Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Structure-Activity Relationship Studies on VEGFR2 Tyrosine Kinase Inhibitors for Identification of Potential Natural Anticancer Compounds

Author(s): Meenakshi Verma, Aqib Sarfraz, Inamul Hasan, Prema Gauri Vasudev and Feroz Khan*

Volume 20, Issue 6, 2024

Published on: 24 January, 2024

Page: [646 - 661] Pages: 16

DOI: 10.2174/0115734064247526231129080415

Price: $65

Abstract

Background: Over-expression of Vascular Endothelial Growth Factor Receptors (VEGFRs) leads to the hyperactivation of oncogenes. For inhibition of this hyperactivation, the USA Food Drug Administration (FDA) has approved many drugs that show adverse effects, such as hypertension, hypothyroidism, etc. There is a need to discover potent natural compounds that show minimal side effects. In the present study, we have taken structurally diverse known VEGFR2 inhibitors to develop a Quantitative Structure-Activity Relationship (QSAR) model and used this model to predict the inhibitory activity of natural compounds for VEGFR2.

Methods: The QSAR model was developed through the forward stepwise Multiple Linear Regression (MLR) method. A developed QSAR model was used to predict the inhibitory activity of natural compounds. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) assessment and molecular docking studies were performed. The binding stability of the natural compounds with VEGFR2 was elucidated through Molecular Dynamics (MD) simulation.

Results: The developed QSAR model against VEGFR2 showed the regression coefficient of the training dataset (r2) as 0.81 and the external regression coefficient of the test dataset (r2 test) 0.71. Descriptors, viz., electro-topological state of potential hydrogen bonds (maxHBint2, nHBint6), atom types (minssNH), maximum topological distance matrix (SpMAD_Dt), and 2D autocorrelation (ATSC7v), have been identified. Using this model, 14 natural compounds have been selected that have shown inhibitory activity for VEGFR2, of which six natural compounds have been found to possess a strong binding affinity with VEGFR2. In MD simulation, four complexes have shown binding stability up to 50ns.

Conclusion: The developed QSAR model has identified 5 conserved activity-inducing physiochemical properties, which have been found to be correlated with the anticancer activity of the nonidentical ligand molecules bound with the VEGFR2 kinase. Lavendustin_A, 3’-O-acetylhamaudol, and arctigenin have been obtained as possible lead natural compounds against the VEGFR2 kinase.

« Previous
Graphical Abstract

[1]
Cohen, P. Protein kinases-the major drug targets of the twenty-first century? Nat. Rev. Drug Discov., 2002, 1(4), 309-315.
[http://dx.doi.org/10.1038/nrd773] [PMID: 12120282]
[2]
Liao, J.J.L. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J. Med. Chem., 2007, 50(3), 409-424.
[http://dx.doi.org/10.1021/jm0608107] [PMID: 17266192]
[3]
Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal., 2007, 19(10), 2003-2012.
[http://dx.doi.org/10.1016/j.cellsig.2007.05.013] [PMID: 17658244]
[4]
Shibuya, M.; Claesson-Welsh, L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res., 2006, 312(5), 549-560.
[http://dx.doi.org/10.1016/j.yexcr.2005.11.012] [PMID: 16336962]
[5]
Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling? in control of vascular function. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 359-371.
[http://dx.doi.org/10.1038/nrm1911] [PMID: 16633338]
[6]
Ghosh, S.; Sullivan, C.A.W.; Zerkowski, M.P.; Molinaro, A.M.; Rimm, D.L.; Camp, R.L.; Chung, G.G. High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum. Pathol., 2008, 39(12), 1835-1843.
[http://dx.doi.org/10.1016/j.humpath.2008.06.004] [PMID: 18715621]
[7]
Boocock, C.A.; Charnock-Jones, D.S.; Sharkey, A.M.; McLaren, J.; Barker, P.J.; Wright, K.A.; Twentyman, P.R.; Smith, S.K. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J. Natl. Cancer Inst., 1995, 87(7), 506-516.
[http://dx.doi.org/10.1093/jnci/87.7.506] [PMID: 7707437]
[8]
Seto, T.; Higashiyama, M.; Funai, H.; Imamura, F.; Uematsu, K.; Seki, N.; Eguchi, K.; Yamanaka, T.; Ichinose, Y. Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. Lung Cancer, 2006, 53(1), 91-96.
[http://dx.doi.org/10.1016/j.lungcan.2006.02.009] [PMID: 16697074]
[9]
Paragliola, R.M.; Corsello, A.; Del Gatto, V.; Papi, G.; Pontecorvi, A.; Corsello, S.M. Lenvatinib for thyroid cancer treatment: Discovery, pre-clinical development and clinical application. Expert Opin. Drug Discov., 2020, 15(1), 11-26.
[http://dx.doi.org/10.1080/17460441.2020.1674280] [PMID: 31608696]
[10]
Modi, S.J.; Kulkarni, V.M. Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, ‘DFG-out’ inhibitors. J. Biomol. Struct. Dyn., 2022, 40(12), 5712-5727.
[http://dx.doi.org/10.1080/07391102.2021.1872417] [PMID: 33459187]
[11]
Wu, H.C.; Huang, C.T.; Chang, D.K. Anti-angiogenic therapeutic drugs for treatment of human cancer. Int. J. Cancer, 2008, 4(2), 37-45.
[12]
Sharma, N.; Sharma, M.; Rahman, Q.I.; Akhtar, S.; Muddassir, M. Quantitative structure activity relationship and molecular simulations for the exploration of natural potent VEGFR-2 inhibitors: An in silico anti-angiogenic study. J. Biomol. Struct. Dyn., 2021, 39(8), 2806-2823.
[http://dx.doi.org/10.1080/07391102.2020.1754916] [PMID: 32363995]
[13]
Lu, H.; Murtagh, J.; Schwartz, E.L. The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (taxotere). Mol. Pharmacol., 2006, 69(4), 1207-1215.
[http://dx.doi.org/10.1124/mol.105.019075] [PMID: 16415178]
[14]
Kimura, Y.; Sumiyoshi, M.; Baba, K. Anti-tumor actions of major component 3′-O-acetylhamaudol of Angelica japonica roots through dual actions, anti-angiogenesis and intestinal intraepithelial lymphocyte activation. Cancer Lett., 2008, 265(1), 84-97.
[http://dx.doi.org/10.1016/j.canlet.2008.02.009] [PMID: 18358599]
[15]
Shen, S.; Xu, X.; Liu, Z.; Liu, J.; Hu, L. Synthesis and structure–activity relationships of boswellic acid derivatives as potent VEGFR-2 inhibitors. Bioorg. Med. Chem., 2015, 23(9), 1982-1993.
[http://dx.doi.org/10.1016/j.bmc.2015.03.022] [PMID: 25819335]
[16]
Lu, K.; Basu, S. The natural compound chebulagic acid inhibits vascular endothelial growth factor A mediated regulation of endothelial cell functions. Sci. Rep., 2015, 5(1), 9642.
[http://dx.doi.org/10.1038/srep09642] [PMID: 25859636]
[17]
Wilson, G.L.; Lill, M.A. Integrating structure-based and ligand-based approaches for computational drug design. Future Med. Chem., 2011, 3(6), 735-750.
[http://dx.doi.org/10.4155/fmc.11.18] [PMID: 21554079]
[18]
Hoi, P.M.; Li, S.; Vong, C.T.; Tseng, H.H.L.; Kwan, Y.W.; Lee, S.M.Y. Recent advances in structure-based drug design and virtual screening of VEGFR tyrosine kinase inhibitors. Methods, 2015, 71, 85-91.
[http://dx.doi.org/10.1016/j.ymeth.2014.09.004] [PMID: 25239735]
[19]
Sangande, F.; Julianti, E.; Tjahjono, D.H. Ligand-based pharmacophore modeling, molecular docking, and molecular dynamic studies of dual tyrosine kinase inhibitor of EGFR and VEGFR2. Int. J. Mol. Sci., 2020, 21(20), 7779.
[http://dx.doi.org/10.3390/ijms21207779] [PMID: 33096664]
[20]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[21]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[22]
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[23]
Ibrahim, M.T.; Uzairu, A.; Uba, S.; Shallangwa, G.A. Quantitative structure-activity relationship, molecular docking, drug-likeness, and pharmacokinetic studies of some non-small cell lung cancer therapeutic agents. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 1-4.
[24]
Yap, C.W. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[25]
Yadav, D.K.; Khan, F. QSAR, docking and ADMET studies of camptothecin derivatives as inhibitors of DNA topoisomerase‐I. J. Chemom., 2013, 27(1-2), 21-33.
[26]
Duchowicz, P.; Castro, E. Partial order theory applied to QSPR-QSAR studies. Comb. Chem. High Throughput Screen., 2008, 11(10), 783-793.
[http://dx.doi.org/10.2174/138620708786734316] [PMID: 19075600]
[27]
Yadav, D.; Dhawan, S.; Chauhan, A.; Qidwai, T.; Sharma, P.; Bhakuni, R.; Dhawan, O.; Khan, F. QSAR and docking based semi-synthesis and in vivo evaluation of artemisinin derivatives for antimalarial activity. Curr. Drug Targets, 2014, 15(8), 753-761.
[http://dx.doi.org/10.2174/1389450115666140630102711] [PMID: 24975562]
[28]
Dudek, A.; Arodz, T.; Gálvez, J. Computational methods in developing quantitative structure-activity relationships (QSAR): A review. Comb. Chem. High Throughput Screen., 2006, 9(3), 213-228.
[http://dx.doi.org/10.2174/138620706776055539] [PMID: 16533155]
[29]
Kumer, A.; Chakma, U.; Chandro, A.; Howlader, D.; Akash, S.; Kobir, M.E.; Hossain, T.; Matin, M.M. Modified D-glucofuranose computationally screening for inhibitor of breast cancer and triple breast cancer: Chemical descriptor, molecular docking, molecular dynamics and QSAR. J. Chil. Chem. Soc., 2022, 67(3), 5623-5635.
[http://dx.doi.org/10.4067/S0717-97072022000305623]
[30]
Grisoni, F.; Ballabio, D.; Todeschini, R.; Consonni, V. Molecular descriptors for structure–activity applications: a hands-on approach. Computational Toxicology; Humana Press: New York, NY, 2018, pp. 3-53.
[31]
Shen, M.; LeTiran, A.; Xiao, Y.; Golbraikh, A.; Kohn, H.; Tropsha, A. Quantitative structure- activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbour and simulated annealing PLS methods. J. Med. Chem., 2002, 45(13), 2811-2823.
[32]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR models-strategies and importance. Lett. Drug Des. Discov., 2011, 3, 511-519.
[33]
Jaiswal, M.; Khadikar, P.V.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: the first QSAR study on inhibition of tumor-associated isoenzyme IX with aromatic and heterocyclic sulfonamides. Bioorg. Med. Chem. Lett., 2004, 14(12), 3283-3290.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.099] [PMID: 15149691]
[34]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[35]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Chemical biology; Humana Press: New York, NY, 2015, pp. 243-250.
[36]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[37]
DeLano, W.L.; Bromberg, S. PyMOL user’s guide. In: DeLano Scientific LLC, 629. PyMOL:The PyMOL Molecular Graphic System, Version 1.5.0.3; Schrödinger, LLC., 2004. Available from: http://www.pymol.org/pymol
[38]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[39]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A.D., Jr CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J. Comput. Chem., 2010, 31(4), 671-690.
[http://dx.doi.org/10.1002/jcc.21367] [PMID: 19575467]
[40]
Vanommeslaeghe, K.; Raman, E.P.; MacKerell, A.D., Jr Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model., 2012, 52(12), 3155-3168.
[http://dx.doi.org/10.1021/ci3003649] [PMID: 23145473]
[41]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H]
[42]
Pandini, A.; Schulman, H.; Khan, S. Conformational coupling by trans-phosphorylation in calcium calmodulin dependent kinase II. PLOS Comput. Biol., 2019, 15(5), e1006796.
[http://dx.doi.org/10.1371/journal.pcbi.1006796] [PMID: 31150387]
[43]
Alam, S.; Khan, F. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα. Drug Des. Devel. Ther., 2014, 8, 183-195.
[PMID: 24516330]
[44]
Ansari, W.A.; Rab, S.O.; Saquib, M.; Sarfraz, A.; Hussain, M.K.; Akhtar, M.S.; Ahmad, I.; Khan, M.F. Pentafuhalol-B, a phlorotannin from brown algae, strongly inhibits the PLK-1 overexpression in cancer cells as revealed by computational analysis. Molecules, 2023, 28(15), 5853.
[http://dx.doi.org/10.3390/molecules28155853] [PMID: 37570823]
[45]
Lam, T.P.; Nguyen, D.N.; Mai, T.T.; Tran, T.D.; Le, M.T.; Huynh, P.N.H.; Nguyen, D.T.; Tran, V.H.; Trinh, D.T.T.; Truong, P.; Vo, C.V.T.; Thai, K.M. Exploration of chalcones as 3-chymotrypsin-like protease (3CLpro) inhibitors of SARS-CoV-2 using computational approaches. Struct. Chem., 2022, 33(5), 1707-1725.
[http://dx.doi.org/10.1007/s11224-022-02000-3] [PMID: 35811783]
[46]
Singh, E.; Jha, R.K.; Khan, R.J.; Kumar, A.; Jain, M.; Muthukumaran, J.; Singh, A.K. A computational essential dynamics approach to investigate structural influences of ligand binding on Papain like protease from SARS-CoV-2. Comput. Biol. Chem., 2022, 99, 107721.
[http://dx.doi.org/10.1016/j.compbiolchem.2022.107721] [PMID: 35835027]
[47]
Agrahari, A.K.; Sneha, P.; George Priya Doss, C.; Siva, R.; Zayed, H. A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. Metab. Brain Dis., 2018, 33(2), 589-600.
[http://dx.doi.org/10.1007/s11011-017-0121-2] [PMID: 29047041]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy