Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Effect of Flavonoids against Parkinson’s Disease

Author(s): Himanshi Varshney and Yasir Hasan Siddique*

Volume 24, Issue 2, 2024

Published on: 16 January, 2024

Page: [145 - 165] Pages: 21

DOI: 10.2174/0118715249264078231214074107

Price: $65

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the depletion of striatal dopamine content and aggregation of alphasynuclein in the substantia nigra (SN). It is possible to treat the symptoms of PD with a variety of medications, but they often result in complications and are not able to cure or stop the progression of the disease. Flavonoids (the phytocomponents present in almost all fruits and vegetables) are the class of secondary metabolites that have generated a peak of interest because of their medicinal properties, including a reduction in the risk of PD. Several flavonoids such as quercetin, kaempferol, hesperitin, anthocyanin and many more have been reported for their anti- Parkinson’s effect. This review deals with the neuroprotective benefits of different classes of flavonoids against PD.

Graphical Abstract

[1]
Vizcarra, J.A.; Sánchez-Ferro, Á.; Maetzler, W.; Marsili, L.; Zavala, L.; Lang, A.E.; Martinez-Martin, P.; Mestre, T.A.; Reilmann, R.; Hausdorff, J.M.; Dorsey, E.R.; Paul, S.S.; Dexheimer, J.W.; Wissel, B.D.; Fuller, R.L.M.; Bonato, P.; Tan, A.H.; Bloem, B.R.; Kopil, C.; Daeschler, M.; Bataille, L.; Kleiner, G.; Cedarbaum, J.M.; Klucken, J.; Merola, A.; Goetz, C.G.; Stebbins, G.T.; Espay, A.J. The Parkinson’s disease e‐diary: Developing a clinical and research tool for the digital age. Mov. Disord., 2019, 34(5), 676-681.
[http://dx.doi.org/10.1002/mds.27673] [PMID: 30901492]
[2]
Li, P.; Feng, D.; Yang, D.; Li, X.; Sun, J.; Wang, G.; Tian, L.; Jiang, X.; Bai, W. Protective effects of anthocyanins on neurodegenerative diseases. Trends Food Sci. Technol., 2021, 117, 205-217.
[http://dx.doi.org/10.1016/j.tifs.2021.05.005]
[3]
Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr., 2022, 62(28), 7730-7742.
[http://dx.doi.org/10.1080/10408398.2021.1917508] [PMID: 34078189]
[4]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[5]
de Andrade Teles, R.B.; Diniz, T.C. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: A systematic review of preclinical evidences. Oxid. Med. Cell. Longev., 2018.
[6]
Jung, U.J.; Kim, S.R. Beneficial effects of flavonoids against Parkinson’s disease. J. Med. Food, 2018, 21(5), 421-432.
[http://dx.doi.org/10.1089/jmf.2017.4078] [PMID: 29412767]
[7]
Datla, K.P.; Zbarsky, V.; Rai, D.; Parkar, S.; Osakabe, N.; Aruoma, O.I.; Dexter, D.T. Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. J. Am. Coll. Nutr., 2007, 26(4), 341-349.
[http://dx.doi.org/10.1080/07315724.2007.10719621] [PMID: 17906186]
[8]
Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr., 2017, 8(3), 423-435.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[9]
Siddique, Y.H.; Jyoti, S. Alteration in biochemical parameters in the brain of transgenic Drosophila melanogaster model of Parkinson’s disease exposed to apigenin. Integr. Med. Res., 2017, 6(3), 245-253.
[http://dx.doi.org/10.1016/j.imr.2017.04.003] [PMID: 28951838]
[10]
Anusha, C.; Sumathi, T.; Joseph, L.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact., 2017, 269, 67-79.
[11]
Datla, K.P.; Christidou, M.; Widmer, W.W.; Rooprai, H.K.; Dexter, D.T. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport, 2001, 12(17), 3871-3875.
[http://dx.doi.org/10.1097/00001756-200112040-00053] [PMID: 11726811]
[12]
Wu, Y.; Jiang, X.; Yang, K.; Xia, Y.; Cheng, S.; Tang, Q.; Bai, L.; Qiu, J.; Chen, C. Inhibition of α-Synuclein contributes to the ameliorative effects of dietary flavonoids luteolin on arsenite-induced apoptotic cell death in the dopaminergic PC12 cells. Toxicol. Mech. Methods, 2017, 27(8), 598-608.
[http://dx.doi.org/10.1080/15376516.2017.1339155] [PMID: 28583009]
[13]
Siracusa, R.; Paterniti, I.; Impellizzeri, D.; Cordaro, M.; Crupi, R.; Navarra, M.; Cuzzocrea, S.; Esposito, E. The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson’s disease model. CNS Neurol. Disord. Drug Targets, 2015, 14, 1350-1366.
[http://dx.doi.org/10.2174/1871527314666150821102823]
[14]
Che, D.N.; Cho, B.O.; Kim, J.; Shin, J.Y.; Kang, H.J.; Jang, S.I. Luteolin and apigenin attenuate LPS-induced astrocyte activation and cytokine production by targeting MAPK, STAT3, and NF-κB signaling pathways. Inflammation, 2020, 43(5), 1716-1728.
[http://dx.doi.org/10.1007/s10753-020-01245-6] [PMID: 32462548]
[15]
Krishnamoorthy, A.; Sevanan, M.; Mani, S.; Balu, M.; Balaji, S. P, R. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model. Neurosci. Lett., 2019, 709, 134382.
[http://dx.doi.org/10.1016/j.neulet.2019.134382] [PMID: 31325581]
[16]
Del Fabbro, L.; Rossito Goes, A.; Jesse, C.R.; de Gomes, M.G.; Cattelan Souza, L.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Nunes Arantes, R.V.; Reis Simionato, A.; Oliveira, M.S.; Furian, A.F.; Boeira, S.P. Chrysin protects against behavioral, cognitive and neurochemical alterations in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci. Lett., 2019, 706, 158-163.
[http://dx.doi.org/10.1016/j.neulet.2019.05.036] [PMID: 31121284]
[17]
Zuiter, A.S. Proanthocyanidin: Chemistry and biology: From phenolic compounds to proanthocyanidins. 2014.
[18]
Rahul, N.F.; Naz, F.; Jyoti, S.; Siddique, Y.H. Effect of kaempferol on the transgenic Drosophila model of Parkinson’s disease. Sci. Rep., 2020, 10(1), 13793.
[http://dx.doi.org/10.1038/s41598-020-70236-2] [PMID: 32796885]
[19]
Han, X.; Zhao, S.; Song, H.; Xu, T.; Fang, Q.; Hu, G.; Sun, L. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: Implications in Parkinson’s disease. Redox Biol., 2021, 41, 101911.
[http://dx.doi.org/10.1016/j.redox.2021.101911] [PMID: 33713908]
[20]
Pan, X.; Liu, X.; Zhao, H.; Wu, B.; Liu, G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J. Funct. Foods, 2020, 74, 104140.
[http://dx.doi.org/10.1016/j.jff.2020.104140]
[21]
Magalingam, K.B.; Radhakrishnan, A.; Haleagrahara, N. Protective effects of quercetin glycosides, rutin, and isoquercetrin against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma (PC-12) cells. I J. ImmunopatholPharmacol., 2016, 29, 30-39.
[22]
Magalingam, K.B.; Radhakrishnan, A.; Ramdas, P.; Haleagrahara, N. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. J. Mol. Neurosci., 2015, 55(3), 609-617.
[http://dx.doi.org/10.1007/s12031-014-0400-x] [PMID: 25129099]
[23]
Park, S.E.; Sapkota, K.; Choi, J.H.; Kim, M.K.; Kim, Y.H.; Kim, K.M.; Kim, K.J.; Oh, H.N.; Kim, S.J.; Kim, S. Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem. Res., 2014, 39(4), 707-718.
[http://dx.doi.org/10.1007/s11064-014-1259-5] [PMID: 24549762]
[24]
Lai, X.; Zhang, Y.; Wu, J.; Shen, M.; Yin, S.; Yan, J. Rutin attenuates oxidative stress via PHB2-mediated mitophagy in MPP+-induced SH-SY5Y cells; Neurotoxic Res, 2023, pp. 1-4.
[25]
Chen, T.J.; Feng, Y.; Liu, T.; Wu, T.T.; Chen, Y.J.; Li, X.; Li, Q.; Wu, Y.C. Fisetin regulates gut microbiota and exerts neuroprotective effect on mouse model of Parkinson’s disease. Front. Neurosci., 2020, 14, 549037.
[http://dx.doi.org/10.3389/fnins.2020.549037] [PMID: 33381005]
[26]
Alikatte, K.; Palle, S.; Rajendra Kumar, J.; Pathakala, N. Fisetin improved rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease. J. Diet. Suppl., 2021, 18(1), 57-71.
[http://dx.doi.org/10.1080/19390211.2019.1710646] [PMID: 31992104]
[27]
Hackman, R.M.; Polagruto, J.A.; Zhu, Q.Y.; Sun, B.; Fujii, H.; Keen, C.L. Flavanols: Digestion, absorption and bioactivity. Phytochem. Rev., 2007, 7(1), 195-208.
[http://dx.doi.org/10.1007/s11101-007-9070-4]
[28]
Ruan, H.; Yang, Y.; Zhu, X.; Wang, X.; Chen, R. Neuroprotective effects of (±)-catechin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity in mice. Neurosci. Lett., 2009, 450(2), 152-157.
[http://dx.doi.org/10.1016/j.neulet.2008.12.003] [PMID: 19070648]
[29]
Josiah, S.S.; Famusiwa, C.D.; Crown, O.O.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A.; Akinmoladun, A.C. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 2022, 90, 158-171.
[http://dx.doi.org/10.1016/j.neuro.2022.03.004] [PMID: 35337893]
[30]
Luo, S.; Sun, X.; Huang, M.; Ma, Q.; Du, L.; Cui, Y. Enhanced neuroprotective effects of epicatechin gallate encapsulated by bovine milk-derived exosomes against Parkinson’s disease through antiapoptosis and antimitophagy. J. Agric. Food Chem., 2021, 69(17), 5134-5143.
[http://dx.doi.org/10.1021/acs.jafc.0c07658] [PMID: 33890462]
[31]
Teixeira, M.D.A.; Souza, C.M.; Menezes, A.P.F.; Carmo, M.R.S.; Fonteles, A.A.; Gurgel, J.P.; Lima, F.A.V. viana, G.S.B.; Andrade, G.M. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol. Biochem. Behav., 2013, 110, 1-7.
[http://dx.doi.org/10.1016/j.pbb.2013.05.012] [PMID: 23714698]
[32]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[33]
Tamilselvam, K.; Braidy, N.; Manivasagam, T.; Essa, M.M.; Prasad, N.R.; Karthikeyan, S.; Thenmozhi, A.J.; Selvaraju, S.; Guillemin, G.J. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid. Med. Cell. Longev., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/102741] [PMID: 24205431]
[34]
Kim, S.R.; Jung, U.J. Effects of naringin, a flavanone glycoside in grapefruits and citrus fruits, on the nigrostriatal dopaminergic projection in the adult brain. Neural Regen. Res., 2014, 9(16), 1514-1517.
[http://dx.doi.org/10.4103/1673-5374.139476] [PMID: 25317167]
[35]
Sugumar, M.; Sevanan, M.; Sekar, S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int. J. Neurosci., 2019, 129(6), 534-539.
[http://dx.doi.org/10.1080/00207454.2018.1545772] [PMID: 30433834]
[36]
Kesh, S.; Kannan, R.R.; Balakrishnan, A. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 239, 108893.
[http://dx.doi.org/10.1016/j.cbpc.2020.108893] [PMID: 32949818]
[37]
Mani, M; Balasubramanian, S; Manikandan, KR Kulandaivel, B Neuroprotective potential of Naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinson’s disease model. J. App. Pharma. Sci., 2021, 11, 019-028.
[38]
He, P.; Yan, S.; Wen, X.; Zhang, S.; Liu, Z.; Liu, X.; Xiao, C. Eriodictyol alleviates lipopolysaccharide-triggered oxidative stress and synaptic dysfunctions in BV-2 microglial cells and mouse brain. J. Cell. Biochem., 2019, 120(9), 14756-14770.
[http://dx.doi.org/10.1002/jcb.28736] [PMID: 31016762]
[39]
Thongin, S.; Teerapattarakan, N.; Benya-Aphikul, H.; Pongrakhananon, V.; Sritularak, B.; Rodsiri, R. Eriodictyol attenuates hydrogen peroxide-induced cell death in neuronal SH-SY5Y cells. Thaiphesatchasan, 2015, 43. [TJPS].
[40]
Kiasalari, Z.; Khalili, M.; Baluchnejadmojarad, T.; Roghani, M. Protective effect of oral hesperetin against unilateral striatal 6-hydroxydopamine damage in the rat. Neurochem. Res., 2016, 41(5), 1065-1072.
[http://dx.doi.org/10.1007/s11064-015-1796-6] [PMID: 26700436]
[41]
Muhammad, T.; Ikram, M.; Ullah, R.; Rehman, S.; Kim, M. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients, 2019, 11(3), 648.
[http://dx.doi.org/10.3390/nu11030648] [PMID: 30884890]
[42]
Chen, H.Q.; Wang, X.J.; Jin, Z.Y.; Xu, X.M.; Zhao, J.W.; Xie, Z.J. Protective effect of isoflavones from Trifolium pratense on dopaminergic neurons. Neurosci. Res., 2008, 62(2), 123-130.
[http://dx.doi.org/10.1016/j.neures.2008.07.001] [PMID: 18675857]
[43]
Chinta, S.J.; Ganesan, A.; Reis-Rodrigues, P.; Lithgow, G.J.; Andersen, J.K. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: Implications for Parkinson’s disease. Neurotox. Res., 2013, 23(2), 145-153.
[http://dx.doi.org/10.1007/s12640-012-9328-5] [PMID: 22573480]
[44]
Li, X.L.; Zhou, H.B.; Cheng, W.D.; Meng, X.H.; Zhang, Q.J.; Wang, L.X. Effect of phytoestrogen isoflavone on MPP+-induced apoptosis in PC12 cells. Biomed. Prevent. Nutr., 2011, 1(1), 67-69.
[http://dx.doi.org/10.1016/j.bionut.2010.09.004]
[45]
Zarmouh, N.O.; Messeha, S.S.; Elshami, F.M.; Soliman, K.F.A. Evaluation of the isoflavone genistein as reversible human monoamine oxidase-A and-B inhibitor. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/1423052] [PMID: 27118978]
[46]
Lin, C.M.; Lin, R.D.; Chen, S.T.; Lin, Y.P.; Chiu, W.T.; Lin, J.W.; Hsu, F.L.; Lee, M.H. Neurocytoprotective effects of the bioactive constituents of Pueraria thomsonii in 6-hydroxydopamine (6-OHDA)-treated nerve growth factor (NGF)-differentiated PC12 cells. Phytochemistry, 2010, 71(17-18), 2147-2156.
[http://dx.doi.org/10.1016/j.phytochem.2010.08.015] [PMID: 20832831]
[47]
Arbabi, E.; Hamidi, G.; Talaei, S.A.; Salami, M. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism. Iran. J. Basic Med. Sci., 2016, 19(12), 1285-1290.
[PMID: 28096960]
[48]
Fan, D.; Alamri, Y.; Liu, K.; MacAskill, M.; Harris, P.; Brimble, M.; Dalrymple-Alford, J.; Prickett, T.; Menzies, O.; Laurenson, A.; Anderson, T.; Guan, J. Supplementation of blackcurrant anthocyanins increased cyclic glycine-proline in the cerebrospinal fluid of Parkinson patients: Potential treatment to improve insulin-like growth factor-1 function. Nutrients, 2018, 10(6), 714.
[http://dx.doi.org/10.3390/nu10060714] [PMID: 29865234]
[49]
Qian, F.; Wang, M.; Wang, J.; Lu, C. Anthocyanin-rich blueberry extract ameliorates the behavioral deficits of MPTP-induced mouse model of Parkinson’s disease via anti-oxidative mechanisms. Yangtze Medicine, 2019, 3(1), 72-78.
[http://dx.doi.org/10.4236/ym.2019.31008]
[50]
Roghani, M.; Niknam, A.; Jalali-Nadoushan, M.R.; Kiasalari, Z.; Khalili, M.; Baluchnejadmojarad, T. Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism. Brain Res. Bull., 2010, 82(5-6), 279-283.
[http://dx.doi.org/10.1016/j.brainresbull.2010.06.004] [PMID: 20558255]
[51]
Fahimi, Z.; Jahromy, M.H. Effects of blackberry (Morus nigra) fruit juice on levodopa-induced dyskinesia in a mice model of Parkinson’s disease. J. Exp. Pharmacol., 2018, 10, 29-35.
[http://dx.doi.org/10.2147/JEP.S161782] [PMID: 30013404]
[52]
Mendes, D.; Peixoto, F.; Oliveira, M.M.; Andrade, P.B.; Videira, R.A. Brain Effects of SC-Nanophytosomes on a Rotenone-Induced Rat Model of Parkinson’s Disease—A Proof of Concept for a Mitochondria-Targeted Therapy. Int. J. Mol. Sci., 2022, 23(20), 12699.
[http://dx.doi.org/10.3390/ijms232012699] [PMID: 36293562]
[53]
Gao, X.; Cassidy, A.; Schwarzschild, M.A.; Rimm, E.B.; Ascherio, A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, 2012, 78(15), 1138-1145.
[http://dx.doi.org/10.1212/WNL.0b013e31824f7fc4] [PMID: 22491871]
[54]
Zhang, X.; Molsberry, S.A.; Yeh, T.S.; Cassidy, A.; Schwarzschild, M.A.; Ascherio, A.; Gao, X. Intake of flavonoids and flavonoid-rich foods and mortality risk among individuals with parkinson disease. Neurology, 2022, 98(10), e1064-e1076.
[http://dx.doi.org/10.1212/WNL.0000000000013275] [PMID: 35082171]
[55]
Coe, S.; Andreoli, D.; George, M.; Collett, J.; Reed, A.; Cossington, J.; Izadi, H.; Dixon, A.; Mansoubi, M.; Dawes, H. A feasibility study to determine whether the daily consumption of flavonoid-rich pure cocoa has the potential to reduce fatigue and fatigability in people with Parkinson’s (pwP). Clin. Nutr. ESPEN, 2022, 48, 68-73.
[http://dx.doi.org/10.1016/j.clnesp.2022.01.023] [PMID: 35331536]
[56]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[57]
Siddique, Y.H.; Jyoti, S.; Naz, F.; Afzal, M. Protective effect of apigenin in transgenic drosophila melanogaster model of parkinson’s disease. Pharmacologyonline, 2011, 790-795.
[58]
Siddique, Y.H.; Naz, F.; Jyoti, S.; Fatima, A.; Khanam, S. effect of centellaasiatica leaf extract on the dietary supplementation in transgenic drosophila model of parkinson’s disease. Parkinsons Dis., 2014, 1-11.
[http://dx.doi.org/10.1155/2014/262058]
[59]
Siddique, Y.H.; Mustajab, S.F.; Faisal, M.; Jyoti, S.; Naz, F. Effect of Withaniasomnifera leaf extract on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. All Results J. Biol, 2015, 2, 16-23.
[60]
Siddique, Y.H. Effect of luteolin on the transgenic Drosophila model of Huntington’s disease. ComputatToxicol., 2020, 17, 100148.
[61]
Varshney, H.; Siddique, Y.H. Role of natural plant products against Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2021, 20(10), 904-941.
[http://dx.doi.org/10.2174/1871527320666210420135437] [PMID: 33881973]
[62]
Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. BioMed Res. Int., 2019, 2019, 1-20.
[http://dx.doi.org/10.1155/2019/2382563] [PMID: 31111044]
[63]
Rahman, M.H.; Bajgai, J.; Fadriquela, A.; Sharma, S.; Trinh, T.T.; Akter, R.; Jeong, Y.J.; Goh, S.H.; Kim, C.S.; Lee, K.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules, 2021, 26(17), 5327.
[http://dx.doi.org/10.3390/molecules26175327] [PMID: 34500759]
[64]
Tarozzi, A.; Morroni, F.; Hrelia, S.; Angeloni, C.; Marchesi, A.; Cantelli-Forti, G.; Hrelia, P. Neuroprotective effects of anthocyanins and their in vivo metabolites in SH-SY5Y cells. Neurosci. Lett., 2007, 424(1), 36-40.
[http://dx.doi.org/10.1016/j.neulet.2007.07.017] [PMID: 17709193]
[65]
Liu, L.X.; Chen, W.F.; Xie, J.X.; Wong, M.S. Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci. Res., 2008, 60(2), 156-161.
[http://dx.doi.org/10.1016/j.neures.2007.10.005] [PMID: 18054104]
[66]
Qu, W.; Fan, L.; Kim, Y.; Ishikawa, S.; Iguchi-Ariga, S.M.M.; Pu, X.P.; Ariga, H. Kaempferol derivatives prevent oxidative stress-induced cell death in a DJ-1-dependent manner. J. Pharmacol. Sci., 2009, 110(2), 191-200.
[http://dx.doi.org/10.1254/jphs.09045FP] [PMID: 19498271]
[67]
Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem., 2018, 153, 105-115.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[68]
Fatima, A.; Khanam, S.; Rahul, R.; Jyoti, S.; Naz, F.; Ali, F.; Siddique, Y.H. Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease. Front. Biosci., 2017, 9(1), 44-53.
[PMID: 27814588]
[69]
Fatima, A. Rahul; Siddique, Y.H. Role of tangeritin against cognitive impairments in transgenic Drosophila model of Parkinson’s disease. Neurosci. Lett., 2019, 705, 112-117.
[http://dx.doi.org/10.1016/j.neulet.2019.04.047] [PMID: 31039425]
[70]
Ara, G.; Afzal, M.; Jyoti, S.; Siddique, Y.H. Effect of myricetin on the transgenic Drosophila model of Parkinson’s disease. Bull. Fac. Pharm. Cairo Univ., 2017, 55(2), 259-262.
[http://dx.doi.org/10.1016/j.bfopcu.2017.09.001]
[71]
Afzal, M. Effect of myricetin on the oxidative stress markers in the brain of transgenic flies expressing human alpha-synuclein. I J. Nutr. Pharmacol. Neurol. Dis., 2017, 7, 101.
[72]
Ara, G.; Afzal, M.; Jyoti, S.; Naz, F. Rahul; Siddique, Y.H. Effect of Myricetin on the loss of dopaminergic neurons in the transgenic Drosophila model of Parkinson’s disease. Curr. Drug Ther., 2019, 14(1), 58-64.
[http://dx.doi.org/10.2174/1574885513666180529114546]
[73]
Ara, G.; Afzal, M.; Naz, F.; Shahid, M.; Siddique, Y.H. Effect of myricetin on cognitive impairments in the transgenic Drosophila model of Parkinson’s Disease. J. Exper. Biol., 2021, 60, 27-33.
[74]
Liu, W.; Kong, S.; Xie, Q.; Su, J.; Li, W.; Guo, H.; Li, S.; Feng, X.; Su, Z.; Xu, Y.; Lai, X. Protective effects of apigenin against 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells. Int. J. Mol. Med., 2015, 35(3), 739-746.
[http://dx.doi.org/10.3892/ijmm.2014.2056] [PMID: 25573459]
[75]
Anusha, C.; Sumathi, T. Protective role of apigenin against rotenone induced model of parkinson’s disease: Behavioral study. Int. J. Toxicol. Pharmacol. Res., 2016, 8, 79-82.
[76]
Siddique, Y.H.; Jyoti, S.; Naz, F. Protective effect of luteolin on the transgenic Drosophila model of Parkinson’s disease. Braz. J. Pharm. Sci., 2018, 54(3), 54.
[http://dx.doi.org/10.1590/s2175-97902018000317760]
[77]
de Gomes, M.G.; Goes, A.T.R.; Del Fabbro, L.; Souza, L.C.; Lobo Ladd, A.A.B.; Ladd, F.V.L.; Boeira, S.P.; Jesse, C.R. Chrysin supplementation mitigated neurobehavioral changes in a animal model of Parkinson’s disease: Influence on TH+ neurons. Learn. Motiv., 2022, 80, 101847.
[http://dx.doi.org/10.1016/j.lmot.2022.101847]
[78]
Li, S.; Pu, X.P. Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biol. Pharm. Bull., 2011, 34(8), 1291-1296.
[http://dx.doi.org/10.1248/bpb.34.1291] [PMID: 21804220]
[79]
Filomeni, G.; Graziani, I.; De Zio, D.; Dini, L.; Centonze, D.; Rotilio, G.; Ciriolo, M.R. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: Possible implications for Parkinson’s disease. Neurobiol. Aging, 2012, 33(4), 767-785.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.021] [PMID: 20594614]
[80]
Ablat, N.; Lv, D.; Ren, R.; Xiaokaiti, Y.; Ma, X.; Zhao, X.; Sun, Y.; Lei, H.; Xu, J.; Ma, Y.; Qi, X.; Ye, M.; Xu, F.; Han, H.; Pu, X. Neuroprotective effects of a standardized flavonoid extract from safflower against a rotenone-induced rat model of Parkinson’s disease. Molecules, 2016, 21(9), 1107.
[http://dx.doi.org/10.3390/molecules21091107] [PMID: 27563865]
[81]
Yang, Y.L.; Cheng, X.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. Int. J. Mol. Sci., 2019, 20(3), 491.
[http://dx.doi.org/10.3390/ijms20030491] [PMID: 30678325]
[82]
Han, X.; Sun, S.; Sun, Y.; Song, Q.; Zhu, J.; Song, N.; Chen, M.; Sun, T.; Xia, M.; Ding, J.; Lu, M.; Yao, H.; Hu, G. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy, 2019, 15(11), 1860-1881.
[http://dx.doi.org/10.1080/15548627.2019.1596481] [PMID: 30966861]
[83]
Cai, M.; Zhuang, W.; Lv, E.; Liu, Z.; Wang, Y.; Zhang, W.; Fu, W. Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson’s disease via inhibiting p38MAPK/NF-κB signaling pathway. Neurochem. Int., 2022, 152, 105221.
[http://dx.doi.org/10.1016/j.neuint.2021.105221] [PMID: 34780806]
[84]
Mehdizadeh, M.; Joghataei, M.T.; Nobakht, M.; Aryanpour, R. Neuroprotective effect of quercetin in a model of Parkinson’s disease in rat: A histochemical analysis. Basic Clin. Neurosci., 2009, 1, 3.
[85]
Haleagrahara, N.; Siew, C.J.; Mitra, N.K.; Kumari, M. Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci. Lett., 2011, 500(2), 139-143.
[http://dx.doi.org/10.1016/j.neulet.2011.06.021] [PMID: 21704673]
[86]
Lv, C; Hong, T; Yang, Z; Zhang, Y; Wang, L; Dong, M; Zhao, J; Mu, J; Meng, Y Effect of quercetin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson's disease. Evid Based Complem. Alternat. Med., 2012, 2012
[87]
Sriraksa, N; Wattanathorn, J; Muchimapura, S; Tiamkao, S; Brown, K; Chaisiwamongkol, K Cognitive-enhancing effect of quercetin in a rat model of Parkinson's disease induced by 6- hydroxydopamine. Evid Based. Complem. Alternat. Med., 2012, 2012
[88]
Karuppagounder, S.S.; Madathil, S.K.; Pandey, M.; Haobam, R.; Rajamma, U.; Mohanakumar, K.P. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience, 2013, 236, 136-148.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.032] [PMID: 23357119]
[89]
Makhija, D.T.; Jagtap, A.G. Studies on sensitivity of zebrafish as a model organism for Parkinson’s disease: Comparison with rat model. J. Pharmacol. Pharmacother., 2014, 5(1), 39-46.
[http://dx.doi.org/10.4103/0976-500X.124422] [PMID: 24554909]
[90]
Denny Joseph, K.M. Muralidhara, Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: Relevance to Parkinson’s disease. Neurochem. Res., 2015, 40(5), 894-905.
[http://dx.doi.org/10.1007/s11064-015-1542-0] [PMID: 25687767]
[91]
Mu, X.; Yuan, X.; Du, L.D.; He, G.R.; Du, G.H. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats. J. Asian Nat. Prod. Res., 2016, 18(1), 65-71.
[http://dx.doi.org/10.1080/10286020.2015.1057576] [PMID: 26217978]
[92]
El-Horany, H.E.; El-latif, R.N.A.; ElBatsh, M.M.; Emam, M.N. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson’s disease: Modulating autophagy (quercetin on experimental Parkinson’s disease). J. Biochem. Mol. Toxicol., 2016, 30(7), 360-369.
[http://dx.doi.org/10.1002/jbt.21821] [PMID: 27252111]
[93]
Ay, M.; Luo, J.; Langley, M.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J. Neurochem., 2017, 141(5), 766-782.
[http://dx.doi.org/10.1111/jnc.14033] [PMID: 28376279]
[94]
Ekimova, I.V.; Plaksina, D.V. Effects of quercetin on neurodegenerative and compensatory processes in the nigrostriatal system in a model of the preclinical stage of Parkinson’s disease in rats. Neurosci. Behav. Physiol., 2017, 47(9), 1029-1036.
[http://dx.doi.org/10.1007/s11055-017-0508-x]
[95]
Sharma, S.; Raj, K.; Singh, S. Neuroprotective effect of quercetin in combination with piperine against rotenone-and iron supplement–induced Parkinson’s disease in experimental rats. Neurotox. Res., 2020, 37(1), 198-209.
[http://dx.doi.org/10.1007/s12640-019-00120-z] [PMID: 31654381]
[96]
Wang, W.W.; Han, R.; He, H.J.; Li, J.; Chen, S.Y.; Gu, Y.; Xie, C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging, 2021, 13(8), 11738-11751.
[http://dx.doi.org/10.18632/aging.202868] [PMID: 33878030]
[97]
Naghizadeh, M.; Mirshekar, M.A.; Montazerifar, F.; Saadat, S.; Shamsi Koushki, A.; Jafari Maskouni, S.; Afsharfar, M.; Arabmoazzen, S. Effects of quercetin on spatial memory, hippocampal antioxidant defense and BDNF concentration in a rat model of Parkinson’s disease: An electrophysiological study. Avicenna J. Phytomed., 2021, 11(6), 599-609.
[PMID: 34804897]
[98]
Lin, Z.H.; Liu, Y.; Xue, N.J.; Zheng, R.; Yan, Y.Q.; Wang, Z.X.; Li, Y.L.; Ying, C.Z.; Song, Z.; Tian, J.; Pu, J.L.; Zhang, B.R. Quercetin Protects against MPP+/MPTP-Induced Dopaminergic Neuron Death in Parkinson’s Disease by Inhibiting Ferroptosis. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/7769355] [PMID: 36105483]
[99]
Benzeroual, K.E. Mechanisms underlying the neuroprotective effects of fisetin and ibuprofen in the MPTP model of Parkinson's disease. FASEB J., 2011, 25(S1), 1004-7.
[100]
Patel, M.Y.; Panchal, H.V.; Ghribi, O.; Benzeroual, K.E. The neuroprotective effect of fisetin in the MPTP model of Parkinson’s disease. J. Parkinsons Dis., 2012, 2(4), 287-302.
[http://dx.doi.org/10.3233/JPD-012110] [PMID: 23938259]
[101]
Prakash, D.; Sudhandiran, G. Dietary flavonoid fisetin regulates aluminium chloride-induced neuronal apoptosis in cortex and hippocampus of mice brain. J. Nutr. Biochem., 2015, 26(12), 1527-1539.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.017] [PMID: 26411262]
[102]
Watanabe, R.; Kurose, T.; Morishige, Y.; Fujimori, K. Protective effects of fisetin against 6-OHDA-induced apoptosis by activation of PI3K-Akt signaling in human neuroblastoma SH-SY5Y cells. Neurochem. Res., 2018, 43(2), 488-499.
[http://dx.doi.org/10.1007/s11064-017-2445-z] [PMID: 29204750]
[103]
Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Kapoor, B.; Vyas, M.; Khursheed, R.; Awasthi, A.; Kaur, J.; Corrie, L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson’s disease rat model. Food Chem. Toxicol., 2020, 144, 111590.
[http://dx.doi.org/10.1016/j.fct.2020.111590] [PMID: 32710995]
[104]
Maher, P. Preventing and treating neurological disorders with the flavonolfisetin. Brain Plast., 2021, 6(2), 155-166.
[http://dx.doi.org/10.3233/BPL-200104] [PMID: 33782648]
[105]
Kim, J.S.; Kim, J.M. O, J.J.; Jeon, B.S. Inhibition of inducible nitric oxide synthase expression and cell death by (−)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J. Clin. Neurosci., 2010, 17(9), 1165-1168.
[http://dx.doi.org/10.1016/j.jocn.2010.01.042] [PMID: 20541420]
[106]
Siddique, Y.H.; Jyoti, S.; Naz, F. Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson’s disease. J. Diet. Suppl., 2014, 11(2), 121-130.
[http://dx.doi.org/10.3109/19390211.2013.859207] [PMID: 24670116]
[107]
Xu, Q.; Langley, M.; Kanthasamy, A.G.; Reddy, M.B. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J. Nutr., 2017, 147(10), 1926-1931.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[108]
Tikhonova, M.A.; Tikhonova, N.G.; Tenditnik, M.V.; Ovsyukova, M.V.; Akopyan, A.A.; Dubrovina, N.I.; Amstislavskaya, T.G.; Khlestkina, E.K. Effects of grape polyphenols on the life span and neuroinflammatory alterations related to neurodegenerative parkinson disease-like disturbances in mice. Molecules, 2020, 25(22), 5339.
[http://dx.doi.org/10.3390/molecules25225339] [PMID: 33207644]
[109]
Özduran, G.; Becer, E.; Vatansever, H.S.; Yücecan, S. Neuroprotective effects of catechins in an experimental Parkinson’s disease model and SK-N-AS cells: Evaluation of cell viability, anti-inflammatory and anti-apoptotic effects. Neurol. Res., 2022, 44(6), 511-523.
[http://dx.doi.org/10.1080/01616412.2021.2024715] [PMID: 35000557]
[110]
Zbarsky, V.; Datla, K.P.; Parkar, S.; Rai, D.K.; Aruoma, O.I.; Dexter, D.T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic. Res., 2005, 39(10), 1119-1125.
[http://dx.doi.org/10.1080/10715760500233113] [PMID: 16298737]
[111]
Kim, H.J.; Song, J.Y.; Park, H.J.; Park, H.K.; Yun, D.H.; Chung, J.H. Naringin protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Korean J. Physiol. Pharmacol., 2009, 13(4), 281-285.
[http://dx.doi.org/10.4196/kjpp.2009.13.4.281] [PMID: 19885011]
[112]
Leem, E.; Nam, J.H.; Jeon, M.T.; Shin, W.H.; Won, S.Y.; Park, S.J.; Choi, M.S.; Jin, B.K.; Jung, U.J.; Kim, S.R. Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson’s disease. J. Nutr. Biochem., 2014, 25(7), 801-806.
[http://dx.doi.org/10.1016/j.jnutbio.2014.03.006] [PMID: 24797334]
[113]
Lou, H.; Jing, X.; Wei, X.; Shi, H.; Ren, D.; Zhang, X. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology, 2014, 79, 380-388.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.026] [PMID: 24333330]
[114]
Kim, H.D.; Jeong, K.H.; Jung, U.J.; Kim, S.R. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson’s disease in vivo, but not enough to restore the lesioned dopaminergic system. J. Nutr. Biochem., 2016, 28, 140-146.
[http://dx.doi.org/10.1016/j.jnutbio.2015.10.013] [PMID: 26878791]
[115]
Mani, S.; Sekar, S.; Barathidasan, R.; Manivasagam, T.; Thenmozhi, A.J.; Sevanan, M.; Chidambaram, S.B.; Essa, M.M.; Guillemin, G.J.; Sakharkar, M.K. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson’s disease model in mice. Neurotox. Res., 2018, 33(3), 656-670.
[http://dx.doi.org/10.1007/s12640-018-9869-3] [PMID: 29427283]
[116]
Md, S.; Alhakamy, N.A.; Aldawsari, H.M.; Asfour, H.Z. Neuroprotective and antioxidant effect of naringenin-loaded nanoparticles for nose-to-brain delivery. Brain Sci., 2019, 9(10), 275.
[http://dx.doi.org/10.3390/brainsci9100275] [PMID: 31618942]
[117]
Garabadu, D.; Agrawal, N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromolecular Med., 2020, 22(2), 314-330.
[http://dx.doi.org/10.1007/s12017-019-08590-2] [PMID: 31916219]
[118]
Ahmad, M.H.; Fatima, M.; Ali, M.; Rizvi, M.A.; Mondal, A.C. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease. Neuropharmacology, 2021, 201, 108831.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108831] [PMID: 34655599]
[119]
Li, J.; Liu, Y.; Wang, L.; Gu, Z.; Huan, Z.; Fu, H.; Liu, Q. Hesperetin protects SH-SY5Y cells against 6- hydroxydopamine-induced neurotoxicity via activation of NRF2/ARE signaling pathways. Trop. J. Pharm. Res., 2020, 19(6), 1197-1201.
[http://dx.doi.org/10.4314/tjpr.v19i6.12]
[120]
Nobre-Júnior, H.V.; Oliveira, R.A.; Maia, F.D.; Nogueira, M.A.S.; de Moraes, M.O.; Bandeira, M.A.M.; Andrade, G.M. viana, G.S.B. Neuroprotective effects of chalcones from Myracrodruon urundeuva on 6-hydroxydopamine-induced cytotoxicity in rat mesencephalic cells. Neurochem. Res., 2009, 34(6), 1066-1075.
[http://dx.doi.org/10.1007/s11064-008-9876-5] [PMID: 19005754]
[121]
Jameie, M.S.; Azimzadeh, Z.; Farhadi, M.; Roozbahany, N.A.; Abbaszadeh, H.A.; Jameie, S.B. Neuroprotective Effect of Chalcone on P53, Caspase III Expression and D2-Like Dopaminergic Receptor Up-Regulation in In-vitro Parkinson’s Model. J Cell Mol Anesth., 2022, 8, 3-11.
[122]
Strathearn, K.E.; Yousef, G.G.; Grace, M.H.; Roy, S.L.; Tambe, M.A.; Ferruzzi, M.G.; Wu, Q.L.; Simon, J.E.; Lila, M.A.; Rochet, J.C. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease. Brain Res., 2014, 1555, 60-77.
[http://dx.doi.org/10.1016/j.brainres.2014.01.047] [PMID: 24502982]
[123]
Siddique, Y.H.; Naz, F.; Jyoti, S.; Ali, F. Rahul, Rahul. Effect of genistein on the transgenic drosophila model of Parkinson’s disease. J. Diet. Suppl., 2019, 16(5), 550-563.
[http://dx.doi.org/10.1080/19390211.2018.1472706] [PMID: 29969325]
[124]
Yu, D.; Zhang, P.; Li, J.; Liu, T.; Zhang, Y.; Wang, Q.; Zhang, J.; Lu, X.; Fan, X. Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease. J. Pharm. Anal., 2021, 11(2), 220-231.
[http://dx.doi.org/10.1016/j.jpha.2020.06.002] [PMID: 34012698]
[125]
Hamed, M.; Aboul Naser, A.; Elbatanony, M.; El-Feky, A.; Matloub, A.; El-Rigal, N.; Khalil, W. Therapeutic potential of Citrus sinensis peels against rotenone induced Parkinsonism in rats. Curr. Bioact. Compd., 2021, 17(6), e010621186105.
[http://dx.doi.org/10.2174/1573407216999200918182514]
[126]
Witucki, Ł; Kurpik, M.; Jakubowski, H.; Szulc, M.; Łukasz Mikołajczak, P.; Jodynis-Liebert, J.; Kujawska, M. Neuroprotective effects of cranberry juice treatment in a rat model of parkinson’s disease. Nutrients, 2022, 14(10), 2014.
[http://dx.doi.org/10.3390/nu14102014] [PMID: 35631155]
[127]
Díaz, M.; Vaamonde, L.; Dajas, F. Assessment of the protective capacity of nanosomes of quercetin in an experimental model of parkinsons disease in the rat. Gen. Med., 2015, 3(5), 2.
[http://dx.doi.org/10.4172/2327-5146.1000207]
[128]
Ghaffari, F.; Hajizadeh Moghaddam, A.; Zare, M. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of parkinson disease: Biochemical and behavioral evidence. Basic Clin. Neurosci., 2018, 9(5), 317-324.
[http://dx.doi.org/10.32598/bcn.9.5.317] [PMID: 30719246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy