Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Role of Vitamin D in Gynecological Cancer: State of the Art

Author(s): Sruthi P, Mary Priya, Treesa P. Varghese* and Sharad Chand

Volume 20, Issue 6, 2024

Published on: 23 January, 2024

Page: [569 - 577] Pages: 9

DOI: 10.2174/0115733947275442231213050438

Price: $65

Abstract

Vitamin D and Vitamin D Receptors have gained more importance beyond their roles in bone metabolism and calcium homeostasis. Several epidemiological studies have confirmed that vitamin D has a specific function in a wide variety of gynecological cancers, such as ovarian cancer, endometrial cancer, cervical cancer, uterine fibroid, and vulvar cancer. The different anti-cancer mechanisms exerted by vitamin D on tumor cells are cell proliferation, cancer progression, angiogenesis, cell cycle arrest, and inflammation. The role of vitamin D is well emphasized in ovarian cancer and uterine fibroids, with limited studies available on cervical cancer and other types of gynecological cancers. Overall, most epidemiological data support that inadequate or low levels of vitamin D in the circulation are associated with risk and poor prognosis in several types of gynecological cancer. It is evident that vitamin D plays a prominent role as an anticancer agent against numerous types of cancer. This review focuses on the etiology and role of vitamin D and the Vitamin D Receptor in various types of gynecological cancer, as well as the mechanism of Vitamin D and its metabolites in the management of gynecological cancer.

Graphical Abstract

[1]
Fathi N, Ahmadian E, Shahi S, et al. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed Pharmacother 2019; 109: 391-401.
[http://dx.doi.org/10.1016/j.biopha.2018.10.102] [PMID: 30399574]
[2]
Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Libr 2014; (1): CD007470.
[http://dx.doi.org/10.1002/14651858.CD007470.pub3] [PMID: 24414552]
[3]
Nemazannikova N, Antonas K, Dass CR. Vitamin D. Vitamin D: Metabolism, molecular mechanisms, and mutations to malignancies. Mol Carcinog 2014; 53(6): 421-31.
[http://dx.doi.org/10.1002/mc.21999] [PMID: 23359295]
[4]
Wu X, Hu W, Lu L, et al. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm Sin B 2019; 9(2): 203-19.
[http://dx.doi.org/10.1016/j.apsb.2018.09.002] [PMID: 30972274]
[5]
Chen Y, Sun Z, Xu J, et al. Vitamin D and DDX4 regulate the proliferation and invasion of ovarian cancer cells. Oncol Lett 2018; 16(1): 905-9.
[PMID: 29963162]
[6]
Jindal D, Sahasrabhojanee M, Jindal M, D’Souza J. Epidemiology of epithelial ovarian cancer: a tertiary hospital based study in Goa, India. Int J Reprod Contracept Obstet Gynecol 2017; 6(6): 2541.
[http://dx.doi.org/10.18203/2320-1770.ijrcog20172348]
[7]
Qin X, Lu Y, Qin A, et al. Vitamin D receptor BsmІ polymorphism and ovarian cancer risk: A meta-analysis. Int J Gynecol Cancer 2013; 23(7): 1178-83.
[http://dx.doi.org/10.1097/IGC.0b013e31829db839] [PMID: 23873178]
[8]
Rashid S, Labani S, Das BC. Knowledge, awareness and attitude on HPV, HPV vaccine and cervical cancer among the college students in India. PLoS One 2016; 11(11): e0166713.
[http://dx.doi.org/10.1371/journal.pone.0166713] [PMID: 27861611]
[9]
Lurie G, Wilkens LR, Thompson PJ, et al. Vitamin D receptor gene polymorphisms and epithelial ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 2007; 16(12): 2566-71.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-0753] [PMID: 18086759]
[10]
Rai V, Abdo J, Agrawal S, Agrawal DK. Vitamin D receptor polymorphism and cancer: An update. Anticancer Res 2017; 37(8): 3991-4003.
[PMID: 28739681]
[11]
Birkenmaier A. Subconscente transparence: Automatic escrtura. Rev Iberoam 2008; 74: 685-701.
[12]
Ness RA, Miller DD, Li W. The role of vitamin D in cancer prevention. Chin J Nat Med 2015; 13(7): 481-97.
[http://dx.doi.org/10.1016/S1875-5364(15)30043-1] [PMID: 26233839]
[13]
Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med 2018; 50(4): 1-14.
[http://dx.doi.org/10.1038/s12276-018-0038-9] [PMID: 29657326]
[14]
Makris K, Sempos C, Cavalier E. The measurement of vitamin D metabolites part II—the measurement of the various vitamin D metabolites. Hormones 2020; 19(2): 97-107.
[http://dx.doi.org/10.1007/s42000-020-00188-9] [PMID: 32221839]
[15]
Bikle D, Christakos S. New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nat Rev Endocrinol 2020; 16(4): 234-52.
[http://dx.doi.org/10.1038/s41574-019-0312-5] [PMID: 32029884]
[16]
Nair R, Maseeh A, Vitamin D. Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother 2012; 3(2): 118-26.
[PMID: 22629085]
[17]
Borel P, Caillaud D, Cano NJ, Vitamin D. Vitamin D bioavailability: State of the art. Crit Rev Food Sci Nutr 2015; 55(9): 1193-205.
[http://dx.doi.org/10.1080/10408398.2012.688897] [PMID: 24915331]
[18]
Holick MF, Chen TC. Vitamin D deficiency: A worldwide problem with health consequences. Am J Clin Nutr 2008; 87(4): 1080S-6S.
[http://dx.doi.org/10.1093/ajcn/87.4.1080S] [PMID: 18400738]
[19]
Nandi A, Sinha N, Ong E, Sonmez H, Poretsky L. Is there a role for vitamin D in human reproduction? Horm Mol Biol Clin Investig 2016; 25(1): 15-28.
[http://dx.doi.org/10.1515/hmbci-2015-0051] [PMID: 26943610]
[20]
Cardwell G, Bornman J, James A, Black L. A review of mushrooms as a potential source of dietary vitamin D. Nutrients 2018; 10(10): 1498.
[http://dx.doi.org/10.3390/nu10101498] [PMID: 30322118]
[21]
Holick MF. Vitamin D: A D-lightful health perspective. Nutr Rev 2008; 66(S2)
[22]
Zhang R, Naughton DP. Vitamin D in health and disease: Current perspectives. Nutr J 2010; 9(1): 65.
[http://dx.doi.org/10.1186/1475-2891-9-65] [PMID: 21143872]
[23]
Jan Y, Malik M, Yaseen M, et al. Vitamin D fortification of foods in India: Present and past scenario. J Steroid Biochem Mol Biol 2019; 193: 105417.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105417] [PMID: 31247324]
[24]
Balasubramaniam G, Sushama S, Rasika B, Mahantshetty U. Hospital-based study of endometrial cancer survival in Mumbai, India. Asian Pac J Cancer Prev 2013; 14(2): 977-80.
[http://dx.doi.org/10.7314/APJCP.2013.14.2.977] [PMID: 23621271]
[25]
Rodriguez-Freixinos V, Karakasis K, Oza AM. New targeted agents in endometrial cancer: Are we really making progress? Curr Oncol Rep 2016; 18(4): 23.
[http://dx.doi.org/10.1007/s11912-016-0507-z] [PMID: 26922329]
[26]
Lee YC, Lheureux S, Oza AM. Treatment strategies for endometrial cancer: Current practice and perspective. Curr Opin Obstet Gynecol 2017; 29(1): 47-58.
[http://dx.doi.org/10.1097/GCO.0000000000000338] [PMID: 27941361]
[27]
Deuster E, Jeschke U, Ye Y, Mahner S, Czogalla B. Vitamin D and VDR in gynecological cancers-A systematic review. Int J Mol Sci 2017; 18(11): 2328.
[http://dx.doi.org/10.3390/ijms18112328] [PMID: 29113037]
[28]
Grant WB. Review of recent advances in understanding the role of Vitamin D in reducing cancer risk: Breast, colorectal, prostate, and overall cancer. Anticancer Res 2020; 40(1): 491-9.
[http://dx.doi.org/10.21873/anticanres.13977] [PMID: 31892604]
[29]
Tabassi Z, Bagheri S, Samimi M, et al. Clinical and metabolic response to vitamin d supplementation in endometrial hyperplasia: A randomized, double-blind, placebo-controlled trial. Horm Cancer 2017; 8(3): 185-95.
[http://dx.doi.org/10.1007/s12672-017-0290-9] [PMID: 28283863]
[30]
Liu JJ, Bertrand KA, Karageorgi S, et al. Prospective analysis of vitamin D and endometrial cancer risk. Ann Oncol 2013; 24(3): 687-92.
[http://dx.doi.org/10.1093/annonc/mds509] [PMID: 23136228]
[31]
Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: A synthetic review. Cancer Epidemiol Biomarkers Prev 2002; 11(12): 1531-43.
[PMID: 12496040]
[32]
Shaw E, Farris M, McNeil J, Friedenreich C. Obesity and endometrial cancer. Recent Results Cancer Res 2016; 208: 107-36.
[http://dx.doi.org/10.1007/978-3-319-42542-9_7] [PMID: 27909905]
[33]
Guo J, Liu S, Wang P, Ren H, Li Y. Characterization of VDR and CYP27B1 expression in the endometrium during the menstrual cycle before embryo transfer: Implications for endometrial receptivity. Reprod Biol Endocrinol 2020; 18(1): 24.
[http://dx.doi.org/10.1186/s12958-020-00579-y] [PMID: 32183826]
[34]
Takiar R. Status of Ovarian Cancer in India (2012-14). EC Gynaecology 2019; 8(5): 358-64.
[35]
Cermisoni G, Alteri A, Corti L, et al. Vitamin D and endometrium: A systematic review of a neglected area of research. Int J Mol Sci 2018; 19(8): 2320.
[http://dx.doi.org/10.3390/ijms19082320] [PMID: 30096760]
[36]
Prescott J, Bertrand K, Poole E, Rosner B, Tworoger S. Surrogates of long-term vitamin d exposure and ovarian cancer risk in two prospective cohort studies. Cancers 2013; 5(4): 1577-600.
[http://dx.doi.org/10.3390/cancers5041577] [PMID: 24351671]
[37]
Mohapatra S, Saxena A, Gandhi G, Koner BC, Ray PC. Vitamin D and VDR gene polymorphism (FokI) in epithelial ovarian cancer in Indian population. J Ovarian Res 2013; 6(1): 37.
[http://dx.doi.org/10.1186/1757-2215-6-37] [PMID: 23705897]
[38]
van der Rhee HJ, de Vries E, Coebergh JWW. Does sunlight prevent cancer? A systematic review. Eur J Cancer 2006; 42(14): 2222-32.
[http://dx.doi.org/10.1016/j.ejca.2006.02.024] [PMID: 16904314]
[39]
Tran B, Jordan SJ, Lucas R, Webb PM, Neale R. Association between ambient ultraviolet radiation and risk of epithelial ovarian cancer. Cancer Prev Res 2012; 5(11): 1330-6.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0279] [PMID: 23034146]
[40]
Anastasi E, Capoccia D, Granato T, et al. Assessing the association between 25-OH vitamin D levels and ROMA score in a population of obese women. J Biol Regul Homeost Agents 2016; 30(4): 1165-71.
[PMID: 28078870]
[41]
Ong JS, Cuellar-Partida G, Lu Y, et al. Association of vitamin D levels and risk of ovarian cancer: A Mendelian randomization study. Int J Epidemiol 2016; 45(5): 1619-30.
[http://dx.doi.org/10.1093/ije/dyw207] [PMID: 27594614]
[42]
Liu Y, Li C, Chen P, et al. Polymorphisms in the vitamin D Receptor (VDR) and the risk of ovarian cancer: A meta-analysis. PLoS One 2013; 8(6): e66716.
[http://dx.doi.org/10.1371/journal.pone.0066716] [PMID: 23826116]
[43]
Bakhru A, Mallinger JB, Buckanovich RJ, Griggs JJ. Casting light on 25-hydroxyvitamin D deficiency in ovarian cancer: A study from the NHANES. Gynecol Oncol 2010; 119(2): 314-8.
[http://dx.doi.org/10.1016/j.ygyno.2010.07.006] [PMID: 20684976]
[44]
Walentowicz-Sadlecka M, Grabiec M, Sadlecki P, et al. 25(OH)D3 in patients with ovarian cancer and its correlation with survival. Clin Biochem 2012; 45(18): 1568-72.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.07.110] [PMID: 22884489]
[45]
Prescott J, Bertrand KA, Reid BM, et al. Evidence of differential effects of vitamin d receptor variants on epithelial ovarian cancer risk by predicted vitamin d status. Front Oncol 2014; 4(OCT): 286.
[http://dx.doi.org/10.3389/fonc.2014.00286] [PMID: 25368842]
[46]
Colonese F, Laganà AS, Colonese E, Sofo V, Salmeri FM. The pleiotropic effects of vitamin D in gynaecological and obstetric diseases: An overview on a hot topic. Biomed Res Int 2015; 2015
[47]
Kloss M, Fischer D, Thill M, et al. Vitamin D, calcidiol and calcitriol regulate vitamin D metabolizing enzymes in cervical and ovarian cancer cells. Anticancer Res 2010; 30(11): 4429-34.
[PMID: 21115889]
[48]
Chen SS, Sun LW, Brickner H, Sun PQ. Downregulating galectin-3 inhibits proinflammatory cytokine production by human monocyte-derived dendritic cells via RNA interference. Cell Immunol 2015; 294(1): 44-53.
[http://dx.doi.org/10.1016/j.cellimm.2015.01.017] [PMID: 25684095]
[49]
Bobdey S, Sathwara J, Jain A, Balasubramaniam G. Burden of cervical cancer and role of screening in India. Indian J Med Paediatr Oncol 2016; 37(4): 278-85.
[http://dx.doi.org/10.4103/0971-5851.195751] [PMID: 28144096]
[50]
Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet 2019; 393(10167): 169-82.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[51]
Sultana F, English DR, Simpson JA, et al. Rationale and design of the iPap trial: A randomized controlled trial of home-based HPV self-sampling for improving participation in cervical screening by never- and under-screened women in Australia. BMC Cancer 2014; 14(1): 207.
[http://dx.doi.org/10.1186/1471-2407-14-207] [PMID: 24646201]
[52]
Nkfusai NC, Cumber SN, Anchang-Kimbi JK, Nji KE, Shirinde J, Anong ND. Assessment of the current state of knowledge and risk factors of cervical cancer among women in the Buea Health District, Cameroon. Pan Afr Med J 2019; 33: 38.
[http://dx.doi.org/10.11604/pamj.2019.33.38.16767] [PMID: 31384353]
[53]
Grant WB, Garland CF. The association of solar ultraviolet B (UVB) with reducing risk of cancer: Multifactorial ecologic analysis of geographic variation in age-adjusted cancer mortality rates. Anticancer Res 2006; 26(4A): 2687-99.
[PMID: 16886679]
[54]
Hosono S, Matsuo K, Kajiyama H, et al. Association between dietary calcium and vitamin D intake and cervical carcinogenesis among Japanese women. Eur J Clin Nutr 2010; 64(4): 400-9.
[http://dx.doi.org/10.1038/ejcn.2010.28] [PMID: 20197786]
[55]
Bhoora S, Pather Y, Marais S, Punchoo R. Cholecalciferol inhibits cell growth and induces apoptosis in the caski cell line. Med Sci 2020; 8(1): 12.
[http://dx.doi.org/10.3390/medsci8010012] [PMID: 32069830]
[56]
Díaz L, Díaz-Muñoz M, García-Gaytán A, Méndez I. Mechanistic effects of calcitriol in cancer biology. Nutrients 2015; 7(6): 5020-50.
[http://dx.doi.org/10.3390/nu7065020] [PMID: 26102214]
[57]
Marsh EE, Al-Hendy A, Kappus D, Galitsky A, Stewart EA, Kerolous M. Burden, prevalence, and treatment of uterine fibroids: A survey of U.S. women. J Womens Health 2018; 27(11): 1359-67.
[http://dx.doi.org/10.1089/jwh.2018.7076] [PMID: 30230950]
[58]
Pavone D, Clemenza S, Sorbi F, Fambrini M, Petraglia F. Epidemiology and risk factors of uterine fibroids. Best Pract Res Clin Obstet Gynaecol 2018; 46: 3-11.
[http://dx.doi.org/10.1016/j.bpobgyn.2017.09.004] [PMID: 29054502]
[59]
Halder SK, Sharan C, Al-Hendy O, Al-Hendy A. Paricalcitol, a vitamin d receptor activator, inhibits tumor formation in a murine model of uterine fibroids. Reprod Sci 2014; 21(9): 1108-19.
[http://dx.doi.org/10.1177/1933719114537721] [PMID: 24925855]
[60]
Halder SK, Sharan C, Al-Hendy A. 1,25-dihydroxyvitamin D3 treatment shrinks uterine leiomyoma tumors in the Eker rat model. Biol Reprod 2012; 86(4): 116.
[http://dx.doi.org/10.1095/biolreprod.111.098145] [PMID: 22302692]
[61]
Sabry M, Al-Hendy A. Medical treatment of uterine leiomyoma. Reprod Sci 2012; 19(4): 339-53.
[http://dx.doi.org/10.1177/1933719111432867] [PMID: 22378865]
[62]
Singh V, Barik A, Imam N. Vitamin D3 level in women with uterine fibroid: An observational study in eastern indian population. J Obstet Gynaecol India 2019; 69(2): 161-5.
[http://dx.doi.org/10.1007/s13224-018-1195-4] [PMID: 30956471]
[63]
Hajhashemi M, Ansari M, Haghollahi F, Eslami B. The effect of vitamin D supplementation on the size of uterine leiomyoma in women with vitamin D deficiency. Caspian J Intern Med 2019; 10(2): 125-31.
[PMID: 31363390]
[64]
Salehin D, Haugk C, Thill M, et al. Serum 25-hydroxyvitamin D levels in patients with vulvar cancer. Anticancer Res 2012; 32(1): 265-70.
[PMID: 22213315]
[65]
Singh N, Negi N, Srivastava K, Agarwal G. A cohort study of vulvar cancer over a period of 10 years and review of literature. Indian J Cancer 2016; 53(3): 412-5.
[http://dx.doi.org/10.4103/0019-509X.200656] [PMID: 28244472]
[66]
Abe E, Miyaura C, Sakagami H, Takeda M, Konno K. Differentiation of mouse myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D3. Proc Natl Acad Sci 1981; 78: 4990-4.
[67]
Zeljic K, Supic G, Magic Z. New insights into vitamin D anticancer properties: Focus on miRNA modulation. Mol Genet Genomics 2017; 292(3): 511-24.
[http://dx.doi.org/10.1007/s00438-017-1301-9] [PMID: 28243735]
[68]
Attar R, Gasparri ML, Di Donato V, et al. Ovarian cancer: Interplay of vitamin D signaling and miRNA action. Asian Pac J Cancer Prev 2014; 15(8): 3359-62.
[http://dx.doi.org/10.7314/APJCP.2014.15.8.3359] [PMID: 24870722]
[69]
Mostowska A, Sajdak S, Pawlik P, Lianeri M, Jagodzinski PP. Vitamin D receptor gene BsmI and FokI polymorphisms in relation to ovarian cancer risk in the Polish population. Genet Test Mol Biomarkers 2013; 17(3): 183-7.
[http://dx.doi.org/10.1089/gtmb.2012.0332] [PMID: 23320576]
[70]
Li J, Li B, Jiang Q, et al. Do genetic polymorphisms of the vitamin D receptor contribute to breast/ovarian cancer? A systematic review and network meta-analysis. Gene 2018; 677: 211-27.
[http://dx.doi.org/10.1016/j.gene.2018.07.070] [PMID: 30059751]
[71]
Mun MJ, Kim TH, Hwang JY, Jang WC. Vitamin D receptor gene polymorphisms and the risk for female reproductive cancers: A meta-analysis. Maturitas 2015; 81(2): 256-65.
[http://dx.doi.org/10.1016/j.maturitas.2015.03.010] [PMID: 25882760]
[72]
Zhang Y, Tong SC, Guan LH, Na F, Zhao W, Wei L. Meta-analysis of the relation between vitamin D receptor gene BsmI polymorphism and susceptibility to ovarian cancer. Tumour Biol 2013; 34(6): 3317-21.
[http://dx.doi.org/10.1007/s13277-013-0900-2] [PMID: 23784456]
[73]
Waterbury S. Implications of vitamin D toxicity & deficiency. Nurse Pract 2018; 43(5): 22-30.
[http://dx.doi.org/10.1097/01.NPR.0000531916.07387.d4] [PMID: 29668516]
[74]
Tagliabue E, Raimondi S, Gandini S. Vitamin D, cancer risk, and mortality. In: Advances in Food and Nutrition Research. 1st ed.. . Elsevier Inc. 2015; 75: pp. 1-52.
[75]
Bergman P, Sperneder S, Höijer J, Bergqvist J, Björkhem-Bergman L. Low vitamin D levels are associated with higher opioid dose in palliative cancer patients--results from an observational study in Sweden. PLoS One 2015; 10(5): e0128223.
[http://dx.doi.org/10.1371/journal.pone.0128223] [PMID: 26018761]
[76]
Grant WB. Roles of solar uvb and Vitamin D in reducing cancer risk and increasing survival. Anticancer Res 2016; 36(3): 1357-70.
[PMID: 26977037]
[77]
Dovnik A, Fokter Dovnik N. Vitamin D and ovarian cancer: Systematic review of the literature with a focus on molecular mechanisms. Cells 2020; 9(2): 335.
[http://dx.doi.org/10.3390/cells9020335] [PMID: 32024052]
[78]
Jiang F, Li P, Fornace AJ Jr, Nicosia SV, Bai W. G2/M arrest by 1,25-dihydroxyvitamin D3 in ovarian cancer cells mediated through the induction of GADD45 via an exonic enhancer. J Biol Chem 2003; 278(48): 48030-40.
[http://dx.doi.org/10.1074/jbc.M308430200] [PMID: 14506229]
[79]
Wang L, Zhou S, Guo B. Vitamin D suppresses ovarian cancer growth and invasion by targeting long non-coding RNA CCAT2. Int J Mol Sci 2020; 21(7): 2334.
[http://dx.doi.org/10.3390/ijms21072334] [PMID: 32230936]
[80]
González-Duarte RJ, Cázares-Ordoñez V, Díaz L, Ortíz V, Larrea F, Avila E. The expression of RNA helicase DDX5 is transcriptionally upregulated by calcitriol through a vitamin D response element in the proximal promoter in SiHa cervical cells. Mol Cell Biochem 2015; 410(1-2): 65-73.
[http://dx.doi.org/10.1007/s11010-015-2538-4] [PMID: 26314252]
[81]
González-Duarte RJ, Cázares-Ordoñez V, Romero-Córdoba S, et al. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells. Biochem Cell Biol 2015; 93(4): 376-84.
[http://dx.doi.org/10.1139/bcb-2015-0010] [PMID: 26111345]
[82]
Whitehurst JL, Reid CM. Vitamin D deficiency as a cause of chronic pain in the palliative medicine clinic: Two case reports. Palliat Med 2014; 28(1): 87-9.
[http://dx.doi.org/10.1177/0269216313511142] [PMID: 24280278]
[83]
Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 2004; 80(S6): 1678S-88S.
[http://dx.doi.org/10.1093/ajcn/80.6.1678S] [PMID: 15585788]
[84]
Flynn G, Chung I, Yu WD, et al. Calcitriol (1,25-dihydroxycholecalciferol) selectively inhibits proliferation of freshly isolated tumor-derived endothelial cells and induces apoptosis. Oncology 2006; 70(6): 447-57.
[http://dx.doi.org/10.1159/000098872] [PMID: 17237620]
[85]
Santos JM, Khan ZS, Munir MT, Tarafdar K, Rahman SM, Hussain F. Vitamin D 3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J Nutr Biochem 2018; 53: 111-20.
[http://dx.doi.org/10.1016/j.jnutbio.2017.10.013] [PMID: 29216499]
[86]
Hou YF, Gao SH, Wang P, et al. 1α,25(OH)2D3 suppresses the migration of ovarian cancer SKOV-3 cells through the inhibition of epithelial-mesenchymal transition. Int J Mol Sci 2016; 17(8): 1285.
[http://dx.doi.org/10.3390/ijms17081285] [PMID: 27548154]
[87]
Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol 2020; 13(1): 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[88]
L Bishop E, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and immune regulation: Antibacterial, antiviral, anti‐inflammatory. JBMR Plus 2021; 5(1): e10405.
[http://dx.doi.org/10.1002/jbm4.10405] [PMID: 32904944]
[89]
Antonacopoulou A, Kottorou AE, Dimitrakopoulos FI, et al. NF-κB2 and RELB offer prognostic information in colorectal cancer and NFKB2 rs7897947 represents a genetic risk factor for disease development. Transl Oncol 2021; 14(1): 100912.
[http://dx.doi.org/10.1016/j.tranon.2020.100912] [PMID: 33074124]
[90]
Chakraborti C. Vitamin D as a promising anticancer agent. Indian J Pharmacol 2011; 43(2): 113-20.
[http://dx.doi.org/10.4103/0253-7613.77335] [PMID: 21572642]
[91]
Lefkowitz ES, Garland CF. Sunlight, vitamin D, and ovarian cancer mortality rates in US women. Int J Epidemiol 1994; 23(6): 1133-6.
[http://dx.doi.org/10.1093/ije/23.6.1133] [PMID: 7721513]
[92]
Freedman DM, Dosemeci M, McGlynn K. Sunlight and mortality from breast, ovarian, colon, prostate, and non-melanoma skin cancer: A composite death certificate based case-control study. Occup Environ Med 2002; 59(4): 257-62.
[http://dx.doi.org/10.1136/oem.59.4.257] [PMID: 11934953]
[93]
Bodelon C, Cushing-Haugen KL, Wicklund KG, Doherty JA, Rossing MA. Sun exposure and risk of epithelial ovarian cancer. Cancer Causes Control 2012; 23(12): 1985-94.
[http://dx.doi.org/10.1007/s10552-012-0076-x] [PMID: 23065074]
[94]
Vaughan-Shaw PG, O’Sullivan F, Farrington SM, et al. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: Systematic review and meta-analysis. Br J Cancer 2017; 116(8): 1092-110.
[http://dx.doi.org/10.1038/bjc.2017.44] [PMID: 28301870]
[95]
Goulão B, Stewart F, Ford JA, MacLennan G, Avenell A. Cancer and vitamin D supplementation: A systematic review and meta-analysis. Am J Clin Nutr 2018; 107(4): 652-63.
[http://dx.doi.org/10.1093/ajcn/nqx047] [PMID: 29635490]
[96]
Hanel A, Carlberg C. Skin colour and vitamin D: An update. Exp Dermatol 2020; 29(9): 864-75.
[http://dx.doi.org/10.1111/exd.14142] [PMID: 32621306]
[97]
Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: Potential for anticancer therapeutics. Nat Rev Cancer 2007; 7(9): 684-700.
[http://dx.doi.org/10.1038/nrc2196] [PMID: 17721433]
[98]
Krishnan AV, Feldman D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol 2011; 51(1): 311-36.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100611] [PMID: 20936945]
[99]
Brożyna AA, Jóźwicki W, Jochymski C, Slominski AT. Decreased expression of CYP27B1 correlates with the increased aggressiveness of ovarian carcinomas. Oncol Rep 2015; 33(2): 599-606.
[http://dx.doi.org/10.3892/or.2014.3666] [PMID: 25501638]
[100]
Grant DJ, Manichaikul A, Alberg AJ, et al. Evaluation of vitamin D biosynthesis and pathway target genes reveals UGT2A1/2 and EGFR polymorphisms associated with epithelial ovarian cancer in African American Women. Cancer Med 2019; 8(5): 2503-13.
[http://dx.doi.org/10.1002/cam4.1996] [PMID: 31001917]
[101]
Björkhem-Bergman L, Bergman P. Vitamin D and patients with palliative cancer. BMJ Support Palliat Care 2016; 6(3): 287-91.
[http://dx.doi.org/10.1136/bmjspcare-2015-000921] [PMID: 27084421]
[102]
Fassio A, Adami G, Rossini M, et al. Pharmacokinetics of oral cholecalciferol in healthy subjects with vitamin D deficiency: A randomized open-label study. Nutrients 2020; 12(6): 1553.
[http://dx.doi.org/10.3390/nu12061553] [PMID: 32471106]
[103]
de Sanjose S, Quint WGV, Alemany L, et al. Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol 2010; 11(11): 1048-56.
[http://dx.doi.org/10.1016/S1470-2045(10)70230-8] [PMID: 20952254]
[104]
Voulgaris N, Papanastasiou L, Piaditis G, et al. Vitamin D and aspects of female fertility. Hormones 2017; 16(1): 5-21.
[PMID: 28500824]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy