Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Effect of Neoadjuvant Immunotherapy Combined with Chemotherapy on Pulmonary Function and Postoperative Pulmonary Complications in Esophageal Cancer: A Retrospective Study

Author(s): Yongyin Gao, Hongdian Zhang, Yanli Qiu, Xueyan Bian, Xue Wang and Yue Li*

Volume 24, Issue 10, 2024

Published on: 17 January, 2024

Page: [1061 - 1070] Pages: 10

DOI: 10.2174/0115680096280761231229055929

Abstract

Background: Neoadjuvant immunotherapy, targeting the PD-1 or PD-L1, combined with chemotherapy (NICT), can improve the radical resection and survival rates for locally advanced EC. However, it may impair pulmonary function, and the effect of NICT on pulmonary function and postoperative pulmonary complications in EC patients remains unknown. This study aimed to investigate whether NICT can affect pulmonary functions and postoperative pulmonary complications in EC patients.

Methods: The study retrospectively recruited 220 EC patients who received NICT at the Department of Esophageal Cancer in Tianjin Medical University Cancer Institute & Hospital from January 2021 to June 2022. Changes in pulmonary function before and after NICT were compared. Logistic regression analysis was performed to analyze the correlations of pulmonary functions and clinical characteristics with postoperative pulmonary complications, respectively.

Results: The FEV1% pred, FVC, FVC% pred, and FEV1/FVC% significantly increased after NICT, with a P-value of 0.018, 0.005, 0.001, and 0.036, respectively. In contrast, there was a significant decline in the DLCO (8.92 ± 2.34 L before NICT vs. 7.79 ± 2.30 L after NICT; P < 0.05) and DLCO% pred (102.97 ± 26.22% before NICT vs. 90.18 ± 25.04% after NICT; P < 0.05). High DLCO and DLCO% pred at baseline levels were risk factors for DLCO reduction in EC patients after NICT. Advanced age, smoking history, FEV1% pred after NICT, and FVC% pred baseline and after therapy were risk factors for postoperative pulmonary complications, with a P-value of 0.043, 0.038, 0.048, 0.034, and 0.004, respectively. Although the DLCO level decreased after NICT, it did not increase the incidence of postoperative pulmonary complications.

Conclusion: NICT may improve pulmonary ventilation function but also lead to a decrease in DLCO and DLCO% pred in EC patients. Nevertheless, the decreased DLCO after NICT did not increase the risk of postoperative pulmonary complications.

Graphical Abstract

[1]
He, F.; Wang, J.; Liu, L.; Qin, X.; Wan, Z.; Li, W.; Ping, Z. Esophageal cancer: Trends in incidence and mortality in China from 2005 to 2015. Cancer Med., 2021, 10(5), 1839-1847.
[http://dx.doi.org/10.1002/cam4.3647] [PMID: 33594825]
[2]
van Hagen, P.; Hulshof, M.C.C.M.; van Lanschot, J.J.B.; Steyerberg, E.W.; Henegouwen, M.I.B.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; Cuesta, M.A.; Blaisse, R.J.B.; Busch, O.R.C.; ten Kate, F.J.W.; Creemers, G.J.; Punt, C.J.A.; Plukker, J.T.M.; Verheul, H.M.W.; Bilgen, E.J.S.; van Dekken, H.; van der Sangen, M.J.C.; Rozema, T.; Biermann, K.; Beukema, J.C.; Piet, A.H.M.; van Rij, C.M.; Reinders, J.G.; Tilanus, H.W.; van der Gaast, A. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med., 2012, 366(22), 2074-2084.
[http://dx.doi.org/10.1056/NEJMoa1112088] [PMID: 22646630]
[3]
Chan, K.K.W.; Saluja, R.; Delos Santos, K.; Lien, K.; Shah, K.; Cramarossa, G.; Zhu, X.; Wong, R.K.S. Neoadjuvant treatments for locally advanced, resectable esophageal cancer: A network meta-analysis. Int. J. Cancer, 2018, 143(2), 430-437.
[http://dx.doi.org/10.1002/ijc.31312] [PMID: 29441562]
[4]
Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; Cortinovis, D.L.; Leach, J.; Polikoff, J.; Barrios, C.; Kabbinavar, F.; Frontera, O.A.; De Marinis, F.; Turna, H.; Lee, J.S.; Ballinger, M.; Kowanetz, M.; He, P.; Chen, D.S.; Sandler, A.; Gandara, D.R. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet, 2017, 389(10066), 255-265.
[http://dx.doi.org/10.1016/S0140-6736(16)32517-X] [PMID: 27979383]
[5]
Smyth, E.C.; Gambardella, V.; Cervantes, A.; Fleitas, T. Checkpoint inhibitors for gastroesophageal cancers: Dissecting heterogeneity to better understand their role in first-line and adjuvant therapy. Ann. Oncol., 2021, 32(5), 590-599.
[http://dx.doi.org/10.1016/j.annonc.2021.02.004] [PMID: 33609722]
[6]
Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; Liu, T.; Schenker, M.; Yanez, P.; Tehfe, M.; Kowalyszyn, R.; Karamouzis, M.V.; Bruges, R.; Zander, T.; Pazo-Cid, R.; Hitre, E.; Feeney, K.; Cleary, J.M.; Poulart, V.; Cullen, D.; Lei, M.; Xiao, H.; Kondo, K.; Li, M.; Ajani, J.A. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet, 2021, 398(10294), 27-40.
[http://dx.doi.org/10.1016/S0140-6736(21)00797-2] [PMID: 34102137]
[7]
Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med., 2018, 378(2), 158-168.
[http://dx.doi.org/10.1056/NEJMra1703481] [PMID: 29320654]
[8]
Hong, Z.N.; Zhang, Z.; Chen, Z.; Weng, K.; Peng, K.; Lin, J.; Kang, M. Safety and feasibility of esophagectomy following combined neoadjuvant immunotherapy and chemotherapy for locally advanced esophageal cancer: A propensity score matching. Esophagus, 2022, 19(2), 224-232.
[http://dx.doi.org/10.1007/s10388-021-00899-x] [PMID: 34988773]
[9]
Abou-Jawde, R.M.; Mekhail, T.; Adelstein, D.J.; Rybicki, L.A.; Mazzone, P.J.; Caroll, M.A.; Rice, T.W. Impact of induction concurrent chemoradiotherapy on pulmonary function and postoperative acute respiratory complications in esophageal cancer. Chest, 2005, 128(1), 250-255.
[http://dx.doi.org/10.1378/chest.128.1.250] [PMID: 16002943]
[10]
Gao, W.; Wang, M.; Su, P.; Zhang, F.; Huang, C.; Tian, Z. Risk factors of cervical anastomotic leakage after mckeown minimally invasive esophagectomy: Focus on preoperative and intraoperative lung function. Ann. Thorac. Cardiovasc. Surg., 2021, 27(2), 75-83.
[http://dx.doi.org/10.5761/atcs.oa.20-00139] [PMID: 33087661]
[11]
Torre-Bouscoulet, L.; Muñoz-Montaño, W.R.; Martínez-Briseño, D.; Lozano-Ruiz, F.J.; Fernández-Plata, R.; Beck-Magaña, J.A.; García-Sancho, C.; Guzmán-Barragán, A.; Vergara, E.; Blake-Cerda, M.; Gochicoa-Rangel, L.; Maldonado, F.; Arroyo-Hernández, M.; Arrieta, O. Abnormal pulmonary function tests predict the development of radiation-induced pneumonitis in advanced non-small cell lung Cancer. Respir. Res., 2018, 19(1), 72.
[http://dx.doi.org/10.1186/s12931-018-0775-2] [PMID: 29690880]
[12]
Suzuki, Y.; Inui, N.; Karayama, M.; Imokawa, S.; Yamada, T.; Yokomura, K.; Asada, K.; Kusagaya, H.; Kaida, Y.; Matsuda, H.; Koshimizu, N.; Toyoshima, M.; Masuda, M.; Hayakawa, H.; Hozumi, H.; Furuhashi, K.; Enomoto, N.; Fujisawa, T.; Nakamura, Y.; Suda, T. Effect of PD-1 inhibitor on exhaled nitric oxide and pulmonary function in non-small cell lung cancer patients with and without COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14(14), 1867-1877.
[http://dx.doi.org/10.2147/COPD.S214610] [PMID: 31686799]
[13]
Franzen, D.; Schad, K.; Kowalski, B.; Clarenbach, C.F.; Stupp, R.; Dummer, R.; Kohler, M. Ipilimumab and early signs of pulmonary toxicity in patients with metastastic melanoma: A prospective observational study. Cancer Immunol. Immunother., 2018, 67(1), 127-134.
[http://dx.doi.org/10.1007/s00262-017-2071-2] [PMID: 28983773]
[14]
Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; Jensen, R.; Johnson, D.C.; MacIntyre, N.; McKay, R.; Navajas, D.; Pedersen, O.F.; Pellegrino, R.; Viegi, G.; Wanger, J. Standardisation of spirometry. Eur. Respir. J., 2005, 26(2), 319-338.
[http://dx.doi.org/10.1183/09031936.05.00034805] [PMID: 16055882]
[15]
Crapo, R.O.; Morris, A.H.; Gardner, R.M. Reference spirometric values using techniques and equipment that meet ATS recommendations. Am. Rev. Respir. Dis., 1981, 123(6), 659-664.
[http://dx.doi.org/10.1164/arrd.1981.123.6.659] [PMID: 7271065]
[16]
Schwartz, L.H.; Litière, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; Hayes, W.; Hodi, F.S.; Hoekstra, O.S.; Huang, E.P.; Lin, N.; Liu, Y.; Therasse, P.; Wolchok, J.D.; Seymour, L. RECIST 1.10-Update and clarification: From the RECIST committee. Eur. J. Cancer, 2016, 62, 132-137.
[http://dx.doi.org/10.1016/j.ejca.2016.03.081] [PMID: 27189322]
[17]
Avendano, C.E.; Flume, P.A.; Silvestri, G.A.; King, L.B.; Reed, C.E. Pulmonary complications after esophagectomy. Ann. Thorac. Surg., 2002, 73(3), 922-926.
[http://dx.doi.org/10.1016/S0003-4975(01)03584-6] [PMID: 11899202]
[18]
Dimopoulou, I.; Galani, H.; Dafni, U.; Samakovli, A.; Roussos, C.; Dimopoulos, M.A. A prospective study of pulmonary function in patients treated with paclitaxel and carboplatin. Cancer, 2002, 94(2), 452-458.
[http://dx.doi.org/10.1002/cncr.10182] [PMID: 11900231]
[19]
Chen, X.; Du, M.; Tang, H.; Wang, H.; Fang, Y.; Lin, M.; Yin, J.; Tan, L.; Shen, Y. Comparison of pulmonary function changes between patients receiving neoadjuvant chemotherapy and chemoradiotherapy prior to minimally invasive esophagectomy: A randomized and controlled trial. Langenbecks Arch. Surg., 2022, 407(7), 2673-2680.
[http://dx.doi.org/10.1007/s00423-022-02646-x] [PMID: 36006505]
[20]
Zhu, Y.; Li, J.Q.; Chang, Q.; Qiang, H.P.; Lu, J.H.; Feng, H.; Shen, Y.C.; Qian, J.L.; Chu, T.Q. [Impact of neoadjuvant immunotherapy on pulmonary function and perioperative outcomes in patients with resectable non-small cell lung cancer]. Zhonghua Yi Xue Za Zhi, 2022, 102(6), 393-398.
[http://dx.doi.org/10.3760/cma.j.cn112137-20211009-02226] [PMID: 35144337]
[21]
Cerfolio, R.J.; Bryant, A.S. Different diffusing capacity of the lung for carbon monoxide as predictors of respiratory morbidity. Ann. Thorac. Surg., 2009, 88(2), 405-411.
[http://dx.doi.org/10.1016/j.athoracsur.2009.04.015] [PMID: 19632384]
[22]
Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.; Gustafsson, P.; Hankinson, J.; Jensen, R.; Johnson, D.C.; MacIntyre, N.; McKay, R.; Miller, M.R.; Navajas, D.; Pedersen, O.F.; Wanger, J. Interpretative strategies for lung function tests. Eur. Respir. J., 2005, 26(5), 948-968.
[http://dx.doi.org/10.1183/09031936.05.00035205] [PMID: 16264058]
[23]
Goense, L.; Meziani, J.; Bülbül, M.; Braithwaite, S.A.; van Hillegersberg, R.; Ruurda, J.P. Pulmonary diffusion capacity predicts major complications after esophagectomy for patients with esophageal cancer. Dis. Esophagus, 2019, 32(3), doy082.
[http://dx.doi.org/10.1093/dote/doy082] [PMID: 30239639]
[24]
Ferguson, M. K.; Lehman, A. G.; Bolliger, C. T.; Brunelli, A. The role of diffusing capacity and exercise tests. Thorac Surg Clin., 2008, 18(1), 9-17.
[http://dx.doi.org/10.1016/j.thorsurg.2007.11.001]
[25]
Burton, C.; Kaczmarski, R.; Jan-Mohamed, R. Interstitial pneumonitis related to rituximab therapy. N. Engl. J. Med., 2003, 348(26), 2690-2691.
[http://dx.doi.org/10.1056/NEJM200306263482619] [PMID: 12826649]
[26]
Rivera, M.P.; Detterbeck, F.C.; Socinski, M.A.; Moore, D.T.; Edelman, M.J.; Jahan, T.M.; Ansari, R.H.; Luketich, J.D.; Peng, G.; Monberg, M.; Obasaju, C.K.; Gralla, R.J. Impact of preoperative chemotherapy on pulmonary function tests in resectable early-stage non-small cell lung cancer. Chest, 2009, 135(6), 1588-1595.
[http://dx.doi.org/10.1378/chest.08-1430] [PMID: 19188545]
[27]
Fujimori, K.; Yokoyama, A.; Kurita, Y.; Uno, K.; Saijo, N. Paclitaxel-induced cell-mediated hypersensitivity pneumonitis. Diagnosis using leukocyte migration test, bronchoalveolar lavage and transbronchial lung biopsy. Oncology, 1998, 55(4), 340-344.
[http://dx.doi.org/10.1159/000011873] [PMID: 9663424]
[28]
Horning, S.J.; Adhikari, A.; Rizk, N.; Hoppe, R.T.; Olshen, R.A. Effect of treatment for Hodgkin’s disease on pulmonary function: Results of a prospective study. J. Clin. Oncol., 1994, 12(2), 297-305.
[http://dx.doi.org/10.1200/JCO.1994.12.2.297] [PMID: 7509383]
[29]
Goense, L.; van Rossum, P.S.N.; Tromp, M.; Joore, H.C.; van Dijk, D.; Kroese, A.C.; Ruurda, J.P.; van Hillegersberg, R. Intraoperative and postoperative risk factors for anastomotic leakage and pneumonia after esophagectomy for cancer. Dis. Esophagus, 2016, 30(1), 1-10.
[http://dx.doi.org/10.1111/dote.12517] [PMID: 27353216]
[30]
Ferguson, M.K.; Celauro, A.D.; Prachand, V. Assessment of a scoring system for predicting complications after esophagectomy. Dis. Esophagus, 2011, 24(7), 510-515.
[http://dx.doi.org/10.1111/j.1442-2050.2011.01185.x] [PMID: 21418123]
[31]
Law, S.; Wong, K.H.; Kwok, K.F.; Chu, K.M.; Wong, J. Predictive factors for postoperative pulmonary complications and mortality after esophagectomy for cancer. Ann. Surg., 2004, 240(5), 791-800.
[http://dx.doi.org/10.1097/01.sla.0000143123.24556.1c] [PMID: 15492560]
[32]
Ferguson, M.K.; Celauro, A.D.; Prachand, V. Prediction of major pulmonary complications after esophagectomy. Ann. Thorac. Surg., 2011, 91(5), 1494-1501.
[http://dx.doi.org/10.1016/j.athoracsur.2010.12.036] [PMID: 21524462]
[33]
Sunpaweravong, S.; Ruangsin, S.; Laohawiriyakamol, S.; Mahattanobon, S.; Geater, A. Prediction of major postoperative complications and survival for locally advanced esophageal carcinoma patients. Asian J. Surg., 2012, 35(3), 104-109.
[http://dx.doi.org/10.1016/j.asjsur.2012.04.029] [PMID: 22884266]
[34]
Klevebro, F.; Elliott, J.A.; Slaman, A.; Vermeulen, B.D.; Kamiya, S.; Rosman, C.; Gisbertz, S.S.; Boshier, P.R.; Reynolds, J.V.; Rouvelas, I.; Hanna, G.B.; van Berge Henegouwen, M.I.; Markar, S.R. Cardiorespiratory comorbidity and postoperative complications following esophagectomy: A european multicenter cohort study. Ann. Surg. Oncol., 2019, 26(9), 2864-2873.
[http://dx.doi.org/10.1245/s10434-019-07478-6] [PMID: 31183640]
[35]
Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; Hallmeyer, S.; Holter Chakrabarty, J.; Leighl, N.B.; Mammen, J.S.; McDermott, D.F.; Naing, A.; Nastoupil, L.J.; Phillips, T.; Porter, L.D.; Puzanov, I.; Reichner, C.A.; Santomasso, B.D.; Seigel, C.; Spira, A.; Suarez-Almazor, M.E.; Wang, Y.; Weber, J.S.; Wolchok, J.D.; Thompson, J.A. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2018, 36(17), 1714-1768.
[http://dx.doi.org/10.1200/JCO.2017.77.6385] [PMID: 29442540]
[36]
Epler, G.R.; McLoud, T.C.; Gaensler, E.A.; Mikus, J.P.; Carrington, C.B. Normal chest roentgenograms in chronic diffuse infiltrative lung disease. N. Engl. J. Med., 1978, 298(17), 934-939.
[http://dx.doi.org/10.1056/NEJM197804272981703] [PMID: 642974]

© 2025 Bentham Science Publishers | Privacy Policy