Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

An In Silico Approach to Exploring the Antinociceptive Biological Activities of Linalool and its Metabolites

Author(s): Pablo Rayff da Silva, Natalia Diniz Nunes Pazos, Jéssica Cabral de Andrade, Natália Ferreira de Sousa, Hugo Fernandes Oliveira Pires, Jaislânia Lucena de Figueiredo Lima, Arthur Lins Dias, Mirian Graciela da Silva Stiebbe Salvadori, Adriana Maria Fernandes de Oliveira Golzio, Ricardo Dias de Castro, Marcus T. Scotti, Vaishali M. Patil, Cícero Francisco Bezerra Felipe, Reinaldo Nóbrega de Almeida and Luciana Scotti*

Volume 24, Issue 17, 2024

Published on: 15 January, 2024

Page: [1556 - 1574] Pages: 19

DOI: 10.2174/0113895575261945231122062659

Price: $65

Abstract

Pain is characterized by the unpleasant sensory and emotional sensation associated with actual or potential tissue damage, whereas nociception refers to the mechanism by which noxious stimuli are transmitted from the periphery to the CNS. The main drugs used to treat pain are nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics, which have side effects that limit their use. Therefore, in the search for new drugs with potential antinociceptive effects, essential oils have been studied, whose constituents (monoterpenes) are emerging as a new therapeutic possibility. Among them, linalool and its metabolites stand out. The present study aims to investigate the antinociceptive potential of linalool and its metabolites through a screening using an in silico approach. Molecular docking was used to evaluate possible interactions with important targets involved in antinociceptive activity, such as α2-adrenergic, GABAergic, muscarinic, opioid, adenosinergic, transient potential, and glutamatergic receptors. The compounds in the investigated series obtained negative energies for all enzymes, representing satisfactory interactions with the targets and highlighting the multi-target potential of the L4 metabolite. Linalool and its metabolites have a high likelihood of modulatory activity against the targets involved in nociception and are potential candidates for future drugs.

Graphical Abstract

[1]
da Silva, P.R.; do Espírito Santo, R.F.; Melo, C.O.; Pachú, C.F.E.; Costa, T.B.; Barbosa, Y.V.; Silva, Y.M.S.M.; de Sousa, N.F.; Villarreal, C.F.; de Moura, R.O.; dos Santos, V.L. The compound (E)-2-Cyano-N,3-diphenylacrylamide (JMPR-01): A potential drug for treatment of inflammatory diseases. Pharmaceutics, 2022, 14(1), 188.
[http://dx.doi.org/10.3390/pharmaceutics14010188] [PMID: 35057082]
[2]
Kaliyaperumal, S.; Wilson, K.; Aeffner, F.; Dean, C. Animal models of peripheral pain: Biology review and application for drug discovery. Toxicol. Pathol., 2020, 48(1), 202-219.
[http://dx.doi.org/10.1177/0192623319857051]
[3]
Boll, S.; Almeida de Minas, A.C.; Raftogianni, A.; Herpertz, S.C.; Grinevich, V. Oxytocin and pain perception: From animal models to human research. Neuroscience, 2018, 387, 149-161.
[http://dx.doi.org/10.1016/j.neuroscience.2017.09.041]
[4]
Uta, D.; Kato, G.; Doi, A.; Andoh, T.; Kume, T.; Yoshimura, M.; Koga, K. Animal models of chronic pain increase spontaneous glutamatergic transmission in adult rat spinal dorsal horn in vitro and in vivo. Biochem. Biophys. Res. Commun., 2019, 512(2), 352-359.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.051] [PMID: 30894274]
[5]
Gregory, N.S.; Harris, A.L.; Robinson, C.R.; Dougherty, P.M.; Fuchs, P.N.; Sluka, K.A. An overview of animal models of pain: disease models and outcome measures. J. Pain, 2013, 14(11), 1255-1269.
[http://dx.doi.org/10.1016/j.jpain.2013.06.008] [PMID: 24035349]
[6]
Geneen, L.J.; Moore, R.A.; Clarke, C.; Martin, D.; Colvin, L.A.; Smith, B.H. Physical activity and exercise for chronic pain in adults: An overview of Cochrane Reviews. Cochrane Database Syst. Rev., 2017, 4(4), CD011279.
[http://dx.doi.org/10.1002/14651858.CD011279.pub3]
[7]
Miranda, H.F.; Noriega, V.; Sierralta, F.; Poblete, P.; Aranda, N.; Prieto, J.C. Nitric oxide and opioids involvement in isobolographic nsaids antinociception. Drug Res., 2019, 69(12), 688-694.
[http://dx.doi.org/10.1055/a-0983-1402] [PMID: 31408903]
[8]
da Silva, R.P.; Diniz, N.N. Karla Silva do, N.G.T.; Cabral de, A.J.; Brito Monteiro, Á.; Caroline, B.R.A.; Fernandes, O.P.H.; Dos Santos, M.M.; Vilar da Fonsêca, D.; T Scotti, M.; Maria Barbosa Filho, J.; Pergentino de Sousa, D.; Francisco Bezerra Felipe, C.; Nóbrega de Almeida, R.; Scotti, L. Anxiolytic and antidepressant-like effects of monoterpene tetrahydrolinalool and in silico approach of new potential targets. Curr. Top. Med. Chem., 2022, 22(18), 1530-1552.
[http://dx.doi.org/10.2174/1568026622666220505104726] [PMID: 35524664]
[9]
Demir, Y.; Duran, H.E.; Durmaz, L.; Taslimi, P.; Beydemir, Ş.; Gulçin, İ. The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: A perspective for metabolic disorders. Appl. Biochem. Biotechnol., 2020, 190(2), 437-447.
[http://dx.doi.org/10.1007/s12010-019-03099-7] [PMID: 31378842]
[10]
Kumar, S.; Kundra, P.; Ramsamy, K.; Surendiran, A. Pharmacogenetics of opioids: A narrative review. Anaesthesia, 2019, 74(11), 1456-1470.
[http://dx.doi.org/10.1111/anae.14813]
[11]
Fonsêca, D.V.; Salgado, P.R.R.; Aragão Neto, H.C.; Golzio, A.M.F.O.; Caldas Filho, M.R.D.; Melo, C.G.F.; Leite, F.C.; Piuvezam, M.R.; Pordeus, L.C.M.; Barbosa Filho, J.M.; Almeida, R.N. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities. Int. Immunopharmacol., 2016, 38, 402-408.
[http://dx.doi.org/10.1016/j.intimp.2016.06.005] [PMID: 27355133]
[12]
de Oliveira, A.S.; Llanes, L.C.; Nunes, R.J.; Nucci-Martins, C.; de Souza, A.S.; Palomino-Salcedo, D.L.; Dávila-Rodríguez, M.J.; Ferreira, L.L.G.; Santos, A.R.S.; Andricopulo, A.D. Antioxidant activity, molecular docking, quantum studies and in vivo antinociceptive activity of sulfonamides derived from carvacrol. Front. Pharmacol., 2021, 12, 788850.
[http://dx.doi.org/10.3389/fphar.2021.788850] [PMID: 34887769]
[13]
Eddin, L.B.; Jha, N.K.; Meeran, M.F.N.; Kesari, K.K.; Beiram, R.; Ojha, S. Neuroprotective potential of limonene and limonene containing natural products. Molecules, 2021, 26(15), 4535.
[http://dx.doi.org/10.3390/molecules26154535]
[14]
Santos, P.L.; Matos, J.P.S.C.F.; Picot, L.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans-Júnior, L.J. Citronellol, a monoterpene alcohol with promising pharmacological activities - A systematic review. Food Chem. Toxicol., 2019, 123, 459-469.
[http://dx.doi.org/10.1016/j.fct.2018.11.030] [PMID: 30453001]
[15]
Mohtashami, L.; Shakeri, A.; Javadi, B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem. Int., 2019, 129, 104516.
[http://dx.doi.org/10.1016/j.neuint.2019.104516]
[16]
De Souza, M.M.; Pereira, M.A.; Ardenghi, J.V.; Mora, T.C.; Bresciani, L.F.; Yunes, R.A.; Delle Monache, F.; Cechinel-Filho, V. Filicene obtained from Adiantum cuneatum interacts with the cholinergic, dopaminergic, glutamatergic, GABAergic, and tachykinergic systems to exert antinociceptive effect in mice. Pharmacol. Biochem. Behav., 2009, 93(1), 40-46.
[http://dx.doi.org/10.1016/j.pbb.2009.04.004] [PMID: 19375449]
[17]
Bell, A. The neurobiology of acute pain. Vet. J., 2018, 237, 55-62.
[http://dx.doi.org/10.1016/j.tvjl.2018.05.004]
[18]
Smith, B.E.; Hendrick, P.; Bateman, M.; Holden, S.; Littlewood, C.; Smith, T.O.; Logan, P. Musculoskeletal pain and exercise-challenging existing paradigms and introducing new. Br. J. Sports Med., 2019, 53(14), 907-912.
[19]
Michaelides, A.; Zis, P. Depression, anxiety and acute pain: links and management challenges. Postgrad. Med., 2019, 131(7), 438-444.
[http://dx.doi.org/10.1080/00325481.2019.1663705]
[20]
Masic, D.; Liang, E.; Long, C.; Sterk, E.J.; Barbas, B.; Rech, M.A. Intravenous lidocaine for acute pain: A systematic review. Pharmacotherapy, 2018, 38(12), 1250-1259.
[http://dx.doi.org/10.1002/phar.2189]
[21]
Caraci, F.; Coluzzi, F.; Marinangeli, F.; Mercadante, S.; Rinonapoli, G.; Romualdi, P.; Nicora, M.; Dickenson, A.H. Modulation of sensitization processes in the management of pain and the importance of descending pathways: A role for tapentadol? Curr. Med. Res. Opin., 2020, 36(6), 1015-1024.
[http://dx.doi.org/10.1080/03007995.2020.1748876]
[22]
Glare, P.; Aubrey, K.R.; Myles, P.S. Transition from acute to chronic pain after surgery. Lancet, 2019, 393(10180), 1537-1546.
[http://dx.doi.org/10.1016/S0140-6736(19)30352-6]
[23]
Small, C.; Laycock, H. Acute postoperative pain management. Br. J. Surg., 2020, 107(2), e70-e80.
[http://dx.doi.org/10.1002/bjs.11477] [PMID: 31903595]
[24]
McCarberg, B.; Peppin, J. Pain pathways and nervous system plasticity: Learning and memory in pain. Pain Med., 2019, 20(12), 2421-2437.
[http://dx.doi.org/10.1093/pm/pnz017] [PMID: 30865778]
[25]
Roeckel, L.A.; le Coz, G.M.; Gavériaux-Ruff, C.; Simonin, F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience, 2016, 338, 160-182.
[http://dx.doi.org/10.1016/j.neuroscience.2016.06.029]
[26]
Raver, C.; Uddin, O.; Ji, Y.; Li, Y.; Cramer, N.; Jenne, C.; Morales, M.; Masri, R.; Keller, A. An amygdalo-parabrachial pathway regulates pain perception and chronic pain. J. Neurosci., 2020, 40(17), 3424-3442.
[http://dx.doi.org/10.1523/JNEUROSCI.0075-20.2020] [PMID: 32217613]
[27]
Mansour, A.R.; Farmer, M.A.; Baliki, M.N.; Apkarian, A.V. Chronic pain: The role of learning and brain plasticity. Restor. Neurol. Neurosci., 2014, 32(1), 129-139.
[http://dx.doi.org/10.3233/RNN-139003] [PMID: 23603439]
[28]
Timmers, I.; Quaedflieg, C.W.E.M.; Hsu, C.; Heathcote, L.C.; Rovnaghi, C.R.; Simons, L.E. The interaction between stress and chronic pain through the lens of threat learning. Neurosci. Biobehav. Rev., 2019, 107, 641-655.
[http://dx.doi.org/10.1016/j.neubiorev.2019.10.007]
[29]
Donatello, N.N.; Emer, A.A.; Salm, D.C.; Ludtke, D.D.; Bordignon, S.A.S.R.; Ferreira, J.K.; Salgado, A.S.I.; Venzke, D.; Bretanha, L.C.; Micke, G.A.; Martins, D.F. Lavandula angustifolia essential oil inhalation reduces mechanical hyperalgesia in a model of inflammatory and neuropathic pain: The involvement of opioid and cannabinoid receptors. J. Neuroimmunol., 2020, 340, 577145.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577145] [PMID: 31945593]
[30]
Stein, C. Opioid Receptors. Annu. Rev. Med., 2016, 67(1), 433-451.
[http://dx.doi.org/10.1146/annurev-med-062613-093100] [PMID: 26332001]
[31]
Sneddon, L.U. Comparative physiology of nociception and pain. Physiology, 2018, 33(1), 63-73.
[http://dx.doi.org/10.1152/physiol.00022.2017]
[32]
Sakurada, T.; Mizoguchi, H.; Kuwahata, H.; Katsuyama, S.; Komatsu, T.; Morrone, L.A.; Corasaniti, M.T.; Bagetta, G.; Sakurada, S. Intraplantar injection of bergamot essential oil induces peripheral antinociception mediated by opioid mechanism. Pharmacol. Biochem. Behav., 2011, 97(3), 436-443.
[http://dx.doi.org/10.1016/j.pbb.2010.09.020] [PMID: 20932858]
[33]
Batista, P.A.; Werner, M.F.P.; Oliveira, E.C.; Burgos, L.; Pereira, P.; Brum, L.F.S.; Santos, A.R.S. Evidence for the involvement of ionotropic glutamatergic receptors on the antinociceptive effect of (−)-linalool in mice. Neurosci. Lett., 2008, 440(3), 299-303.
[http://dx.doi.org/10.1016/j.neulet.2008.05.092] [PMID: 18579302]
[34]
Woller, S.A.; Eddinger, K.A.; Corr, M.; Yaksh, T.L. An overview of pathways encoding nociception. Clin. Exp. Rheumatol., 2017, 107(5), 40-46.
[35]
Scheefhals, N.; MacGillavry, H.D. Functional organization of postsynaptic glutamate receptors. Mol. Cell. Neurosci., 2018, 91, 82-94.
[http://dx.doi.org/10.1016/j.mcn.2018.05.002]
[36]
Ashmawi, H.A.; Freire, G.M.G. Peripheral and central sensitization. Rev. Dor, 2016, 17.
[http://dx.doi.org/10.5935/1806-0013.20160044]
[37]
Carroll, C.P. Opioid treatment for acute and chronic pain in patients with sickle cell disease. Neurosci. Lett., 2020, 714, 134534.
[http://dx.doi.org/10.1016/j.neulet.2019.134534]
[38]
Hamamura, K.; Katsuyama, S.; Komatsu, T.; Scuteri, D.; Bagetta, G.; Aritake, K.; Sakurada, T. Behavioral effects of continuously administered bergamot essential oil on mice with partial sciatic nerve ligation. Front. Pharmacol., 2020, 11, 1310.
[http://dx.doi.org/10.3389/fphar.2020.01310] [PMID: 32973528]
[39]
Andrade, J.C.; Monteiro, Á.B.; Andrade, H.H.N.; Gonzaga, T.K.S.N.; Silva, P.R.; Alves, D.N.; Castro, R.D.; Maia, M.S.; Scotti, M.T.; Sousa, D.P. Involvement of GABAA receptors in the anxiolytic-like effect of hydroxycitronellal. Biomed. Res. Int., 2021.
[40]
Andrade, H.H.N.; Monteiro, Á.B.; Braga, R.M.; Cruz, R.M.D.; Salvadori, M.S.S.; Scotti, M.T.; Sousa, D.P.; Almeida, R.N. Anxiolytic and antinociceptive-like effects of cinnamic alcohol by possible GABAergic pathway modulation: In vivo and in silico studies. Braz. J. Dev., 2020, 6(7), 51372-51389.
[http://dx.doi.org/10.34117/bjdv6n7-690]
[41]
Jacob, T.C.; Moss, S.J.; Jurd, R. GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat. Rev. Neurosci., 2008, 9(5), 331-343.
[http://dx.doi.org/10.1038/nrn2370] [PMID: 18382465]
[42]
Schoonveld, E. Pricing and Drug Development. In: The Price of Global Health;; , 2020; pp. 157-18.
[http://dx.doi.org/10.4324/9780429320712-13]
[43]
Bleakman, D.; Alt, A.; Nisenbaum, E.S. Glutamate receptors and pain. In: Seminars in Cell and Developmental Biology; Elsevier Ltd, 2006; pp. 592-604.
[http://dx.doi.org/10.1016/j.semcdb.2006.10.008]
[44]
Dani, J.A. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. In: International Review of Neurobiology; Academic Press Inc., 2015; Vol. 124, pp. 3-19.
[http://dx.doi.org/10.1016/bs.irn.2015.07.001]
[45]
Tiwari, P.; Dwivedi, S.; Singh, M.P.; Mishra, R.; Chandy, A. Basic and modern concepts on cholinergic receptor: A review. Asian Pac. J. Trop. Dis., 2013, 3(5), 413-420.
[http://dx.doi.org/10.1016/S2222-1808(13)60094-8]
[46]
Souza Monteiro de Araujo, D.; Nassini, R.; Geppetti, P.; De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets, 2020, 24(10), 997-1008.
[http://dx.doi.org/10.1080/14728222.2020.1815191] [PMID: 32838583]
[47]
Peana, A.T.; Marzocco, S.; Popolo, A.; Pinto, A. (−)-Linalool inhibits in vitro NO formation: Probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci., 2006, 78(7), 719-723.
[http://dx.doi.org/10.1016/j.lfs.2005.05.065] [PMID: 16137709]
[48]
Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of adenosine receptors: The state of the art. Physiol. Rev., 2018, 98(3), 1591-1625.
[http://dx.doi.org/10.1152/physrev.00049.2017] [PMID: 29848236]
[49]
Jamwal, S.; Mittal, A.; Kumar, P.; Alhayani, D.M.; Al-Aboudi, A. Therapeutic potential of agonists and antagonists of A1, A2a, A2b and A3 adenosine receptors. Curr. Pharm. Des., 2019, 25(26), 2892-2905.
[http://dx.doi.org/10.2174/1381612825666190716112319] [PMID: 31333104]
[50]
Peana, A.T.; D’Aquila, P.S.; Chessa, M.L.; Moretti, M.D.L.; Serra, G.; Pippia, P. (−)-Linalool produces antinociception in two experimental models of pain. Eur. J. Pharmacol., 2003, 460(1), 37-41.
[http://dx.doi.org/10.1016/S0014-2999(02)02856-X] [PMID: 12535857]
[51]
Peana, A.T.; Rubattu, P.; Piga, G.G.; Fumagalli, S.; Boatto, G.; Pippia, P.; De Montis, M.G. Involvement of adenosine A1 and A2A receptors in (−)-linalool-induced antinociception. Life Sci., 2006, 78(21), 2471-2474.
[http://dx.doi.org/10.1016/j.lfs.2005.10.025] [PMID: 16343551]
[52]
Pertovaara, A. The noradrenergic pain regulation system: A potential target for pain therapy. Eur. J. Pharmacol., 2013, 716(1-3), 2-7.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.067]
[53]
Dogrul, A.; Seyrek, M.; Yalcin, B.; Ulugol, A. Involvement of descending serotonergic and noradrenergic pathways in CB1 receptor-mediated antinociception. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 38(1), 97-105.
[http://dx.doi.org/10.1016/j.pnpbp.2012.01.007] [PMID: 22300745]
[54]
Hung, C.Y.; Tan, C.H. TRP channels in nociception and pathological pain. Advances in Experimental Medicine and Biology. Springer New York LLC, 2018, 1099, 13-27.
[http://dx.doi.org/10.1007/978-981-13-1756-9_2]
[55]
Marics, I.; Malapert, P.; Reynders, A.; Gaillard, S.; Moqrich, A. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels. PLoS One, 2014, 9(6), e99828.
[http://dx.doi.org/10.1371/journal.pone.0099828] [PMID: 24925072]
[56]
Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol., 2018, 233(9), 6425-6440.
[http://dx.doi.org/10.1002/jcp.26429]
[57]
Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodríguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer, 2019, 120(1), 6-15.
[http://dx.doi.org/10.1038/s41416-018-0328-y]
[58]
Rose-John, S. Interleukin-6 family cytokines. Cold Spring Harb. Perspect. Biol., 2018, 10(2), a028415.
[http://dx.doi.org/10.1101/cshperspect.a028415] [PMID: 28620096]
[59]
Crispino, N.; Ciccia, F. JAK/STAT pathway and nociceptive cytokine signalling in rheumatoid arthritis and psoriatic arthritis. Clin. Exp. Rheumatol., 2021, 39(3), 668-675.
[http://dx.doi.org/10.55563/clinexprheumatol/e7ayu8] [PMID: 33200731]
[60]
Bacci, C.; Cassetta, G.; Emanuele, B.; Berengo, M. Randomized split-mouth study on postoperative effects of palmitoylethanolamide for impacted lower third molar surgery. ISRN Surg., 2011, 2011, 1-6.
[http://dx.doi.org/10.5402/2011/917350] [PMID: 22084787]
[61]
Nguyen, P.T.T.; Jang, S.H.; Rijal, S.; Park, S.J.; Han, S.K. Inhibitory actions of borneol on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in mice. Korean J. Physiol. Pharmacol., 2020, 24(5), 433-440.
[http://dx.doi.org/10.4196/kjpp.2020.24.5.433] [PMID: 32830150]
[62]
Evenseth, L.S.M.; Gabrielsen, M.; Sylte, I. The GABAB receptor-structure, ligand binding and drug development. Molecules, 2020, 25(13), 3093.
[http://dx.doi.org/10.3390/molecules25133093]
[63]
Leal, R.S.G.; De, A.; de Alencar, B.C. Use and dependence of opioids: From prevention to treatment. Rev. Med., 2020.
[64]
Beirith, A.; Santos, A.R.S.; Calixtó Calixtó, J.B. Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Res., 2002, 924(2), 219-228.
[65]
Wang, D.; Hiebl, V.; Xu, T.; Ladurner, A.; Atanasov, A.G.; Heiss, E.H.; Dirsch, V.M. Impact of natural products on the cholesterol transporter ABCA1. J. Ethnopharmacol., 2020, 249, 112444.
[http://dx.doi.org/10.1016/j.jep.2019.112444]
[66]
Fitsiou, E.; Pappa, A. Anticancer activity of essential oils and other extracts from aromatic plants grown in Greece. Antioxidants, 2019, 8(8), 290.
[http://dx.doi.org/10.3390/antiox8080290]
[67]
Chen, X.; Yauk, Y.K.; Nieuwenhuizen, N.J.; Matich, A.J.; Wang, M.Y.; Perez, R.L.; Atkinson, R.G.; Beuning, L.L. Characterisation of an (S)-linalool synthase from kiwifruit (Actinidia arguta) that catalyses the first committed step in the production of floral lilac compounds. Funct. Plant Biol., 2010, 37(3), 232-243.
[http://dx.doi.org/10.1071/FP09179]
[68]
Demyttenaere, J.C.R.; Willemen, H.M. Biotransformation of linalool to furanoid and pyranoid linalool oxides by aspergillus niger. Phytochemistry, 1998, 47(6), 1029-1036.
[69]
Quintans-Júnior, L.J.; Barreto, R.S.S.; Menezes, P.P.; Almeida, J.R.G.S.; Viana, A.F.S.C.; Oliveira, R.C.M.; Oliveira, A.P.; Gelain, D.P.; de Lucca Júnior, W.; Araújo, A.A.S. β‐Cyclodextrin‐complexed (−)‐linalool produces antinociceptive effect superior to that of (−)‐linalool in experimental pain protocols. Basic Clin. Pharmacol. Toxicol., 2013, 113(3), 167-172.
[http://dx.doi.org/10.1111/bcpt.12087] [PMID: 23692366]
[70]
Vorasith, S.; Teerut, P.; Tapanee, H.; Naiphinich, K. The effects of lavender oil inhalation on emotional states, autonomic nervous system, and brain electrical activity. J. Med. Assoc. Thai., 2012, 95(4), 598-606.
[71]
Ohtsubo, S.; Fujita, T.; Matsushita, A.; Kumamoto, E. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures. Pharmacol. Res. Perspect., 2015, 3(2), e00127.
[http://dx.doi.org/10.1002/prp2.127] [PMID: 26038703]
[72]
Raisi Dehkordi, Z.; Hosseini Baharanchi, F.S.; Bekhradi, R. Effect of lavender inhalation on the symptoms of primary dysmenorrhea and the amount of menstrual bleeding: A randomized clinical trial. Complement. Ther. Med., 2014, 22(2), 212-219.
[http://dx.doi.org/10.1016/j.ctim.2013.12.011] [PMID: 24731891]
[73]
Soltani, R.; Soheilipour, S.; Hajhashemi, V.; Asghari, G.; Bagheri, M.; Molavi, M. Evaluation of the effect of aromatherapy with lavender essential oil on post-tonsillectomy pain in pediatric patients: A randomized controlled trial. Int. J. Pediatr. Otorhinolaryngol., 2013, 77(9), 1579-1581.
[http://dx.doi.org/10.1016/j.ijporl.2013.07.014] [PMID: 23932834]
[74]
Sakurada, T.; Kuwahata, H.; Katsuyama, S.; Komatsu, T.; Morrone, L.A.; Corasaniti, M.T.; Bagetta, G.; Sakurada, S. Intraplantar injection of bergamot essential oil into the mouse hindpaw: Effects on capsaicin-induced nociceptive behaviors. Int. Rev. Neurobiol., 2009, 85, 237-248.
[http://dx.doi.org/10.1016/S0074-7742(09)85018-6]
[75]
Katsuyama, S.; Otowa, A.; Kamio, S.; Sato, K.; Yagi, T.; Kishikawa, Y.; Komatsu, T.; Bagetta, G.; Sakurada, T.; Nakamura, H. Effect of plantar subcutaneous administration of bergamot essential oil and linalool on formalin-induced nociceptive behavior in mice. Biomed. Res., 2015, 36(1), 47-54.
[76]
Scuteri, D.; Crudo, M.; Rombolà, L.; Watanabe, C.; Mizoguchi, H.; Sakurada, S.; Sakurada, T.; Greco, R.; Corasaniti, M.T.; Morrone, L.A.; Bagetta, G. Antinociceptive effect of inhalation of the essential oil of bergamot in mice. Fitoterapia, 2018, 129, 20-24.
[http://dx.doi.org/10.1016/j.fitote.2018.06.007] [PMID: 29906556]
[77]
Tashiro, S.; Yamaguchi, R.; Ishikawa, S.; Sakurai, T.; Kajiya, K.; Kanmura, Y.; Kuwaki, T.; Kashiwadani, H. Odour-induced analgesia mediated by hypothalamic orexin neurons in mice. Sci. Rep., 2016, 6(1), 37129.
[http://dx.doi.org/10.1038/srep37129] [PMID: 27845440]
[78]
Batista, P.A.; de Paula Werner, M.F.; Oliveira, E.C.; Burgos, L.; Pereira, P.; da Silva Brum, L.F.; Story, G.M.; Santos, A.R.S. The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J. Pain, 2010, 11(11), 1222-1229.
[http://dx.doi.org/10.1016/j.jpain.2010.02.022] [PMID: 20452289]
[79]
Marvin Sketch ChemAxon,.,
[80]
Hypercube Int
[81]
Qu, L.; Zhou, Q.T.; Wu, D.; Zhao, S.W. Crystal structures of the Alpha2A Adrenergic Receptor in Complex with an Antagonist RSC. ReleasedProtein Data Bank, 2019.
[82]
Masiulis, S.; Desai, R.; Uchański, T.; Serna Martin, I.; Laverty, D.; Karia, D.; Malinauskas, T.; Zivanov, J.; Pardon, E.; Kotecha, A.; Steyaert, J.; Miller, K.W.; Aricescu, A.R. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 2019, 565(7740), 454-459.
[http://dx.doi.org/10.1038/s41586-018-0832-5] [PMID: 30602790]
[83]
Sammak, S.; Hamdani, N.; Gorrec, F.; Allen, M.D.; Freund, S.M.V.; Bycroft, M.; Zinzalla, G. Crystal structures and nuclear magnetic resonance studies of the Apo form of the c-MYC:MAX bHLHZip complex reveal a helical basic region in the absence of DNA. Biochemistry, 2019, 58(29), 3144-3154.
[http://dx.doi.org/10.1021/acs.biochem.9b00296] [PMID: 31260268]
[84]
Kruse, A.C.; Hu, J.; Pan, A.C.; Arlow, D.H.; Rosenbaum, D.M.; Rosemond, E.; Green, H.F.; Liu, T.; Chae, P.S.; Dror, R.O.; Shaw, D.E.; Weis, W.I.; Wess, J.; Kobilka, B.K. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 2012, 482(7386), 552-556.
[http://dx.doi.org/10.1038/nature10867] [PMID: 22358844]
[85]
Vuckovic, Z.; Gentry, P.R.; Berizzi, A.E.; Hirata, K.; Varghese, S.; Thompson, G.; van der Westhuizen, E.T.; Burger, W.A.C.; Rahmani, R.; Valant, C.; Langmead, C.J.; Lindsley, C.W.; Baell, J.B.; Tobin, A.B.; Sexton, P.M.; Christopoulos, A.; Thal, D.M. Crystal structure of the M5 muscarinic acetylcholine receptor. Proc. Natl. Acad. Sci., 2019, 116(51), 26001-26007.
[http://dx.doi.org/10.1073/pnas.1914446116] [PMID: 31772027]
[86]
Wang, Y.; Zhuang, Y.; DiBerto, J.F.; Zhou, X.E.; Schmitz, G.P.; Yuan, Q.; Jain, M.K.; Liu, W.; Melcher, K.; Jiang, Y.; Roth, B.L.; Xu, H.E. Structures of the entire human opioid receptor family. Cell, 2023, 186(2), 413-427.e17.
[http://dx.doi.org/10.1016/j.cell.2022.12.026] [PMID: 36638794]
[87]
Wang, H.; Lv, S.; Stroebel, D.; Zhang, J.; Pan, Y.; Huang, X.; Zhang, X.; Paoletti, P.; Zhu, S. Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors. Neuron, 2021, 109(15), 2443-2456.e5.
[http://dx.doi.org/10.1016/j.neuron.2021.05.031] [PMID: 34186027]
[88]
Glukhova, A.; Thal, D.M.; Nguyen, A.T.; Vecchio, E.A.; Jörg, M.; Scammells, P.J.; May, L.T.; Sexton, P.M.; Christopoulos, A. Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell, 2017, 168(5), 867-877.e13.
[http://dx.doi.org/10.1016/j.cell.2017.01.042] [PMID: 28235198]
[89]
Saward, B.G. Determining the Role of the Human Transient Receptor Potential Subfamily A Member 1 (HTRPA1) Ion Channel in Pain Sensation; University of Oxford, 2021.
[90]
Autzen, H.E.; Myasnikov, A.G.; Campbell, M.G.; Asarnow, D.; Julius, D.; Cheng, Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science, 2018, 359(6372), 228-232.
[http://dx.doi.org/10.1126/science.aar4510] [PMID: 29217581]
[91]
Singh, V.P.; Singh, H.B.; Butcher, R.J. Synthesis of intramolecularly coordinated cyclic selenenate/thioselenenate esters and their glutathione peroxidase-like activity. Indian J. Chem., 2011, 50(9-10), 1263-1272.
[92]
Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol., 1977, 112(3), 535-542.
[http://dx.doi.org/10.1016/S0022-2836(77)80200-3] [PMID: 875032]
[93]
Fabera, P.; Parizkova, M.; Uttl, L.; Vondrakova, K.; Kubova, H.; Tsenov, G.; Mares, P. Adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine and hippocampal excitability during brain development in rats. Front. Pharmacol., 2019, 10, 656.
[http://dx.doi.org/10.3389/fphar.2019.00656] [PMID: 31258477]
[94]
Ma, X.; Chen, R.; Huang, M.; Wang, W.; Luo, L.; Kim, D.K.; Jiang, W.; Xu, T. DAMGO-induced μ opioid receptor internalization and recycling restore morphine sensitivity in tolerant rat. Eur. J. Pharmacol., 2020, 878, 173118.
[http://dx.doi.org/10.1016/j.ejphar.2020.173118] [PMID: 32320702]
[95]
Yao, Y.; Xu, J.; Yu, T.; Chen, Z.; Xiao, Z.; Wang, J.; Hu, Y.; Wu, Y.; Zhu, D. Flufenamic acid inhibits secondary hemorrhage and BSCB disruption after spinal cord injury. Theranostics, 2018, 8(15), 4181-4198.
[http://dx.doi.org/10.7150/thno.25707] [PMID: 30128046]
[96]
Hofer, A.; Kovacs, G.; Zappatini, A.; Leuenberger, M.; Hediger, M.A.; Lochner, M. Design, synthesis and pharmacological characterization of analogs of 2-aminoethyl diphenylborinate (2-APB), a known store-operated calcium channel blocker, for inhibition of TRPV6-mediated calcium transport. Bioorg. Med. Chem., 2013, 21(11), 3202-3213.
[http://dx.doi.org/10.1016/j.bmc.2013.03.037] [PMID: 23602525]
[97]
Stevenson, C.; Crabtree, C.; Dom, A.; Lau, J.; Brown, K.; Creel, R.; Damron, C.; Chen, Y.; Witte, T.; Hardman, W.; Dasgupta, P. Capsaicin causes apoptosis of human small cell lung cancers cells via the TRPV6/calpain pathway (644.8). FASEB J., 2014, 28(S1), 644-648.
[http://dx.doi.org/10.1096/fasebj.28.1_supplement.644.8]
[98]
Molegro Virtual Docker 6.0.1; CLC Bio Company
[99]
De Azevedo, W., Jr; Walter, F. MolDock applied to structure-based virtual screening. Curr. Drug Targets, 2010, 11(3), 327-334.
[http://dx.doi.org/10.2174/138945010790711941] [PMID: 20210757]
[100]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[101]
Mollegro Virtual Docker 6.0
[102]
Houston, D.R.; Walkinshaw, M.D. Consensus docking: Improving the reliability of docking in a virtual screening context. J. Chem. Inf. Model., 2013, 53(2), 384-390.
[http://dx.doi.org/10.1021/ci300399w] [PMID: 23351099]
[103]
Acevedo, C.A.H. Chemotaxonomic studies and virtual screening of lactonized sesquiterpenes isolated from the asteraceae family with potential leishmanicidal and trypanocidal activity. Dissertation UFPB Institutional Repository, 2017.
[104]
Maia, M.D.S.; Silva, J.P.R.E.; Nunes, T.A.L.; Sousa, J.M.S.; Rodrigues, G.C.S.; Monteiro, A.F.M.; Tavares, J.F.; Rodrigues, K.A.D.F.; Mendonça-Junior, F.J.B.; Scotti, L.; Scotti, M.T. Virtual screening and the in vitro assessment of the antileishmanial activity of lignans. Molecules, 2020, 25(10), 2281.
[http://dx.doi.org/10.3390/molecules25102281] [PMID: 32408657]
[105]
Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model., 2013, 53(8), 1893-1904.
[http://dx.doi.org/10.1021/ci300604z] [PMID: 23379370]
[106]
Daligaux, P.; Bernadat, G.; Tran, L.; Cavé, C.; Loiseau, P.M.; Pomel, S.; Ha-Duong, T. Comparative study of structural models of Leishmania donovani and human GDP-mannose pyrophosphorylases. Eur. J. Med. Chem., 2016, 107, 109-118.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.037] [PMID: 26562546]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy