Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects

Author(s): Ruchi Pandey, Priya Bisht, Pranay Wal, Krishna Murti, V. Ravichandiran and Nitesh Kumar*

Volume 24, Issue 14, 2024

Published on: 23 January, 2024

Page: [1334 - 1352] Pages: 19

DOI: 10.2174/0113895575269644231120104501

Price: $65

Abstract

Background: Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades.

Objective: This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer.

Method: Articles were analysed using search engines and databases namely Pubmed and Scopus.

Result: Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation.

Conclusion: SMAC mimetics acts in a restorative way in the prevention of lung cancer.

Graphical Abstract

[1]
Singh, N.; Agrawal, S.; Jiwnani, S.; Khosla, D.; Malik, P.S.; Mohan, A.; Penumadu, P.; Prasad, K.T. Lung cancer in india. J. Thorac. Oncol., 2021, 16(8), 1250-1266.
[http://dx.doi.org/10.1016/j.jtho.2021.02.004] [PMID: 34304854]
[2]
Madama, D.; Martins, R.; Pires, A.S.; Botelho, M.F.; Alves, M.G.; Abrantes, A.M.; Cordeiro, C.R. Metabolomic profiling in lung cancer: A systematic review. Metabolites, 2021, 11(9), 630.
[http://dx.doi.org/10.3390/metabo11090630] [PMID: 34564447]
[3]
Mohan, A.; Garg, A.; Gupta, A.; Sahu, S.; Choudhari, C.; Vashistha, V.; Ansari, A.; Pandey, R.; Bhalla, A.; Madan, K.; Hadda, V.; Iyer, H.; Jain, D.; Kumar, R.; Mittal, S.; Tiwari, P.; Pandey, R.; Guleria, R. Clinical profile of lung cancer in North India: A 10-year analysis of 1862 patients from a tertiary care center. Lung India, 2020, 37(3), 190-197.
[http://dx.doi.org/10.4103/lungindia.lungindia_333_19] [PMID: 32367839]
[4]
Kanwal, M.; Ding, X.J.; Cao, Y. Familial risk for lung cancer. Oncol. Lett., 2017, 13(2), 535-542.
[http://dx.doi.org/10.3892/ol.2016.5518] [PMID: 28356926]
[5]
Global cancer observatory obtwhoiafroc. world cancer research fund international. 2022. Available from: https://www.wcrf.org/cancer-trends/lung-cancer-statistics/(Accessed on 2022 23 March)
[6]
What is Lung cancer ? : Centers for disease control and prevention. Available from: https://www.cdc.gov/cancer/lung/basic_info/what-is-lung-cancer.htm(Accessed on 2022 07 June)
[7]
Bai, L.; Smith, D.C.; Wang, S. Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol. Ther., 2014, 144(1), 82-95.
[http://dx.doi.org/10.1016/j.pharmthera.2014.05.007] [PMID: 24841289]
[8]
Global adult tobacco survey fact sheet| india Available from: https://www.tobaccofreekids.org/assets/global/pdfs/en/GATS_India_2016-17_FactSheet.pdf
[9]
Chen, Z.; Chen, J.; Liu, H.; Dong, W.; Huang, X.; Yang, D.; Hou, J.; Zhang, X. The SMAC mimetic APG-1387 sensitizes immune-mediated cell apoptosis in hepatocellular carcinoma. Front. Pharmacol., 2018, 9, 1298.
[http://dx.doi.org/10.3389/fphar.2018.01298] [PMID: 30459627]
[10]
Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417.
[http://dx.doi.org/10.1038/s41571-020-0341-y] [PMID: 32203277]
[11]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[12]
Singh, V.; Khurana, A.; Navik, U.; Allawadhi, P.; Bharani, K.K.; Weiskirchen, R. Apoptosis and pharmacological therapies for targeting thereof for cancer therapeutics. Sci, 2022, 4(2), 15.
[http://dx.doi.org/10.3390/sci4020015]
[13]
Mollaei, M.; Hassan, Z.M.; Khorshidi, F.; Langroudi, L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl. Oncol., 2021, 14(5), 101056.
[http://dx.doi.org/10.1016/j.tranon.2021.101056] [PMID: 33684837]
[14]
Yildirim, M; Yildiz, M; Duman, E; Dilli, UD; Ozturk, D; Goktas, S Gemcitabine cisplatin combination in locally advanced and metastatic non small cell lung cancer: Single center experience.
[15]
Griesinger, F.; Korol, E.E.; Kayaniyil, S.; Varol, N.; Ebner, T.; Goring, S.M. Efficacy and safety of first-line carboplatin-versus cisplatin-based chemotherapy for non-small cell lung cancer: A meta-analysis. Lung Cancer, 2019, 135, 196-204.
[http://dx.doi.org/10.1016/j.lungcan.2019.07.010] [PMID: 31446995]
[16]
Tsvetkova, D.; Ivanova, S. Application of approved cisplatin derivatives in combination therapy against different cancer diseases. Molecules, 2022, 27(8), 2466.
[http://dx.doi.org/10.3390/molecules27082466] [PMID: 35458666]
[17]
Patil, P.D.; Shapiro, M.; Hashemi Sadraei, N.; Pennell, N.A. An Open-Label Phase II trial of bevacizumab plus docetaxel and gemcitabine in advanced, Previously untreated nonsquamous non-small cell lung cancer. Oncologist, 2019, 24(4), 457-e126.
[http://dx.doi.org/10.1634/theoncologist.2018-0857] [PMID: 30602615]
[18]
Gu, L.; Zhong, D.; Yu, T.; Tang, P.; Meng, F.; Qin, Q. Retrospective study of the efficacy and toxicity of lobaplatinetoposide chemotherapy in small cell lung cancer. Thorac. Cancer, 2019, 10(2), 226-233.
[http://dx.doi.org/10.1111/1759-7714.12936] [PMID: 30600898]
[19]
Noronha, V.; Patil, V.M.; Joshi, A.; Menon, N.; Chougule, A.; Mahajan, A.; Janu, A.; Purandare, N.; Kumar, R.; More, S.; Goud, S.; Kadam, N.; Daware, N.; Bhattacharjee, A.; Shah, S.; Yadav, A.; Trivedi, V.; Behel, V.; Dutt, A.; Banavali, S.D.; Prabhash, K. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J. Clin. Oncol., 2020, 38(2), 124-136.
[http://dx.doi.org/10.1200/JCO.19.01154] [PMID: 31411950]
[20]
Ji, J; Aredo, JV; Piper-Vallillo, A; Huppert, L; Rotow, JK; Husain, H Osimertinib in NSCLC With Atypical EGFR-Activating Mutations: A Retrospective Multicenter Study. JTO clinical and research reports., 2023, 4(3), 100459.
[21]
Awad, MM; Shaw, AT ALK inhibitors in non-small cell lung cancer: Crizotinib and beyond. Clinical advances in hematology & oncology., 2014, 12(7), 429-439.
[22]
Brody, T. FDA’s drug review process and the package label: strategies for writing successful FDA submissions; Academic Press, 2017.
[23]
Das, M.; Padda, S.K.; Weiss, J.; Owonikoko, T.K. Advances in treatment of recurrent small cell lung cancer (SCLC): Insights for optimizing patient outcomes from an expert roundtable discussion. Adv. Ther., 2021, 38(11), 5431-5451.
[http://dx.doi.org/10.1007/s12325-021-01909-1] [PMID: 34564806]
[24]
Qin, S.; Yang, C.; Li, S.; Xu, C.; Zhao, Y.; Ren, H. Smac: Its role in apoptosis induction and use in lung cancer diagnosis and treatment. Cancer Lett., 2012, 318(1), 9-13.
[http://dx.doi.org/10.1016/j.canlet.2011.12.024] [PMID: 22227574]
[25]
Paul, A; Krelin, Y; Arif, T; Jeger, R; Shoshan-Barmatz, V. A new role for the mitochondrial pro-apoptotic protein SMAC/Diablo in phospholipid synthesis associated with tumorigenesis. Molecular Therapy: The j. Ameri. Soc. Gene Ther., 2018, 26(3), 680-694.
[26]
Zhao, J.; Zhu, Z.; Su, X.; Zhang, X.; Wu, Z.; Chen, G.; Wang, G.; Rong, T. Clinical significance of Smac expression on non-small cell lung cancers. Chinese-German J. Clin. Oncol., 2011, 10(5), 249-251.
[http://dx.doi.org/10.1007/s10330-011-0808-5]
[27]
Hurwitz, H.I.; Smith, D.C.; Pitot, H.C.; Brill, J.M.; Chugh, R.; Rouits, E.; Rubin, J.; Strickler, J.; Vuagniaux, G.; Sorensen, J.M.; Zanna, C. Safety, pharmacokinetics, and pharmacodynamic properties of oral DEBIO1143 (AT-406) in patients with advanced cancer: results of a first-in-man study. Cancer Chemother. Pharmacol., 2015, 75(4), 851-859.
[http://dx.doi.org/10.1007/s00280-015-2709-8] [PMID: 25716544]
[28]
Tian, A.; Wilson, G.S.; Lie, S.; Wu, G.; Hu, Z.; Hebbard, L.; Duan, W.; George, J.; Qiao, L. Synergistic effects of IAP inhibitor LCL161 and paclitaxel on hepatocellular carcinoma cells. Cancer Lett., 2014, 351(2), 232-241.
[http://dx.doi.org/10.1016/j.canlet.2014.06.006] [PMID: 24976294]
[29]
Tolcher, A.; Papadopoulos, K.; Patnaik, A.; Fairbrother, W.; Wong, H.; Budha, N. Phase I study of safety and pharmacokinetics of GDC-0917, an antagonist of inhibitor of apoptosis proteins in patients with refractory solid tumors or lymphoma. ASCO Meeting. 2013.
[30]
Yang, L.; Shu, T.; Liang, Y.; Gu, W.; Wang, C.; Song, X.; Fan, C.; Wang, W. GDC-0152 attenuates the malignant progression of osteosarcoma promoted by ANGPTL2 via PI3K/AKT but not p38MAPK signaling pathway. Int. J. Oncol., 2015, 46(4), 1651-1658.
[http://dx.doi.org/10.3892/ijo.2015.2872] [PMID: 25651778]
[31]
Zhu, H.; Li, Y.; Liu, Y.; Han, B. Bivalent SMAC mimetics for treating cancer by antagonizing inhibitor of apoptosis proteins. ChemMedChem, 2019, 14(23), 1951-1962.
[http://dx.doi.org/10.1002/cmdc.201900410] [PMID: 31692274]
[32]
Wong, H.; Gould, S.E.; Budha, N.; Darbonne, W.C.; Kadel, E.E., III; La, H.; Alicke, B.; Halladay, J.S.; Erickson, R.; Portera, C.; Tolcher, A.W.; Infante, J.R.; Mamounas, M.; Flygare, J.A.; Hop, C.E.C.A.; Fairbrother, W.J. Learning and confirming with preclinical studies: Modeling and simulation in the discovery of GDC-0917, an inhibitor of apoptosis proteins antagonist. Drug Metab. Dispos., 2013, 41(12), 2104-2113.
[http://dx.doi.org/10.1124/dmd.113.053926] [PMID: 24041744]
[33]
Chang, Y.C.; Cheung, C.H.A. An updated review of SMAC mimetics, LCL161, Birinapant, and GDC-0152 in cancer treatment. Appl. Sci., 2020, 11(1), 335.
[http://dx.doi.org/10.3390/app11010335]
[34]
Jan, R.; Chaudhry, G.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull., 2019, 9(2), 205-218.
[http://dx.doi.org/10.15171/apb.2019.024] [PMID: 31380246]
[35]
Byers, N.M.; Vandergaast, R.L.; Friesen, P.D. Baculovirus inhibitor-of-apoptosis Op-IAP3 blocks apoptosis by interaction with and stabilization of a host insect cellular IAP. J. Virol., 2016, 90(1), 533-544.
[http://dx.doi.org/10.1128/JVI.02320-15] [PMID: 26491164]
[36]
Zheng, H.; Pan, Y.; Awais, M.M.; Tian, W.; Li, J.; Sun, J. Impact of Group II baculovirus IAPs on virus-induced apoptosis in insect cells. Genes (Basel), 2022, 13(5), 750.
[http://dx.doi.org/10.3390/genes13050750] [PMID: 35627135]
[37]
Vasudevan, D.; Don Ryoo, H. Regulation of cell death by IAPs and their antagonists. Curr. Top. Dev. Biol., 2015, 114, 185-208.
[http://dx.doi.org/10.1016/bs.ctdb.2015.07.026] [PMID: 26431568]
[38]
de Almagro, MC; Vucic, D Inhibitor of Apoptosis Proteins, the Sentinels of Cell Death and Signa. 2016.
[39]
Estornes, Y.; Bertrand, M.J. Eds.; IAPs, regulators of innate immunity and inflammation. Seminars in cell & developmental biology; Elsevier, 2015.
[40]
Branco, P.C.; Jimenez, P.C.; Machado-Neto, J.A.; Costa-Lotufo, L.V. BIRC8 (baculoviral IAP repeat containing 8). Atlas Genet. Cytogenet. Oncol. Haematol., 2020, 24(05), 194-196.
[41]
Sun, K.; Liao, Q.; Chen, Z.; Chen, T.; Zhang, J. Expression of Livin and PlGF in human osteosarcoma is associated with tumor progression and clinical outcome. Oncol. Lett., 2018, 16(4), 4953-4960.
[http://dx.doi.org/10.3892/ol.2018.9239] [PMID: 30214613]
[42]
Soleimanpour, E.; Babaei, E. Survivin as a potential target for cancer therapy. Asian Pac. J. Cancer Prev., 2015, 16(15), 6187-6191.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6187] [PMID: 26434815]
[43]
Kumar, S.; Fairmichael, C.; Longley, D.B.; Turkington, R.C. The multiple roles of the IAP super-family in cancer. Pharmacol. Ther., 2020, 214, 107610.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107610] [PMID: 32585232]
[44]
Dumétier, B.; Zadoroznyj, A.; Dubrez, L. IAP-mediated protein ubiquitination in regulating cell signaling. Cells, 2020, 9(5), 1118.
[http://dx.doi.org/10.3390/cells9051118] [PMID: 32365919]
[45]
Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF;‐κB signaling in inflammation and cancer. MedComm, 2021, 2(4), 618-653.
[http://dx.doi.org/10.1002/mco2.104] [PMID: 34977871]
[46]
Berthelet, J.; Dubrez, L. Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells, 2013, 2(1), 163-187.
[http://dx.doi.org/10.3390/cells2010163] [PMID: 24709650]
[47]
Witkop, E.M.; Proestou, D.A.; Gomez-Chiarri, M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genom., 2022, 23(1), 201.
[http://dx.doi.org/10.1186/s12864-021-08233-6] [PMID: 35279090]
[48]
Chaudhary, A.K.; Yadav, N.; Bhat, T.A.; O’Malley, J.; Kumar, S.; Chandra, D. A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov. Today, 2016, 21(1), 38-47.
[http://dx.doi.org/10.1016/j.drudis.2015.07.014] [PMID: 26232549]
[49]
Shahar, N.; Larisch, S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist. Updat., 2020, 52, 100712.
[http://dx.doi.org/10.1016/j.drup.2020.100712] [PMID: 32599435]
[50]
Chen, S.N.; Fang, T.; Kong, J.Y.; Pan, B.B.; Su, X.C. Third BIR domain of XIAP binds to both Cu(II) and Cu(I) in multiple sites and with diverse affinities characterized at atomic resolution. Sci. Rep., 2019, 9(1), 7428.
[http://dx.doi.org/10.1038/s41598-019-42875-7] [PMID: 31092843]
[51]
Budhidarmo, R.; Day, C.L. Eds.; IAPs: Modular regulators of cell signalling.Seminars in cell & developmental biology; Elsevier, 2015.
[52]
Martin, S.J. Dealing the CARDs between life and death. Trends Cell Biol., 2001, 11(5), 188-189.
[http://dx.doi.org/10.1016/S0962-8924(01)01971-7] [PMID: 11393153]
[53]
Riley, J; Malik, A; Holohan, C; Longley, D. DED or alive: Assembly and regulation of the death effector domain complexes. Cell Death Dis., 2015, 6(8), 1866.
[http://dx.doi.org/10.1038/cddis.2015.213]
[54]
Cetraro, P.; Plaza-Diaz, J.; MacKenzie, A.; Abadía-Molina, F. A review of the current impact of inhibitors of apoptosis proteins and their repression in cancer. Cancers (Basel), 2022, 14(7), 1671.
[http://dx.doi.org/10.3390/cancers14071671] [PMID: 35406442]
[55]
Gyrd-Hansen, M.; Meier, P. IAPs: From caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat. Rev. Cancer, 2010, 10(8), 561-574.
[http://dx.doi.org/10.1038/nrc2889] [PMID: 20651737]
[56]
Finlay, D.; Teriete, P.; Vamos, M.; Cosford, N.D.P.; Vuori, K. Inducing death in tumor cells: Roles of the inhibitor of apoptosis proteins. F1000 Res., 2017, 6, 587.
[http://dx.doi.org/10.12688/f1000research.10625.1] [PMID: 28529715]
[57]
Fulda, S.; Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov., 2012, 11(2), 109-124.
[http://dx.doi.org/10.1038/nrd3627] [PMID: 22293567]
[58]
Liang, J.; Zhao, W.; Tong, P.; Li, P.; Zhao, Y.; Li, H.; Liang, J. Comprehensive molecular characterization of inhibitors of apoptosis proteins (IAPs) for therapeutic targeting in cancer. BMC Med. Genom., 2020, 13(1), 7.
[http://dx.doi.org/10.1186/s12920-020-0661-x] [PMID: 31964418]
[59]
Cetraro, P.; Plaza-Diaz, J. A Review of the Current Impact of Inhibitors of Apoptosis Proteins and Their Repression in Cancer. Cancers, 2022, 14(7), 1671.
[http://dx.doi.org/10.3390/cancers14071671]
[60]
Fung, S; Knoefel, WT; Krieg A Clinicopathological and prognostic significance of inhibitor of apoptosis protein (IAP) family members in lung cancer. A Meta-Analysis., 2021, 13(16)
[61]
Huang, W.; Mao, Y.; Zhan, Y.; Huang, J.; Wang, X.; Luo, P.; Li, L.; Mo, D.; Liu, Q.; Xu, H.; Huang, C. Prognostic implications of survivin and lung resistance protein in advanced non-small cell lung cancer treated with platinum-based chemotherapy. Oncol. Lett., 2016, 11(1), 723-730.
[http://dx.doi.org/10.3892/ol.2015.3913] [PMID: 26870274]
[62]
Obexer, P.; Ausserlechner, M.J. X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front. Oncol., 2014, 4, 197.
[http://dx.doi.org/10.3389/fonc.2014.00197] [PMID: 25120954]
[63]
Verhagen, A.M.; Ekert, P.G.; Pakusch, M.; Silke, J.; Connolly, L.M.; Reid, G.E.; Moritz, R.L.; Simpson, R.J.; Vaux, D.L. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 2000, 102(1), 43-53.
[http://dx.doi.org/10.1016/S0092-8674(00)00009-X] [PMID: 10929712]
[64]
Martinez-Ruiz, G.U.; Victoria-Acosta, G.; Vazquez-Santillan, K.I.; Jimenez-Hernandez, L.; Muñoz-Galindo, L.; Ceballos-Cancino, G.; Maldonado, V.; Melendez-Zajgla, J. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation. Int. J. Clin. Exp. Pathol., 2014, 7(9), 5515-5526.
[PMID: 25337193]
[65]
Victoria-Acosta, G.; Martínez-Archundia, M.; Moreno-Vargas, L.; Meléndez-Zajgla, J.; Martínez-Ruiz, G.U. Is there something else besides the proapoptotic AVPI-segment in the Smac/DIABLO protein? Bol. Méd. Hosp. Infant. México, 2016, 73(6), 365-371.
[http://dx.doi.org/10.1016/j.bmhimx.2016.10.004] [PMID: 29421280]
[66]
Mastrangelo, E.; Vachette, P.; Cossu, F.; Malvezzi, F.; Bolognesi, M.; Milani, M. The activator of apoptosis Smac-DIABLO acts as a tetramer in solution. Biophys. J., 2015, 108(3), 714-723.
[http://dx.doi.org/10.1016/j.bpj.2014.11.3471] [PMID: 25650938]
[67]
Green, D.R. The mitochondrial pathway of apoptosis Part I: MOMP and beyond. Cold Spring Harb. Perspect. Biol., 2022, 14(5), a041038.
[http://dx.doi.org/10.1101/cshperspect.a041038] [PMID: 35623793]
[68]
Kalkavan, H.; Green, D.R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ., 2018, 25(1), 46-55.
[http://dx.doi.org/10.1038/cdd.2017.179] [PMID: 29053143]
[69]
Peña-Blanco, A.; García-Sáez, A.J. Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J., 2018, 285(3), 416-431.
[http://dx.doi.org/10.1111/febs.14186] [PMID: 28755482]
[70]
Gahl, R.F.; He, Y.; Yu, S.; Tjandra, N. Conformational rearrangements in the pro-apoptotic protein, Bax, as it inserts into mitochondria: A cellular death switch. J. Biol. Chem., 2014, 289(47), 32871-32882.
[http://dx.doi.org/10.1074/jbc.M114.593897] [PMID: 25315775]
[71]
Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol., 2020, 21(2), 85-100.
[http://dx.doi.org/10.1038/s41580-019-0173-8] [PMID: 31636403]
[72]
Ježek, J.; Cooper, K.F.; Strich, R. The impact of mitochondrial fission-stimulated ROS production on pro-apoptotic chemotherapy. Biology (Basel), 2021, 10(1), 33.
[http://dx.doi.org/10.3390/biology10010033] [PMID: 33418995]
[73]
Lv, Z.; Song, X.; Xu, J.; Jia, Z.; Yang, B.; Jia, Y.; Qiu, L.; Wang, L.; Song, L. The modulation of Smac/DIABLO on mitochondrial apoptosis induced by LPS in Crassostrea gigas. Fish Shellfish Immunol., 2019, 84, 587-598.
[http://dx.doi.org/10.1016/j.fsi.2018.10.035] [PMID: 30336283]
[74]
Hunkeler, M.; Jin, C.Y.; Fischer, E.S. Structures of BIRC6-client complexes provide a mechanism of SMAC-mediated release of caspases. Science, 2023, 379(6637), 1105-1111.
[http://dx.doi.org/10.1126/science.ade5750] [PMID: 36758104]
[75]
Cossu, F.; Milani, M.; Mastrangelo, E.; Lecis, D. Targeting the BIR domains of inhibitor of apoptosis (IAP) proteins in cancer treatment. Comput. Struct. Biotechnol. J., 2019, 17, 142-150.
[http://dx.doi.org/10.1016/j.csbj.2019.01.009] [PMID: 30766663]
[76]
Tian, S.; Ji, C.; Zhang, J.Z.H. Molecular basis of SMAC-XIAP binding and the effect of electrostatic polarization. J. Biomol. Struct. Dyn., 2021, 39(2), 743-752.
[http://dx.doi.org/10.1080/07391102.2020.1713892] [PMID: 31914860]
[77]
Lattuada, D.; Casnici, C.; Crotta, K.; Seneci, P.F.; Corradini, C.; Truzzi, M.; Ingegnoli, F.; Marelli, O. Proapoptotic activity of a monomeric smac mimetic on human fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflammation, 2015, 38(1), 102-109.
[http://dx.doi.org/10.1007/s10753-014-0012-1] [PMID: 25212046]
[78]
Attaran-Bandarabadi, F.; Abhari, B.A.; Neishabouri, S.H.; Davoodi, J. Integrity of XIAP is essential for effective activity recovery of apoptosome and its downstream caspases by Smac/Diablo. Int. J. Biol. Macromol., 2017, 101, 283-289.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.088] [PMID: 28322955]
[79]
Ehrmann, J.F.; Grabarczyk, D.B.; Heinke, M.; Deszcz, L.; Kurzbauer, R.; Hudecz, O. Structural basis of how the BIRC6/SMAC complex regulates apoptosis and autophagy. bioRxiv, 2022, 2022.08.
[http://dx.doi.org/10.1101/2022.08.30.505823]
[80]
Polykretis, P.; Luchinat, E. Biophysical characterization of the interaction between the full-length XIAP and Smac/DIABLO. Biochem. Biophys. Res. Commun., 2021, 568, 180-185.
[http://dx.doi.org/10.1016/j.bbrc.2021.06.077] [PMID: 34247143]
[81]
Corti, A; Milani, M; Lecis, D; Seneci, P; de Rosa, M; Mastrangelo, E. Structure-based design and molecular profiling of Smac-mimetics selective for cellular IAPs. FEBS J., 2018, 285(17), 3286-98.
[http://dx.doi.org/10.1111/febs.14616]
[82]
Sun, H.; Lu, J.; Liu, L.; Yang, C.Y.; Wang, S. Potent and selective small-molecule inhibitors of cIAP1/2 proteins reveal that the binding of Smac mimetics to XIAP BIR3 is not required for their effective induction of cell death in tumor cells. ACS Chem. Biol., 2014, 9(4), 994-1002.
[http://dx.doi.org/10.1021/cb400889a] [PMID: 24521431]
[83]
Messaoud, N.B.; Yue, J.; Valent, D.; Katzarova, I.; López, J.M. Osmostress-induced apoptosis in Xenopus oocytes: Role of stress protein kinases, calpains and Smac/DIABLO. PLoS One, 2015, 10(4), e0124482.
[http://dx.doi.org/10.1371/journal.pone.0124482] [PMID: 25866890]
[84]
Li, Q.C.; Xu, H.; Wang, X.; Wang, T.; Wu, J. miR-34a increases cisplatin sensitivity of osteosarcoma cells in vitro through up-regulation of c-Myc and Bim signal. Cancer Biomark., 2017, 21(1), 135-144.
[http://dx.doi.org/10.3233/CBM-170452] [PMID: 29060932]
[85]
de Looff, M.; de Jong, S.; Kruyt, F.A.E. Multiple interactions between cancer cells and the tumor microenvironment modulate TRAIL signaling: Implications for TRAIL receptor targeted therapy. Front. Immunol., 2019, 10, 1530.
[http://dx.doi.org/10.3389/fimmu.2019.01530] [PMID: 31333662]
[86]
Abbas, R.; Larisch, S. Killing by degradation: Regulation of apoptosis by the ubiquitin-proteasome-system. Cells, 2021, 10(12), 3465.
[http://dx.doi.org/10.3390/cells10123465] [PMID: 34943974]
[87]
Cheung, C.H.A.; Chang, Y.C.; Lin, T.Y.; Cheng, S.M.; Leung, E. Anti-apoptotic proteins in the autophagic world: An update on functions of XIAP, Survivin, and BRUCE. J. Biomed. Sci., 2020, 27(1), 31.
[http://dx.doi.org/10.1186/s12929-020-0627-5] [PMID: 32019552]
[88]
Dhanasekaran, D.N.; Reddy, E.P. JNK-signaling: A multiplexing hub in programmed cell death. Genes Cancer, 2017, 8(9-10), 682-694.
[http://dx.doi.org/10.18632/genesandcancer.155] [PMID: 29234486]
[89]
Lei, X.; Hu, X.; Lu, Q.; Yao, Y.; Sun, W.; Ma, Q.; Huang, D.; Xu, Q. UBE2K promotes the malignant progression of hepatocellular carcinoma by regulating c-Myc. Biochem. Biophys. Res. Commun., 2023, 638, 210-218.
[http://dx.doi.org/10.1016/j.bbrc.2022.11.046] [PMID: 36481361]
[90]
Li, Y.; Tan, Y.; Wen, L.; Xing, Z.; Wang, C.; Zhang, L.; Wu, K.; Sun, H.; Li, Y.; Lei, Q.; Wu, S. Overexpression of BIRC6 driven by EGF-JNK-HECTD1 signaling is a potential therapeutic target for triple-negative breast cancer. Mol. Ther. Nucleic Acids, 2021, 26, 798-812.
[http://dx.doi.org/10.1016/j.omtn.2021.09.011] [PMID: 34729249]
[91]
Yoon, K.; Jang, H.D.; Lee, S.Y. Direct interaction of Smac with NADE promotes TRAIL-induced apoptosis. Biochem. Biophys. Res. Commun., 2004, 319(2), 649-654.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.043] [PMID: 15178455]
[92]
Cong, H.; Xu, L.; Wu, Y.; Qu, Z.; Bian, T.; Zhang, W.; Xing, C.; Zhuang, C. Inhibitor of apoptosis protein (IAP) antagonists in anticancer agent discovery: Current status and perspectives. J. Med. Chem., 2019, 62(12), 5750-5772.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01668] [PMID: 30676015]
[93]
Mitsuuchi, Y.; Benetatos, C.A.; Deng, Y.; Haimowitz, T.; Beck, S.C.; Arnone, M.R.; Kapoor, G.S.; Seipel, M.E.; Chunduru, S.K.; McKinlay, M.A.; Begley, C.G.; Condon, S.M. Bivalent IAP antagonists, but not monovalent IAP antagonists, inhibit TNF-mediated NF-κB signaling by degrading TRAF2-associated cIAP1 in cancer cells. Cell Death Discov., 2017, 3(1), 16046.
[http://dx.doi.org/10.1038/cddiscovery.2016.46] [PMID: 28149532]
[94]
Vetma, V. Assessment of TRAIL sensitisation by IAP antagonist TL32711 in malignant melanoma and development of a framework for response prediction. Cell Death Differ., 2020, 27(8), 2417-2432.
[95]
Fulda, S. Ed.; Smac mimetics as IAP antagonists.Seminars in cell & developmental biology; Elsevier, 2015.
[96]
Board, C.N.E. Lung cancer - non-small cell: Statistics. 2023. Available from: https://www.cancer.net/cancer-types/lung-cancer-non-small-cell/statistics
[97]
Cancer.net. lung cancer - small cell: Statistics. 2023. Available from: https://www.cancer.net/cancer-types/lung-cancer-small-cell/statistics
[98]
Blandin Knight, S.; Crosbie, P.A.; Balata, H.; Chudziak, J.; Hussell, T.; Dive, C. Progress and prospects of early detection in lung cancer. Open Biol., 2017, 7(9), 170070.
[http://dx.doi.org/10.1098/rsob.170070] [PMID: 28878044]
[99]
Zhang, B.; Yang, C.; Wang, R.; Wu, J.; Zhang, Y.; Liu, D.; Sun, X.; Li, X.; Ren, H.; Qin, S. OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. J. Exp. Clin. Cancer Res., 2020, 39(1), 244.
[http://dx.doi.org/10.1186/s13046-020-01751-3] [PMID: 33198776]
[100]
Sun, H.; Liu, F.; Zhai, H.; Wu, J.; Nie, S.; Cai, H.; Wen, K.; Feng, L.; Liu, Q.; Ji, K.; Wang, Y. Self-synthesized second mitochondria-derived activator of caspase (SMAC) mimetic TP-WY-1345 enhances the radiosensitivity of NSCLC cells H1299 by targeting anti-apoptotic protein cIAP1. Radiation Medicine and Protection, 2023, 4(1), 26-32.
[http://dx.doi.org/10.1016/j.radmp.2023.01.003]
[101]
Raisuddin, S.; Ali Beg, M.M.; Saxena, A.; Singh, V.K.; Akhter, J.; Habib, H. Modulatory role of BV6 and chloroquine on the regulation of apoptosis and autophagy in non-small cell lung cancer cells. J. Cancer Res. Ther., 2023, 19(8)(Suppl.)
[http://dx.doi.org/10.4103/jcrt.jcrt_816_21] [PMID: 37147964]
[102]
Ahmad, I.; Irfan, S.; Ali Beg, M.M.; Kamli, H.; Ali, S.P.; Begum, N.; Alshahrani, M.Y.; Rajagopalan, P. The SMAC mimetic AT-101 exhibits anti-tumor and anti-metastasis activity in lung adenocarcinoma cells by the IAPs/caspase-dependent apoptosis and p65-NFƙB cross-talk. Iran. J. Basic Med. Sci., 2021, 24(7), 969-977.
[PMID: 34712428]
[103]
Peng, C.; Hao, Y.; Zhao, Y.; Sun, Q.; Zhao, X.; Cong, B. Effect of Smac and Taxol on non-small-cell lung cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(5), 387-393.
[http://dx.doi.org/10.1093/abbs/gmu018] [PMID: 24681884]
[104]
Ahmad, I.; Dera, A.; Irfan, S.; Rajagopalan, P.; Ali Beg, M.; Alshahrani, M.; Mir, M.; Abohashrh, M.; Alam, M.; Wahab, S.; Verma, A.; Srivastava, S. BV6 enhances apoptosis in Lung cancer cells by ameliorating caspase expressions through attenuation of XIAP, cIAP-1, and cIAP-2 proteins. J. Cancer Res. Ther., 2022, 18(6), 1651-1657.
[http://dx.doi.org/10.4103/jcrt.JCRT_1281_20] [PMID: 36412426]
[105]
Zhang, R.; Sun, H.; Wang, H.; Zhang, W.; Geng, K.; Liu, Q.; Wang, P. ANTP-SmacN7 fusion peptide-induced radiosensitization in A549 cells and its potential mechanisms. Thorac. Cancer, 2020, 11(5), 1271-1279.
[http://dx.doi.org/10.1111/1759-7714.13393] [PMID: 32155687]
[106]
Hao, Q.; Tang, H. Interferon-γ and Smac mimetics synergize to induce apoptosis of lung cancer cells in a TNFα-independent manner. Cancer Cell Int., 2018, 18(1), 84.
[http://dx.doi.org/10.1186/s12935-018-0579-y]
[107]
Colombo, M.; Marabese, M.; Vargiu, G.; Broggini, M.; Caiola, E. Activity of birinapant, a SMAC mimetic compound, alone or in combination in NSCLCs with different mutations. Front. Oncol., 2020, 10, 532292.
[http://dx.doi.org/10.3389/fonc.2020.532292] [PMID: 33194590]
[108]
Schilder, R.J.; Albertella, M.; Strauss, J.F.; Sydvander, M.; Le, D.T.; Norin, S.; Mita, M.M.; Boström, E.; Fu, S.; Basse, L.; Bethell, R. Determination of the recommended phase II dose of birinapant in combination with pembrolizumab: Results from the dose-escalation phase of BPT-201. J. Clin. Oncol., 2019, 37(15)(_suppl), 2506.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.2506]
[109]
Yang, C.; Wang, H.; Zhang, B.; Chen, Y.; Zhang, Y.; Sun, X.; Xiao, G.; Nan, K.; Ren, H.; Qin, S. LCL161 increases paclitaxel-induced apoptosis by degrading cIAP1 and cIAP2 in NSCLC. J. Exp. Clin. Cancer Res., 2016, 35(1), 158.
[http://dx.doi.org/10.1186/s13046-016-0435-7] [PMID: 27737687]
[110]
Tao, Z.; McCall, N.S.; Wiedemann, N.; Vuagniaux, G.; Yuan, Z.; Lu, B. SMAC Mimetic Debio 1143 and ablative radiation therapy synergize to enhance antitumor immunity against lung cancer. Clin. Cancer Res., 2019, 25(3), 1113-1124.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3852] [PMID: 30352911]
[111]
Greer, R.M.; Peyton, M.; Larsen, J.E.; Girard, L.; Xie, Y.; Gazdar, A.F.; Harran, P.; Wang, L.; Brekken, R.A.; Wang, X.; Minna, J.D. SMAC mimetic (JP1201) sensitizes non-small cell lung cancers to multiple chemotherapy agents in an IAP-dependent but TNF-α-independent manner. Cancer Res., 2011, 71(24), 7640-7648.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3947] [PMID: 22049529]
[112]
Liu, T.; Li, Y.; Sun, J.; Tian, G.; Shi, Z. Engeletin suppresses lung cancer progression by inducing apoptotic cell death through modulating the XIAP signaling pathway: A molecular mechanism involving ER stress. Biomed. Pharmacother., 2020, 128, 110221.
[http://dx.doi.org/10.1016/j.biopha.2020.110221] [PMID: 32447208]
[113]
Dai, C.H.; Li, J.; Shi, S.B.; Yu, L.C.; Ge, L.P.; Chen, P. Survivin and Smac gene expressions but not livin are predictors of prognosis in non-small cell lung cancer patients treated with adjuvant chemotherapy following surgery. Jpn. J. Clin. Oncol., 2010, 40(4), 327-335.
[http://dx.doi.org/10.1093/jjco/hyp165] [PMID: 20056675]
[114]
Chen, P.; Li, J.; Ge, L.P.; Dai, C.H.; Li, X.Q. Prognostic value of survivin, X-linked inhibitor of apoptosis protein and second mitochondria-derived activator of caspases expression in advanced non-small-cell lung cancer patients. Respirology, 2010, 15(3), 501-509.
[http://dx.doi.org/10.1111/j.1440-1843.2010.01710.x] [PMID: 20210890]
[115]
Jan, R.; Chaudhry, G.E. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv. Pharm. Bull., 2019, 9(2), 205-218.
[116]
He, C.; Li, L.; Guan, X.; Xiong, L.; Miao, X. Mutant p53 gain of function and chemoresistance: The role of mutant p53 in response to clinical chemotherapy. Chemotherapy, 2017, 62(1), 43-53.
[http://dx.doi.org/10.1159/000446361] [PMID: 27322648]
[117]
Alimbetov, D.; Askarova, S.; Umbayev, B.; Davis, T.; Kipling, D. Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells. Int. J. Mol. Sci., 2018, 19(6), 1690.
[http://dx.doi.org/10.3390/ijms19061690] [PMID: 29882812]
[118]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[119]
Contadini, C; Ferri, A; Cirotti, C. Caspase-8 and tyrosine kinases. Dangerous Liaison Cancer, 2023, 15(13)
[120]
Humphreys, L.; Espona-Fiedler, M.; Longley, D.B. FLIP as a therapeutic target in cancer. FEBS J., 2018, 285(22), 4104-4123.
[http://dx.doi.org/10.1111/febs.14523] [PMID: 29806737]
[121]
Powley, I.R.; Hughes, M.A.; Cain, K.; MacFarlane, M. Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex. Oncogene, 2016, 35(43), 5629-5640.
[http://dx.doi.org/10.1038/onc.2016.99] [PMID: 27109099]
[122]
D’Aguanno, S.; Del Bufalo, D. Inhibition of anti-apoptotic Bcl-2 proteins in preclinical and clinical studies: Current overview in cancer. Cells, 2020, 9(5), 1287.
[http://dx.doi.org/10.3390/cells9051287] [PMID: 32455818]
[123]
Kaloni, D.; Diepstraten, S.T.; Strasser, A.; Kelly, G.L. BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis, 2023, 28(1-2), 20-38.
[http://dx.doi.org/10.1007/s10495-022-01780-7] [PMID: 36342579]
[124]
Mohammad, RM; Muqbil, I; Lowe, L; Yedjou, C; Hsu, HY; Lin, LT Broad targeting of resistance to apoptosis in cancer. Seminars Cancer Biol., 2015, 35(0), 78-103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001]
[125]
Gillies, L.A.; Kuwana, T. Apoptosis regulation at the mitochondrial outer membrane. J. Cell. Biochem., 2014, 115(4), 632-640.
[http://dx.doi.org/10.1002/jcb.24709] [PMID: 24453042]
[126]
Morrish, E.; Brumatti, G.; Silke, J. Future therapeutic directions for Smac-mimetics. Cells, 2020, 9(2), 406.
[http://dx.doi.org/10.3390/cells9020406] [PMID: 32053868]
[127]
Singh, P.; Lim, B. Targeting apoptosis in cancer. Curr. Oncol. Rep., 2022, 24(3), 273-284.
[http://dx.doi.org/10.1007/s11912-022-01199-y] [PMID: 35113355]
[128]
Flygare, J.A.; Beresini, M.; Budha, N.; Chan, H.; Chan, I.T.; Cheeti, S.; Cohen, F.; Deshayes, K.; Doerner, K.; Eckhardt, S.G.; Elliott, L.O.; Feng, B.; Franklin, M.C.; Reisner, S.F.; Gazzard, L.; Halladay, J.; Hymowitz, S.G.; La, H.; LoRusso, P.; Maurer, B.; Murray, L.; Plise, E.; Quan, C.; Stephan, J.P.; Young, S.G.; Tom, J.; Tsui, V.; Um, J.; Varfolomeev, E.; Vucic, D.; Wagner, A.J.; Wallweber, H.J.A.; Wang, L.; Ware, J.; Wen, Z.; Wong, H.; Wong, J.M.; Wong, M.; Wong, S.; Yu, R.; Zobel, K.; Fairbrother, W.J. Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J. Med. Chem., 2012, 55(9), 4101-4113.
[http://dx.doi.org/10.1021/jm300060k] [PMID: 22413863]
[129]
Zhang, T.; Wang, Y.; Inuzuka, H.; Wei, W. Eds.; Necroptosis pathways in tumorigenesis. Seminars in cancer biology.Elsevier, 2022.
[130]
Lamb, H.M. Double agents of cell death: Novel emerging functions of apoptotic regulators. FEBS J., 2020, 287(13), 2647-2663.
[http://dx.doi.org/10.1111/febs.15308] [PMID: 32239637]
[131]
Annibaldi, A.; Meier, P. Checkpoints in TNF-induced cell death: implications in inflammation and cancer. Trends Mol. Med., 2018, 24(1), 49-65.
[http://dx.doi.org/10.1016/j.molmed.2017.11.002] [PMID: 29217118]
[132]
Rasheduzzaman, M.; Jeong, J.K.; Park, S.Y. Resveratrol sensitizes lung cancer cell to TRAIL by p53 independent and suppression of Akt/NF-κB signaling. Life Sci., 2018, 208, 208-220.
[http://dx.doi.org/10.1016/j.lfs.2018.07.035] [PMID: 30031063]
[133]
Saeed, W.K.; Jun, D.W.; Jang, K.; Koh, D.H. Necroptosis signaling in liver diseases: An update. Pharmacol. Res., 2019, 148, 104439.
[http://dx.doi.org/10.1016/j.phrs.2019.104439] [PMID: 31476369]
[134]
Vanden Berghe, T.; Hassannia, B.; Vandenabeele, P. An outline of necrosome triggers. Cell. Mol. Life Sci., 2016, 73(11-12), 2137-2152.
[http://dx.doi.org/10.1007/s00018-016-2189-y] [PMID: 27052312]
[135]
Zhang, J.; Yang, Y.; He, W.; Sun, L. Necrosome core machinery: MLKL. Cell. Mol. Life Sci., 2016, 73(11-12), 2153-2163.
[http://dx.doi.org/10.1007/s00018-016-2190-5] [PMID: 27048809]
[136]
Fennell, D.A. Apoptotic agents. Transl. Lung Cancer Res., 2013, 2(3), 238-243.
[PMID: 25806237]
[137]
Yang, M.; Chen, W.; He, L.; Liu, D.; Zhao, L.; Wang, X. A Glimpse of necroptosis and diseases. Biomed. Pharmacother., 2022, 156, 113925.
[http://dx.doi.org/10.1016/j.biopha.2022.113925] [PMID: 36411617]
[138]
Laukens, B.; Jennewein, C.; Schenk, B.; Vanlangenakker, N.; Schier, A.; Cristofanon, S.; Zobel, K.; Deshayes, K.; Vucic, D.; Jeremias, I.; Bertrand, M.J.M.; Vandenabeele, P.; Fulda, S. Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor α-induced necroptosis. Neoplasia, 2011, 13(10), 971-IN29.
[http://dx.doi.org/10.1593/neo.11610] [PMID: 22028622]
[139]
Derakhshan, A.; Chen, Z.; Van Waes, C. Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin. Cancer Res., 2017, 23(6), 1379-1387.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2172] [PMID: 28039268]
[140]
Abdullah, A.; Ravanan, P. Kaempferol mitigates endoplasmic reticulum stress induced cell death by targeting caspase 3/7. Sci. Rep., 2018, 8(1), 2189.
[http://dx.doi.org/10.1038/s41598-018-20499-7] [PMID: 29391535]
[141]
Ji, K; Sun, X; Liu, Y; Du, L; Wang, Y; He, N Regulation of apoptosis and radiation sensitization in lung cancer cells via the Sirt1/NF-κB/Smac Pathway. Cellular physiology and biochemistry. Int. J. Experim. cellular Physio. Biochem. Pharmacol., 2018, 48(1), 304-316.
[142]
Fulda, S. Promises and challenges of Smac mimetics as cancer therapeutics. Clin. Cancer Res., 2015, 21(22), 5030-5036.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0365] [PMID: 26567362]
[143]
Johnson, M.L.; Patel, M.R.; Aljumaily, R.; Jones, S.F.; Burris, H.A., III; Spigel, D.R.; Spigel, D.R. A Phase Ib dose-escalation study of LCL161 plus oral topotecan for patients with relapsed/refractory small cell lung cancer and select gynecologic malignancies. Oncologist, 2023, 28(7), 640-e559.
[http://dx.doi.org/10.1093/oncolo/oyad029] [PMID: 37129455]
[144]
Zhang, X.L.; Dang, Y.W.; Li, P.; Rong, M.H.; Hou, X.X.; Luo, D.Z.; Chen, G. Expression of tumor necrosis factor receptor-associated factor 6 in lung cancer tissues. Asian Pac. J. Cancer Prev., 2015, 15(24), 10591-10596.
[http://dx.doi.org/10.7314/APJCP.2014.15.24.10591] [PMID: 25605144]
[145]
Erickson, R.I.; Tarrant, J.; Cain, G.; Lewin-Koh, S.C.; Dybdal, N.; Wong, H.; Blackwood, E.; West, K.; Steigerwalt, R.; Mamounas, M.; Flygare, J.A.; Amemiya, K.; Dambach, D.; Fairbrother, W.J.; Diaz, D. Toxicity profile of small-molecule IAP antagonist GDC-0152 is linked to TNF-α pharmacology. Toxicol. Sci., 2013, 131(1), 247-258.
[http://dx.doi.org/10.1093/toxsci/kfs265] [PMID: 22956632]
[146]
Yang, C.; Davis, J.L.; Zeng, R.; Vora, P.; Su, X.; Collins, L.I.; Vangveravong, S.; Mach, R.H.; Piwnica-Worms, D.; Weilbaecher, K.N.; Faccio, R.; Veis Novack, D. Antagonism of inhibitor of apoptosis proteins increases bone metastasis via unexpected osteoclast activation. Cancer Discov., 2013, 3(2), 212-223.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0271] [PMID: 23269702]
[147]
Infante, J.R.; Dees, E.C.; Olszanski, A.J.; Dhuria, S.V.; Sen, S.; Cameron, S.; Cohen, R.B. Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J. Clin. Oncol., 2014, 32(28), 3103-3110.
[http://dx.doi.org/10.1200/JCO.2013.52.3993] [PMID: 25113756]
[148]
Jensen, S.; Seidelin, J.B.; LaCasse, E.C.; Nielsen, O.H. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci. Signal., 2020, 13(619), eaax8295.
[http://dx.doi.org/10.1126/scisignal.aax8295] [PMID: 32071170]
[149]
Blatnik, A.J., III; McGovern, V.L.; Burghes, A.H.M. What genetics has told us and how it can inform future experiments for spinal muscular atrophy, a perspective. Int. J. Mol. Sci., 2021, 22(16), 8494.
[http://dx.doi.org/10.3390/ijms22168494] [PMID: 34445199]
[150]
Gendron, N.H.; MacKenzie, A.E. Spinal muscular atrophy: Molecular pathophysiology. Curr. Opin. Neurol., 1999, 12(2), 137-142.
[http://dx.doi.org/10.1097/00019052-199904000-00002] [PMID: 10226744]
[151]
Muñoz-Pinedo, C.; Guío-Carrión, A.; Goldstein, J.C.; Fitzgerald, P.; Newmeyer, D.D.; Green, D.R. Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc. Natl. Acad. Sci. USA, 2006, 103(31), 11573-11578.
[http://dx.doi.org/10.1073/pnas.0603007103] [PMID: 16864784]
[152]
Zhou, L.L.; Zhou, L.Y.; Luo, K.Q.; Chang, D.C. Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis, 2005, 10(2), 289-299.
[http://dx.doi.org/10.1007/s10495-005-0803-9] [PMID: 15843890]
[153]
Li, W.; Li, B.; Giacalone, N.J.; Torossian, A.; Sun, Y.; Niu, K.; Lin-Tsai, O.; Lu, B. BV6, an IAP antagonist, activates apoptosis and enhances radiosensitization of non-small cell lung carcinoma in vitro. J. Thorac. Oncol., 2011, 6(11), 1801-1809.
[http://dx.doi.org/10.1097/JTO.0b013e318226b4a6] [PMID: 21760551]
[154]
Yuan, Z.; Syrkin, G.; Adem, A.; Geha, R.; Pastoriza, J.; Vrikshajanani, C.; Smith, T.; Quinn, T.J.; Alemu, G.; Cho, H.; Barrett, C.J.; Arap, W.; Pasqualini, R.; Libutti, S.K. Blockade of inhibitors of apoptosis (IAPs) in combination with tumor-targeted delivery of tumor necrosis factor-α leads to synergistic antitumor activity. Cancer Gene Ther., 2013, 20(1), 46-56.
[http://dx.doi.org/10.1038/cgt.2012.83] [PMID: 23154431]
[155]
Eytan, D.F.; Snow, G.E.; Carlson, S.; Derakhshan, A.; Saleh, A.; Schiltz, S.; Cheng, H.; Mohan, S.; Cornelius, S.; Coupar, J.; Sowers, A.L.; Hernandez, L.; Mitchell, J.B.; Annunziata, C.M.; Chen, Z.; Van Waes, C. SMAC mimetic birinapant plus radiation eradicates human head and neck cancers with genomic amplifications of cell death genes FADD and BIRC2. Cancer Res., 2016, 76(18), 5442-5454.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3317] [PMID: 27469115]
[156]
Perimenis, P.; Galaris, A.; Voulgari, A.; Prassa, M.; Pintzas, A. IAP antagonists Birinapant and AT-406 efficiently synergise with either TRAIL, BRAF, or BCL-2 inhibitors to sensitise BRAFV600E colorectal tumour cells to apoptosis. BMC Cancer, 2016, 16(1), 624.
[http://dx.doi.org/10.1186/s12885-016-2606-5] [PMID: 27520705]
[157]
Chen, R.; Manochakian, R.; James, L.; Azzouqa, A.G.; Shi, H.; Zhang, Y.; Zhao, Y.; Zhou, K.; Lou, Y. Emerging therapeutic agents for advanced non-small cell lung cancer. J. Hematol. Oncol., 2020, 13(1), 58.
[http://dx.doi.org/10.1186/s13045-020-00881-7] [PMID: 32448366]
[158]
Zhou, L.; Zhang, Y.; Meads, M.B.; Dai, Y.; Ning, Y.; Hu, X.; Li, L.; Sharma, K.; Nkwocha, J.; Parker, R.; Bui, D.; McCarter, J.; Kramer, L.; Purcell, C.; Sudalagunta, P.R.; Canevarolo, R.R.; Coelho Siqueira Silva, M.D.; De Avila, G.; Alugubelli, R.R.; Silva, A.S.; Kmeiciak, M.; Ferreira-Gonzalez, A.; Shain, K.H.; Grant, S. IAP and HDAC inhibitors interact synergistically in myeloma cells through noncanonical NF-κB– and caspase-8–dependent mechanisms. Blood Adv., 2021, 5(19), 3776-3788.
[http://dx.doi.org/10.1182/bloodadvances.2020003597] [PMID: 34464977]
[159]
Beug, S.T.; Beauregard, C.E.; Healy, C.; Sanda, T.; St-Jean, M.; Chabot, J.; Walker, D.E.; Mohan, A.; Earl, N.; Lun, X.; Senger, D.L.; Robbins, S.M.; Staeheli, P.; Forsyth, P.A.; Alain, T.; LaCasse, E.C.; Korneluk, R.G. Correction: Publisher correction: Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat. Commun., 2018, 9(1), 16231.
[http://dx.doi.org/10.1038/ncomms16231] [PMID: 30019697]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy