Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells on Composite Polymeric Scaffolds: A Review

In Press, (this is not the final "Version of Record"). Available online 24 January, 2024
Author(s): Saideh Hemati, Mohsen Ghiasi and Ali Salimi*
Published on: 24 January, 2024

DOI: 10.2174/011574888X263333231218065453

Price: $95

Abstract

The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability in vitro. The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.

[1]
Gandhimathi C, Quek YJ, Ezhilarasu H, Ramakrishna S, Bay B-H, Srinivasan DK. Osteogenic differentiation of mesenchymal stem cells with silica-coated gold nanoparticles for bone tissue engineering. Int J Mol Sci 2019; 20(20): 5135.
[http://dx.doi.org/10.3390/ijms20205135] [PMID: 31623264]
[2]
Shahrousvand E, Shahrousvand M, Ghollasi M, et al. Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydr Polym 2017; 171: 281-91.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.027] [PMID: 28578965]
[3]
Siddiqui N, Pramanik K. Development of fibrin conjugated chitosan/nano β-TCP composite scaffolds with improved cell supportive property for bone tissue regeneration. J Appl Polym Sci 2015; 132(9): app.41534.
[http://dx.doi.org/10.1002/app.41534]
[4]
Lai GJ, Shalumon KT, Chen SH, Chen JP. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 2014; 111: 288-97.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.094] [PMID: 25037354]
[5]
Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv Mater Sci Eng 2019; 2019(4): 1-3.
[http://dx.doi.org/10.1155/2019/3429527]
[6]
Shams M, Karimi M, Ghollasi M, Nezafati N, Salimi A. Electrospun poly-l-lactic acid nanofibers decorated with melt-derived S53P4 bioactive glass nanoparticles: The effect of nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Ceram Int 2018; 44(16): 20211-9.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.005]
[7]
Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: A review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 2018; 9
[http://dx.doi.org/10.1177/2041731418776819] [PMID: 29899969]
[8]
Shen C, Witek L, Flores RL, et al. Three-dimensional printing for craniofacial bone tissue engineering. Tissue Eng Part A 2020; 26(23-24): 1303-11.
[http://dx.doi.org/10.1089/ten.tea.2020.0186] [PMID: 32842918]
[9]
Bougioukli S, Sugiyama O, Pannell W, et al. Gene therapy for bone repair using human cells: Superior osteogenic potential of bone morphogenetic protein 2–transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow. Hum Gene Ther 2018; 29(4): 507-19.
[http://dx.doi.org/10.1089/hum.2017.097] [PMID: 29212377]
[10]
Zhu G, Zhang T, Chen M, et al. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6(11): 4110-40.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.043] [PMID: 33997497]
[11]
Alonzo M, Alvarez Primo F, Anil Kumar S, et al. Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Curr Opin Biomed Eng 2021; 17: 100248.
[http://dx.doi.org/10.1016/j.cobme.2020.100248] [PMID: 33718692]
[12]
Hu S, Chen H, Zhou F, et al. Superparamagnetic core–shell electrospun scaffolds with sustained release of IONPs facilitating in vitro and in vivo bone regeneration. J Mater Chem B Mater Biol Med 2021; 9(43): 8980-93.
[http://dx.doi.org/10.1039/D1TB01261D] [PMID: 34494055]
[13]
Marković D, Karadžić I, Jokanović V, Vuković A, Vučić V. Biological aspects of application of nanomaterials in tissue engineering. Chem Indus Chem Eng Quarter/CICEQ 2016; 22(2): 145-53.
[http://dx.doi.org/10.2298/CICEQ141231028M]
[14]
Samsonraj RM, Dudakovic A, Manzar B, et al. Osteogenic stimulation of human adipose-derived mesenchymal stem cells using a fungal metabolite that suppresses the polycomb group protein EZH2. Stem Cells Transl Med 2018; 7(2): 197-209.
[http://dx.doi.org/10.1002/sctm.17-0086] [PMID: 29280310]
[15]
Tabatabai TS, Haji-Ghasem-Kashani M, Nasiri M. In vitro osteogenic induction of human adipose stem cells co-treated with betaine/osteogenesis differentiation medium. Mol Biol Res Commun 2021; 10(2): 93-103.
[PMID: 34316496]
[16]
Fernandez-Moure JS, Corradetti B, Chan P, et al. Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: A comparative analysis. Stem Cell Res Ther 2015; 6(1): 203.
[http://dx.doi.org/10.1186/s13287-015-0193-z] [PMID: 26503337]
[17]
Namjoo A, Salimi A, Saeedi P, Halabian R, Emamgholi A. Anti-apoptotic effect of Nisin as a prebiotic on human mesenchymal stem cells in harsh condition. Cell Tissue Bank 2021; 1-10.
[PMID: 34043109]
[18]
Barberini DJ, Freitas NPP, Magnoni MS, et al. Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: Immunophenotypic characterization and differentiation potential. Stem Cell Res Ther 2014; 5(1): 25.
[http://dx.doi.org/10.1186/scrt414] [PMID: 24559797]
[19]
Ghiasi M, Jadidi K, Hashemi M, Zare H, Salimi A, Aghamollaei H. Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021; 73: 101600.
[http://dx.doi.org/10.1016/j.tice.2021.101600] [PMID: 34371292]
[20]
Noh YK, Du P, Kim IG, Ko J, Kim SW, Park K. Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells. Biomater Res 2016; 20(1): 6.
[http://dx.doi.org/10.1186/s40824-016-0055-5] [PMID: 27057347]
[21]
Aliborzi G, Vahdati A, Mehrabani D, Hosseini SE, Tamadon A. Isolation, characterization and growth kinetic comparison of bone marrow and adipose tissue mesenchymal stem cells of Guinea pig. Int J Stem Cells 2016; 9(1): 115-23.
[http://dx.doi.org/10.15283/ijsc.2016.9.1.115] [PMID: 27426093]
[22]
Chakraborty S, Sinha S, Sengupta A. Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J 2021; 35(1): e21234.
[http://dx.doi.org/10.1096/fj.202002232R] [PMID: 33337557]
[23]
Wang LT, Ting CH, Yen ML, et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation- mediated diseases: review of current clinical trials. J Biomed Sci 2016; 23(1): 76.
[http://dx.doi.org/10.1186/s12929-016-0289-5] [PMID: 27809910]
[24]
Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18(3): 264.
[http://dx.doi.org/10.18295/squmj.2018.18.03.002] [PMID: 30607265]
[25]
Jeon YJ, Kim J, Cho JH, Chung HM, Chae JI. Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy. J Cell Biochem 2016; 117(5): 1112-25.
[http://dx.doi.org/10.1002/jcb.25395] [PMID: 26448537]
[26]
Jin C, Zheng Y, Huang Y, Liu Y, Jia L, Zhou Y. Long non-coding RNA MIAT knockdown promotes osteogenic differentiation of human adipose-derived stem cells. Cell Biol Int 2017; 41(1): 33-41.
[http://dx.doi.org/10.1002/cbin.10697] [PMID: 27797128]
[27]
Russo V, Yu C, Belliveau P, Hamilton A, Flynn LE. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Transl Med 2014; 3(2): 206-17.
[http://dx.doi.org/10.5966/sctm.2013-0125] [PMID: 24361924]
[28]
Zajdel A, Kałucka M, Kokoszka-Mikołaj E, Wilczok A. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord. Acta Biochim Pol 2017; 64(2): 365-9.
[http://dx.doi.org/10.18388/abp.2016_1488] [PMID: 28600911]
[29]
D’Alimonte I, Mastrangelo F, Giuliani P, et al. Osteogenic differentiation of mesenchymal stromal cells: A comparative analysis between human subcutaneous adipose tissue and dental pulp. Stem Cells Dev 2017; 26(11): 843-55.
[http://dx.doi.org/10.1089/scd.2016.0190] [PMID: 28287912]
[30]
Li J, Yang B, Qian Y, et al. Iota -carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J Biomed Mater Res B Appl Biomater 2015; 103(7): 1498-510.
[http://dx.doi.org/10.1002/jbm.b.33339] [PMID: 25449538]
[31]
Kon E, Roffi A, Filardo G, Tesei G, Marcacci M. Scaffold-based cartilage treatments: With or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 2015; 31(4): 767-75.
[http://dx.doi.org/10.1016/j.arthro.2014.11.017] [PMID: 25633817]
[32]
Shim YH, Zhang RH. Literature review to optimize the autologous fat transplantation procedure and recent technologies to improve graft viability and overall outcome: a systematic and retrospective analytic approach. Aesthetic Plast Surg 2017; 41(4): 815-31.
[http://dx.doi.org/10.1007/s00266-017-0793-3] [PMID: 28175966]
[33]
Masoumi N, Ghollasi M, Raheleh Halabian , Eftekhari E, Ghiasi M. Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Regen Ther 2023; 23: 60-6.
[http://dx.doi.org/10.1016/j.reth.2023.04.001] [PMID: 37122359]
[34]
Fernandez-Moure JS, Van Eps JL, Menn ZK, et al. Platelet rich plasma enhances tissue incorporation of biologic mesh. J Surg Res 2015; 199(2): 412-9.
[http://dx.doi.org/10.1016/j.jss.2015.06.034] [PMID: 26182999]
[35]
Cvetković VJ, Najdanović JG, Vukelić-Nikolić MĐ, Stojanović S, Najman SJ. Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model. Int Orthop 2015; 39(11): 2173-80.
[http://dx.doi.org/10.1007/s00264-015-2929-x] [PMID: 26231492]
[36]
Lee J, Lee S, Lee CY, et al. Adipose-derived stem cell-released osteoprotegerin protects cardiomyocytes from reactive oxygen species-induced cell death. Stem Cell Res Ther 2017; 8(1): 195.
[http://dx.doi.org/10.1186/s13287-017-0647-6] [PMID: 28931423]
[37]
Hao Z, Song Z, Huang J, et al. The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 2017; 5(8): 1382-92.
[http://dx.doi.org/10.1039/C7BM00146K] [PMID: 28447671]
[38]
Prévôt M, Hegmann E. From biomaterial, biomimetic, and polymer to biodegradable and biocompatible liquid crystal elastomer cell scaffolds Advances in bioinspired and biomedical materials. ACS Publications 2017; Vol. 2: pp. 3-45.
[39]
Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules 2018; 19(6): 1764-82.
[http://dx.doi.org/10.1021/acs.biomac.8b00276] [PMID: 29684268]
[40]
Prasadh S, Wong RCW. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci Int 2018; 15(2): 48-55.
[http://dx.doi.org/10.1016/S1348-8643(18)30005-3]
[41]
Xie Y, Li MN, Chen HQ, Zhang B. Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chem 2019; 274: 351-9.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.034] [PMID: 30372951]
[42]
Mishra R, Varshney R, Das N, Sircar D, Roy P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur Polym J 2019; 119: 155-68.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.07.007]
[43]
Bernardi S, Re F, Bosio K, et al. Chitosan-Hydrogel polymeric scaffold acts as an independent primary inducer of osteogenic differentiation in human mesenchymal stromal cells. Materials 2020; 13(16): 3546.
[http://dx.doi.org/10.3390/ma13163546] [PMID: 32796668]
[44]
Gandhimathi C, Venugopal JR, Bhaarathy V, Ramakrishna S, Kumar SD. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration. Int J Nanomedicine 2014; 9: 4709-22.
[PMID: 25336949]
[45]
Ezhilarasu H, Ramalingam R, Dhand C, et al. Biocompatible aloe vera and tetracycline hydrochloride loaded hybrid nanofibrous scaffolds for skin tissue engineering. Int J Mol Sci 2019; 20(20): 5174.
[http://dx.doi.org/10.3390/ijms20205174] [PMID: 31635374]
[46]
Sobreiro-Almeida R, Melica ME, Lasagni L, Osório H, Romagnani P, Neves NM. Particulate kidney extracellular matrix: Bioactivity and proteomic analysis of a novel scaffold from porcine origin. Biomater Sci 2021; 9(1): 186-98.
[http://dx.doi.org/10.1039/D0BM01272F] [PMID: 33174559]
[47]
Christman KL. Biomaterials for tissue repair. Science 2019; 363(6425): 340-1.
[http://dx.doi.org/10.1126/science.aar2955] [PMID: 30679357]
[48]
Padash A, Halabian R, Salimi A, Kazemi NM, Shahrousvand M. Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker. Hum Cell 2021; 34(2): 310-24.
[http://dx.doi.org/10.1007/s13577-020-00449-0] [PMID: 33090371]
[49]
Azizipour E, Aghamollaei H, Halabian R, et al. A novel hydrogel scaffold contained bioactive glass nanowhisker (BGnW) for osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. Int J Biol Macromol 2021; 174: 562-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.002] [PMID: 33434552]
[50]
Rohani Z, Ghollasi M, Aghamollaei H, et al. A new hydrogel with fluorapatite nanoparticles for osteogenic differentiation of human adipose-derived stem cells in tissue engineering field. Cell Tissue Res 2022; 390(3): 399-411.
[http://dx.doi.org/10.1007/s00441-022-03691-0] [PMID: 36152061]
[51]
Salimi A, Ghiasi M, Korani M, Karimi Zarchi A. Involved molecular mechanisms in stem cells differentiation into chondrocyte: A review. J Appl Biotechnol Rep 2021; 8(3): 234-41.
[52]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[53]
Eftekhari E, Ghollasi M, Halabian R, Soltanyzadeh M, Enderami SE. Nisin and non-essential amino acids: New perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro. Hum Cell 2021; 34(4): 1142-52.
[http://dx.doi.org/10.1007/s13577-021-00537-9] [PMID: 33899160]
[54]
Munirah S, Zainul Ibrahim Z, Rozlin A. Exploring the islamic perspective on tissue engineering principles and practice. GJAT 2014; 4: 29-40.
[http://dx.doi.org/10.7187/GJAT642014.04.02]
[55]
Lu P, Zhou T, Xu C, Lu Y. Mammary stem cells, where art thou? Wiley Interdiscip Rev Dev Biol 2019; 8(6): e357.
[http://dx.doi.org/10.1002/wdev.357] [PMID: 31322329]
[56]
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553(7689): 418-26.
[http://dx.doi.org/10.1038/nature25022] [PMID: 29364285]
[57]
Trohatou O, Roubelakis MG. Mesenchymal stem/stromal cells in regenerative medicine: Past, present, and future. Cell Reprogram 2017; 19(4): 217-24.
[http://dx.doi.org/10.1089/cell.2016.0062] [PMID: 28520465]
[58]
Alonso-Goulart V, Ferreira LB, Duarte CA, et al. Mesenchymal stem cells from human adipose tissue and bone repair: A literature review. Biotechnology Research and Innovation 2018; 2(1): 74-80.
[http://dx.doi.org/10.1016/j.biori.2017.10.005]
[59]
Caplan AI. Mesenchymal stem cells: Time to change the name! Stem Cells Transl Med 2017; 6(6): 1445-51.
[http://dx.doi.org/10.1002/sctm.17-0051] [PMID: 28452204]
[60]
Rasini V, Dominici M, Kluba T, et al. Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 2013; 15(3): 292-306.
[http://dx.doi.org/10.1016/j.jcyt.2012.11.009] [PMID: 23312449]
[61]
Amiri B, Ghollasi M, Shahrousvand M, Kamali M, Salimi A. Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles. Differentiation; research in biological diversity 2016; 92(4): 148-58.
[http://dx.doi.org/10.1016/j.diff.2016.08.001]
[62]
Sadatpoor S, Salehi Z, Rahban D, Salimi A. Manipulated mesenchymal stem cells applications in neurodegenerative diseases. Int J Stem Cells 2020; 13(1): 24-45.
[http://dx.doi.org/10.15283/ijsc19031] [PMID: 32114741]
[63]
Bellagamba BC, Abreu BRR, Grivicich I, et al. Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro. Genet Mol Biol 2016; 39(1): 129-34.
[http://dx.doi.org/10.1590/1678-4685-GMB-2015-0057] [PMID: 27007906]
[64]
Dzobo K. Multipotent human mesenchymal stem/stromal cells: An updated review on historical background. Recent Trends and Advances in their Clinical Applications 2021.
[65]
Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25.
[http://dx.doi.org/10.3892/ijmm.2015.2413] [PMID: 26719857]
[66]
Morcos MW, Al-Jallad H, Hamdy R. Comprehensive review of adipose stem cells and their implication in distraction osteogenesis and bone regeneration. Biomed Res Int 2015; 2015: 842975.
[http://dx.doi.org/10.1155/2015/842975]
[67]
Mosna F, Sensebé L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev 2010; 19(10): 1449-70.
[http://dx.doi.org/10.1089/scd.2010.0140] [PMID: 20486777]
[68]
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
[http://dx.doi.org/10.1091/mbc.e02-02-0105] [PMID: 12475952]
[69]
De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174(3): 101-9.
[http://dx.doi.org/10.1159/000071150] [PMID: 12835573]
[70]
Foiret J, Minonzio JG, Chappard C, Talmant M, Laugier P. Combined estimation of thickness and velocities using ultrasound guided waves: A pioneering study on in vitro cortical bone samples. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61(9): 1478-88.
[http://dx.doi.org/10.1109/TUFFC.2014.3062] [PMID: 25167148]
[71]
Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med 2014; 34(3): 695-704.
[http://dx.doi.org/10.3892/ijmm.2014.1821] [PMID: 24970492]
[72]
Shigunov P, Sotelo-Silveira J, Kuligovski C, et al. PUMILIO-2 is involved in the positive regulation of cellular proliferation in human adipose-derived stem cells. Stem Cells Dev 2012; 21(2): 217-27.
[http://dx.doi.org/10.1089/scd.2011.0143] [PMID: 21649561]
[73]
Jankowski M, Dompe C, Sibiak R, et al. In vitro cultures of adipose-derived stem cells: An overview of methods, molecular analyses, and clinical applications. Cells 2020; 9(8): 1783.
[http://dx.doi.org/10.3390/cells9081783] [PMID: 32726947]
[74]
Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 2015; 37: 230-41.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.012] [PMID: 25453953]
[75]
Vozzi G, Corallo C, Carta S, et al. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: In vitro evidences. J Biomed Mater Res A 2014; 102(5): 1415-21.
[http://dx.doi.org/10.1002/jbm.a.34823] [PMID: 23775901]
[76]
Zhou W, Stukel JM, Cebull HL, Willits RK. Tuning the mechanical properties of poly(Ethylene Glycol) microgel-based scaffolds to increase 3d schwann cell proliferation. Macromol Biosci 2016; 16(4): 535-44.
[http://dx.doi.org/10.1002/mabi.201500336] [PMID: 26726886]
[77]
Kim IG, Hwang MP, Du P, et al. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing. Biomaterials 2015; 50: 75-86.
[http://dx.doi.org/10.1016/j.biomaterials.2015.01.054] [PMID: 25736498]
[78]
Shahrousvand M, Sadeghi GMM, Shahrousvand E, Ghollasi M, Salimi A. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf B Biointerfaces 2017; 156: 292-304.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.059] [PMID: 28544961]
[79]
Dumic-Cule I, Pecina M, Jelic M, et al. Biological aspects of segmental bone defects management. Int Orthop 2015; 39(5): 1005-11.
[http://dx.doi.org/10.1007/s00264-015-2728-4] [PMID: 25772279]
[80]
Decambron A, Manassero M, Bensidhoum M, et al. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model. Bone Joint Res 2017; 6(4): 208-15.
[http://dx.doi.org/10.1302/2046-3758.64.BJR-2016-0236.R1] [PMID: 28408376]
[81]
Murphy J, Torre D. Vision. Educ Manage Adm Leadersh 2015; 43(2): 177-97.
[http://dx.doi.org/10.1177/1741143214523017]
[82]
Krontiras P, Gatenholm P, Hägg DA. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J Biomed Mater Res B Appl Biomater 2015; 103(1): 195-203.
[http://dx.doi.org/10.1002/jbm.b.33198] [PMID: 24819827]
[83]
Iaquinta MR, Mazzoni E, Bononi I, et al. Adult stem cells for bone regeneration and repair. Front Cell Dev Biol 2019; 7: 268.
[http://dx.doi.org/10.3389/fcell.2019.00268] [PMID: 31799249]
[84]
Chen M, Le DQS, Kjems J, Bünger C, Lysdahl H. Improvement of distribution and osteogenic differentiation of human mesenchymal stem cells by hyaluronic acid and β-tricalcium phosphate-coated polymeric scaffold in vitro. Biores Open Access 2015; 4(1): 363-73.
[http://dx.doi.org/10.1089/biores.2015.0021] [PMID: 26487981]
[85]
KarbalaeiMahdi A, Shahrousvand M, Javadi HR, et al. Neural differentiation of human induced pluripotent stem cells on polycaprolactone/gelatin bi-electrospun nanofibers. Mater Sci Eng C 2017; 78: 1195-202.
[http://dx.doi.org/10.1016/j.msec.2017.04.083]
[86]
Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 2015; 9(3): 174-90.
[http://dx.doi.org/10.1002/term.1635] [PMID: 23172792]
[87]
Voinova V, Bonartseva G, Bonartsev A. Effect of poly(3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells. World J Stem Cells 2019; 11(10): 764-86.
[http://dx.doi.org/10.4252/wjsc.v11.i10.764] [PMID: 31692924]
[88]
Bonartsev A, Zharkova I, Voinova V, et al. Poly (3-hydroxybutyrate)/poly (ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells. 3 Biotech 2018; 8(8): 1-10.
[89]
Sun H, Yang HL. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering. Chin Med J (Engl) 2015; 128(8): 1121-7.
[http://dx.doi.org/10.4103/0366-6999.155121] [PMID: 25881610]
[90]
Birhanu G, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Dusti Telgerd M. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Artif Cells Nanomed Biotechnol 2018; 46(6): 1274-81.
[http://dx.doi.org/10.1080/21691401.2017.1367928] [PMID: 28835133]
[91]
Soraya Z, Ghollasi M, Halabian R, Eftekhari E, Tabasi A, Salimi A. Donepezil hydrochloride as a novel inducer for osteogenic differentiation of mesenchymal stem cells on PLLA scaffolds in vitro. Biotechnol J 2021; 16(9): 2100112.
[http://dx.doi.org/10.1002/biot.202100112] [PMID: 34170068]
[92]
Gandhimathi C, Venugopal JR, Ramakrishna S, Srinivasan DK. Electrospun-electrosprayed hydroxyapatite nanostructured composites for bone tissue regeneration. J Appl Polym Sci 2018; 135(42): 46756.
[http://dx.doi.org/10.1002/app.46756]
[93]
Caetano GF, Bártolo PJ, Domingos M, Oliveira CC, Leite MN, Frade MAC. Osteogenic differentiation of adipose-derived mesenchymal stem cells into Polycaprolactone (PCL) scaffold. Procedia Eng 2015; 110: 59-66.
[http://dx.doi.org/10.1016/j.proeng.2015.07.010]
[94]
Hoseinzadeh S, Atashi A, Soleimani M, Alizadeh E, Zarghami N. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. In Vitro Cell Dev Biol Anim 2016; 52(4): 479-87.
[http://dx.doi.org/10.1007/s11626-015-9992-x] [PMID: 26822432]
[95]
Li Y, Yang W, Li X, et al. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces 2015; 7(10): 5715-24.
[http://dx.doi.org/10.1021/acsami.5b00331] [PMID: 25711714]
[96]
Jin M, Kim BS, Seo SH, et al. Synergistic effect of growth factor releasing polymeric nanoparticles and ultrasound stimulation on osteogenic differentiation. Pharmaceutics 2021; 13(4): 457.
[http://dx.doi.org/10.3390/pharmaceutics13040457] [PMID: 33801692]
[97]
Faia-Torres AB, Guimond-Lischer S, Rottmar M, et al. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials 2014; 35(33): 9023-32.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.015] [PMID: 25106771]
[98]
Park JB. The effects of dexamethasone, ascorbic acid, and β-glycerophosphate on osteoblastic differentiation by regulating estrogen receptor and osteopontin expression. J Surg Res 2012; 173(1): 99-104.
[http://dx.doi.org/10.1016/j.jss.2010.09.010] [PMID: 21035140]
[99]
Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000; 21(11): 1095-102.
[http://dx.doi.org/10.1016/S0142-9612(99)00192-1] [PMID: 10817261]
[100]
Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 2013; 4(5): 117.
[http://dx.doi.org/10.1186/scrt328] [PMID: 24073831]
[101]
Meng F, Xue X, Yin Z, Gao F, Wang X, Geng Z. Research progress of exosomes in bone diseases: Mechanism, diagnosis and therapy. Front Bioeng Biotechnol 2022; 10: 866627.
[http://dx.doi.org/10.3389/fbioe.2022.866627] [PMID: 35497358]
[102]
Wang Y, Lin Q, Zhang H, et al. M2 macrophage-derived exosomes promote diabetic fracture healing by acting as an immunomodulator. Bioact Mater 2023; 28: 273-83.
[http://dx.doi.org/10.1016/j.bioactmat.2023.05.018] [PMID: 37303851]
[103]
Wang S, Jia J, Chen C. lncRNA-KCNQ1OT1: A potential target in exosomes derived from adipose-derived stem cells for the treatment of osteoporosis. Stem Cells Int 2021; 2021: 1-17.
[http://dx.doi.org/10.1155/2021/7690006] [PMID: 34712334]
[104]
Kyung Kim D, Lee S, Kim M, Jeong Y, Lee S. Exosome-coated silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells. Chem Eng J 2021; 406: 127080.
[http://dx.doi.org/10.1016/j.cej.2020.127080]
[105]
Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 2017; 18(12): 728-42.
[http://dx.doi.org/10.1038/nrm.2017.108] [PMID: 29115301]
[106]
Cao L, Wang J, Hou J, Xing W, Liu C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials 2014; 35(2): 684-98.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.005] [PMID: 24140042]
[107]
Marenzana M, Arnett TR. The key role of the blood supply to bone. Bone Res 2013; 1(3): 203-15.
[http://dx.doi.org/10.4248/BR201303001] [PMID: 26273504]
[108]
Paduano F, Marrelli M, Amantea M, et al. Adipose tissue as a strategic source of mesenchymal stem cells in bone regeneration: A topical review on the most promising craniomaxillofacial applications. Int J Mol Sci 2017; 18(10): 2140.
[http://dx.doi.org/10.3390/ijms18102140] [PMID: 29027958]
[109]
Hsiao STF, Asgari A, Lokmic Z, et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 2012; 21(12): 2189-203.
[http://dx.doi.org/10.1089/scd.2011.0674] [PMID: 22188562]
[110]
Peng H, Usas A, Olshanski A, et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 2005; 20(11): 2017-27.
[http://dx.doi.org/10.1359/JBMR.050708] [PMID: 16234975]
[111]
Rosen V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 2009; 20(5-6): 475-80.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.018] [PMID: 19892583]
[112]
Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 2012; 27(8): 3037-42.
[http://dx.doi.org/10.1093/ndt/gfs168] [PMID: 22851627]
[113]
Kang T, Jones TM, Naddell C, et al. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31. Stem Cells Transl Med 2016; 5(4): 440-50.
[http://dx.doi.org/10.5966/sctm.2015-0177] [PMID: 26933040]
[114]
Marędziak M, Marycz K, Lewandowski D, Siudzińska A, Śmieszek A. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)—a new approach in veterinary regenerative medicine. In Vitro Cell Dev Biol Anim 2015; 51(3): 230-40.
[http://dx.doi.org/10.1007/s11626-014-9828-0] [PMID: 25428200]
[115]
Shafiee A, Seyedjafari E, Soleimani M, Ahmadbeigi N, Dinarvand P, Ghaemi N. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol Lett 2011; 33(6): 1257-64.
[http://dx.doi.org/10.1007/s10529-011-0541-8] [PMID: 21287233]
[116]
Lee K, Kim H, Kim JM, et al. Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J Cell Mol Med 2011; 15(10): 2082-94.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x] [PMID: 21159123]
[117]
Follmar KE, DeCroos FC, Prichard HL, Wang HT, Erdmann D, Olbrich KC. Effects of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells. Tissue Eng 2006; 12(12): 3525-33.
[http://dx.doi.org/10.1089/ten.2006.12.3525] [PMID: 17518688]
[118]
Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury 2011; 42(6): 556-61.
[http://dx.doi.org/10.1016/j.injury.2011.03.035] [PMID: 21489534]
[119]
Kraus D, Deschner J, Jäger A, et al. Human β-defensins differently affect proliferation, differentiation, and mineralization of osteoblast-like MG63 cells. J Cell Physiol 2012; 227(3): 994-1003.
[http://dx.doi.org/10.1002/jcp.22808] [PMID: 21520074]
[120]
Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 2014; 6(2): 144-52.
[http://dx.doi.org/10.4252/wjsc.v6.i2.144] [PMID: 24772241]
[121]
Ji C, Annabi N, Khademhosseini A, Dehghani F. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 2011; 7(4): 1653-64.
[http://dx.doi.org/10.1016/j.actbio.2010.11.043] [PMID: 21130905]
[122]
Rodrigues S, Costa AMR, Grenha A. Chitosan/carrageenan nanoparticles: Effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 2012; 89(1): 282-9.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.010] [PMID: 24750635]
[123]
Shamsi M, Karimi M, Ghollasi M, et al. In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2-31CaO-5P2O5)-poly- l -lactic acid nanofibers fabricated by electrospinning method. Mater Sci Eng C 2017; 78: 114-23.
[http://dx.doi.org/10.1016/j.msec.2017.02.165] [PMID: 28575950]
[124]
Mele L, Vitiello PP, Tirino V, et al. Changing paradigms in cranio-facial regeneration: Current and new strategies for the activation of endogenous stem cells. Front Physiol 2016; 7: 62.
[http://dx.doi.org/10.3389/fphys.2016.00062] [PMID: 26941656]
[125]
Samadian H, Khastar H, Ehterami A, Salehi M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: In vitro and in vivo study. Sci Rep 2021; 11(1): 13877.
[http://dx.doi.org/10.1038/s41598-021-93367-6] [PMID: 34230542]
[126]
Ghorbani FM, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A. PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym 2015; 118: 133-42.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.071] [PMID: 25542118]
[127]
Steele JAM, McCullen SD, Callanan A, et al. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomater 2014; 10(5): 2065-75.
[http://dx.doi.org/10.1016/j.actbio.2013.12.030] [PMID: 24370641]
[128]
Culbreath CJ, Gaerke B, Taylor MS, McCullen SD, Mefford OT. Effect of infill on resulting mechanical properties of additive manufactured bioresorbable polymers for medical devices. Materialia 2020; 12: 100732.
[http://dx.doi.org/10.1016/j.mtla.2020.100732]
[129]
Osathanon T, Chuenjitkuntaworn B, Nowwarote N, et al. The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study. Tissue Eng Regen Med 2014; 11(3): 239-46.
[http://dx.doi.org/10.1007/s13770-014-0015-x]
[130]
Rozila I, Azari P, Munirah S, Safwani WKZW, Pingguan-Murphy B, Chua KH. Polycaprolactone-based scaffolds facilitates osteogenic differentiation of human adipose-derived stem cells in a co- culture system. Polymers 2021; 13(4): 597.
[http://dx.doi.org/10.3390/polym13040597] [PMID: 33671175]
[131]
Irmak G, Demirtaş TT, Çetin Altındal D, Çalış M, Gümüşderelioğlu M. Sustained release of 17β-estradiol stimulates osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on chitosan-hydroxyapatite scaffolds. Cells Tissues Organs 2014; 199(1): 37-50.
[http://dx.doi.org/10.1159/000362362] [PMID: 25115579]
[132]
Norouz F, Halabian R, Salimi A, Ghollasi M. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Mater Sci Eng C 2019; 103: 109857.
[http://dx.doi.org/10.1016/j.msec.2019.109857] [PMID: 31349533]
[133]
De Luca A, Vitrano I, Costa V, et al. Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair. J Biosci Bioeng 2020; 129(2): 250-7.
[http://dx.doi.org/10.1016/j.jbiosc.2019.08.001] [PMID: 31506241]
[134]
Wang Y, Sun N, Zhang Y, et al. Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold. Sci Rep 2019; 9(1): 7960.
[http://dx.doi.org/10.1038/s41598-019-44478-8] [PMID: 30626917]
[135]
Zheng Z, Cui Z, Si J, et al. Modification of 3-D porous hydroxyapatite/thermoplastic polyurethane composite scaffolds for reinforcing interfacial adhesion by polydopamine surface coating. ACS Omega 2019; 4(4): 6382-91.
[http://dx.doi.org/10.1021/acsomega.9b00404] [PMID: 31459762]
[136]
Marycz K, Alicka M, Kornicka-Garbowska K, et al. Promotion through external magnetic field of osteogenic differentiation potential in adipose-derived mesenchymal stem cells: Design of polyurethane/poly(lactic) acid sponges doped with iron oxide nanoparticles. J Biomed Mater Res B Appl Biomater 2020; 108(4): 1398-411.
[http://dx.doi.org/10.1002/jbm.b.34488] [PMID: 31513334]
[137]
Arrigoni E, Stanco D, Dellavia C, et al. Adipose-derived stem cells and rabbit bone regeneration: histomorphometric, immunohistochemical and mechanical characterization. J Orthop Sci 2013; 18(2): 331-9.
[http://dx.doi.org/10.1007/s00776-012-0349-y] [PMID: 23344932]
[138]
Lin ZY, Duan ZX, Guo XD, et al. Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo. J Control Release 2010; 144(2): 190-5.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.016] [PMID: 20184932]
[139]
Du J, Zuo Y, Lin L, et al. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds. J Mech Behav Biomed Mater 2018; 88: 150-9.
[http://dx.doi.org/10.1016/j.jmbbm.2018.08.028] [PMID: 30172080]
[140]
Calabrese G, Dolcimascolo A, Caruso G, Forte S. miR-19a is involved in progression and malignancy of anaplastic thyroid cancer cells. OncoTargets Ther 2019; 12: 9571-83.
[http://dx.doi.org/10.2147/OTT.S221733] [PMID: 32009794]
[141]
Lu Z, Roohani-Esfahani SI, Wang G, Zreiqat H. Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. Nanomedicine 2012; 8(4): 507-15.
[http://dx.doi.org/10.1016/j.nano.2011.07.012] [PMID: 21839050]
[142]
Detsch R, Boccaccini AR. The role of osteoclasts in bone tissue engineering. J Tissue Eng Regen Med 2015; 9(10): 1133-49.
[http://dx.doi.org/10.1002/term.1851] [PMID: 24478169]
[143]
Goonoo N, Bhaw-Luximon A, Passanha P, Esteves SR, Jhurry D. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater 2017; 105(6): 1667-84.
[http://dx.doi.org/10.1002/jbm.b.33674] [PMID: 27080439]
[144]
Nerantzaki M, Koliakou I, Kaloyianni MG, et al. A biomimetic approach for enhancing adhesion and osteogenic differentiation of adipose-derived stem cells on poly(butylene succinate) composites with bioactive ceramics and glasses. Eur Polym J 2017; 87: 159-73.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.12.014]
[145]
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183: 1514-39.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.025] [PMID: 33989687]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy