E] [PMID: 32207478]
[102]
Yuan, P.; Dou, G.; Liu, T.; Guo, X.; Bai, Y.; Chu, D.; Liu, S.; Chen, X.; Jin, Y. On-demand manipulation of tumorigenic microenvironments by nano-modulator for synergistic tumor therapy. Biomaterials, 2021, 275, 120956.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120956] [PMID: 34146890]
[103]
Shao, F.; Wu, Y.; Tian, Z.; Liu, S. Biomimetic nanoreactor for targeted cancer starvation therapy and cascade amplificated chemotherapy. Biomaterials, 2021, 274, 120869.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120869] [PMID: 33984636]
[104]
Zhao, Y.; Xiao, X.; Zou, M.; Ding, B.; Xiao, H.; Wang, M.; Jiang, F.; Cheng, Z.; Ma, P.; Lin, J. Retracted: Nanozyme-initiated In Situ cascade reactions for self-amplified biocatalytic immunotherapy. Adv. Mater., 2021, 33(3), 2006363.
[http://dx.doi.org/10.1002/adma.202006363] [PMID: 33283339]
[105]
Huang, S.; Le, H.; Hong, G.; Chen, G.; Zhang, F.; Lu, L.; Zhang, X.; Qiu, Y.; Wang, Z.; Zhang, Q.; Ouyang, G.; Shen, J. An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy. Acta Biomater., 2022, 148, 244-257.
[http://dx.doi.org/10.1016/j.actbio.2022.06.017] [PMID: 35709941]
[106]
Chen, J.; Wang, Y.; Han, L.; Wang, R.; Gong, C.; Yang, G.; Li, Z.; Gao, S.; Yuan, Y. A ferroptosis-inducing biomimetic nanocomposite for the treatment of drug-resistant prostate cancer. Mater. Today Bio, 2022, 17, 100484.
[http://dx.doi.org/10.1016/j.mtbio.2022.100484] [PMID: 36388460]
[107]
Zhang, Z.; Ji, Y.; Hu, N.; Yu, Q.; Zhang, X.; Li, J.; Wu, F.; Xu, H.; Tang, Q.; Li, X. Ferroptosis-induced anticancer effect of resveratrol with a biomimetic nano-delivery system in colorectal cancer treatment. Asi. J. Pharmac. Sci., 2022, 17(5), 751-766.
[http://dx.doi.org/10.1016/j.ajps.2022.07.006] [PMID: 36382309]
[108]
Liu, B.; Ji, Q.; Cheng, Y.; Liu, M.; Zhang, B.; Mei, Q.; Liu, D.; Zhou, S. Biomimetic GBM-targeted drug delivery system boosting ferroptosis for immunotherapy of orthotopic drug-resistant GBM. J. Nanobiotechnol., 2022, 20(1), 161.
[http://dx.doi.org/10.1186/s12951-022-01360-6] [PMID: 35351131]
[109]
Chen, K.; Li, H.; Zhou, A.; Zhou, X.; Xu, Y.; Ge, H.; Ning, X. Cell membrane camouflaged metal oxide–black phosphorus biomimetic nanocomplex enhances photo-chemo-dynamic ferroptosis. ACS Appl. Mater. Interfaces, 2022, 14(23), 26557-26570.
[http://dx.doi.org/10.1021/acsami.2c08413] [PMID: 35658416]
[110]
Zhu, M.; Wu, P.; Li, Y.; Zhang, L.; Zong, Y.; Wan, M. Synergistic therapy for orthotopic gliomas via biomimetic nanosonosensitizer-mediated sonodynamic therapy and ferroptosis. Biomater. Sci., 2022, 10(14), 3911-3923.
[http://dx.doi.org/10.1039/D2BM00562J] [PMID: 35699471]
[111]
Li, Q.; Su, R.; Bao, X.; Cao, K.; Du, Y.; Wang, N.; Wang, J.; Xing, F.; Yan, F.; Huang, K.; Feng, S. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy. Acta Biomater., 2022, 144, 109-120.
[http://dx.doi.org/10.1016/j.actbio.2022.03.030] [PMID: 35314366]
[112]
Bilbao-Asensio, M.; Ruiz-de-Angulo, A.; Arguinzoniz, A.G.; Cronin, J.; Llop, J.; Zabaleta, A.; Michue-Seijas, S.; Sosnowska, D.; Arnold, J.N.; Mareque-Rivas, J.C. Redox-triggered nanomedicine via lymphatic delivery: Inhibition of melanoma growth by ferroptosis enhancement and a Pt(IV)-prodrug chemoimmunotherapy approach. Adv. Ther., 2023, 6(2), 2200179.
[http://dx.doi.org/10.1002/adtp.202200179]
[113]
He, Z.; Zhou, H.; Zhang, Y.; Du, X.; Liu, S.; Ji, J.; Yang, X.; Zhai, G. Oxygen-boosted biomimetic nanoplatform for synergetic phototherapy/ferroptosis activation and reversal of immune-suppressed tumor microenvironment. Biomaterials, 2022, 290, 121832.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121832] [PMID: 36228518]
[114]
Xue, C.; Zhang, H.; Wang, X.; Du, H.; Lu, L.; Fei, Y.; Li, Y.; Zhang, Y.; Li, M.; Luo, Z. Bio-inspired engineered ferritin-albumin nanocomplexes for targeted ferroptosis therapy. J. Control. Release, 2022, 351, 581-596.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.051] [PMID: 36181916]
[115]
Sun, Y.; Wang, Y.; Han, R.; Ren, Z.; Chen, X.; Dong, W.; Choi, S.; Liu, Q.; Wang, X. Ultrasound cascade regulation of nano-oxygen hybrids triggering ferroptosis augmented sonodynamic anticancer therapy. Nano Res., 2023, 16(5), 7280-7292.
[http://dx.doi.org/10.1007/s12274-023-5377-0]
[116]
Kim, S.E.; Zhang, L.; Ma, K.; Riegman, M.; Chen, F.; Ingold, I.; Conrad, M.; Turker, M.Z.; Gao, M.; Jiang, X.; Monette, S.; Pauliah, M.; Gonen, M.; Zanzonico, P.; Quinn, T.; Wiesner, U.; Bradbury, M.S.; Overholtzer, M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol., 2016, 11(11), 977-985.
[http://dx.doi.org/10.1038/nnano.2016.164] [PMID: 27668796]
[117]
Yang, J.; Gong, Y.; Sontag, D.P.; Corbin, I.; Minuk, G.Y. Effects of low-density lipoprotein docosahexaenoic acid nanoparticles on cancer stem cells isolated from human hepatoma cell lines. Mol. Biol. Rep., 2018, 45(5), 1023-1036.
[http://dx.doi.org/10.1007/s11033-018-4252-2] [PMID: 30069818]
[118]
Luo, L.; Wang, H.; Tian, W.; Li, X.; Zhu, Z.; Huang, R.; Luo, H. Targeting ferroptosis-based cancer therapy using nanomaterials: Strategies and applications. Theranostics, 2021, 11(20), 9937-9952.
[http://dx.doi.org/10.7150/thno.65480] [PMID: 34815796]
[119]
Zeng, Q.; Ma, X.; Song, Y.; Chen, Q.; Jiao, Q.; Zhou, L. Targeting regulated cell death in tumor nanomedicines. Theranostics, 2022, 12(2), 817-841.
[http://dx.doi.org/10.7150/thno.67932] [PMID: 34976215]
[120]
Cao, Y.; Zhang, S.; Lv, Z.; Yin, N.; Zhang, H.; Song, P. An intelligent nanoplatform for orthotopic glioblastoma therapy by nonferrous ferroptosis; (51)2209227.
[http://dx.doi.org/10.1002/adfm.202209227]
[121]
Wang, W.T.; Han, C.; Sun, Y.M.; Chen, T.Q.; Chen, Y.Q. Noncoding RNAs in cancer therapy resistance and targeted drug development. J. Hematol. Oncol., 2019, 12(1), 55.
[http://dx.doi.org/10.1186/s13045-019-0748-z] [PMID: 31174564]
[122]
Joaquim, M.; Escobar-Henriques, M. Role of mitofusins and mitophagy in life or death decisions. Front. Cell Dev. Biol., 2020, 8, 572182.
[http://dx.doi.org/10.3389/fcell.2020.572182] [PMID: 33072754]
[123]
Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic. Biol. Med., 2019, 133, 162-168.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.074] [PMID: 29800655]
[124]
Zhang, Y.; Xia, M.; Zhou, Z.; Hu, X.; Wang, J.; Zhang, M.; Li, Y.; Sun, L.; Chen, F.; Yu, H. p53 promoted ferroptosis in ovarian cancer cells treated with human serum incubated-superparamagnetic iron oxides. Int. J. Nanomed., 2021, 16, 283-296.
[http://dx.doi.org/10.2147/IJN.S282489] [PMID: 33469287]
[125]
Tarangelo, A.; Magtanong, L.; Bieging-Rolett, K.T.; Li, Y.; Ye, J.; Attardi, L.D.; Dixon, S.J. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep., 2018, 22(3), 569-575.
[http://dx.doi.org/10.1016/j.celrep.2017.12.077] [PMID: 29346757]
[126]
Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692.
[http://dx.doi.org/10.1038/s41586-019-1705-2] [PMID: 31634900]
[127]
Minetti, G. Mevalonate pathway, selenoproteins, redox balance, immune system, COVID-19: Reasoning about connections. Med. Hypotheses, 2020, 144, 110128.
[http://dx.doi.org/10.1016/j.mehy.2020.110128] [PMID: 32758903]
[128]
Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Dehbanpour, M.R.; Nosrati, S. A review of effects of atorvastatin in cancer therapy. Med. Oncol., 2022, 40(1), 27.
[http://dx.doi.org/10.1007/s12032-022-01892-9] [PMID: 36459301]
[129]
Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Talebpour Amiri, F.; Dehbanpour, M. A review of applications of nanoceria in cancer. J. Maz. Univ. Med. Sci, 2022, 213, 186-200.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy