Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Feasibility of Domain Segmentation of B19V VP1u Using Intein Technology for Structural Studies

Author(s): Renuk Varayil Lakshmanan*, Mavis Agbandje-McKenna and Robert McKenna

Volume 31, Issue 2, 2024

Published on: 12 January, 2024

Page: [161 - 167] Pages: 7

DOI: 10.2174/0109298665277211231214065419

Price: $65

Abstract

Introduction: Parvovirus B19 (B19V) is a human pathogen, and the minor capsid protein of B19V possesses a unique N terminus called VP1u that plays a crucial role in the life cycle of the virus.

Objectives: The objective of this study was to develop a method for domain segmentation of B19 VP1u using intein technology, particularly its receptor binding domain (RBD) and phospholipase A2 (PLA2) domain.

Methods: RBD and PLA2 domains of VP1u were each fused to the DnaE split inteins derived from the Nostoc punctiforme. Each of these precursor proteins was expressed in E. coli. Combining the purified precursors in equal molar ratios resulted in the formation of full-length VP1u. Furthermore, Circular Dichroism (CD) spectroscopy and PLA2 assays were used to probe the structure and activity of the newly formed protein.

Results: The CD spectrum of the full length VP1u confirmed the secondary structure of protein, while the PLA2 assay indicated minimal disruption in enzymatic activity.

Conclusion: This method would allow for the selective incorporation of NMR-active isotopes into either of the VP1u domains, which can reduce signal overlap in NMR structural determination studies.

Graphical Abstract

[1]
Pénzes, J.J.; Söderlund-Venermo, M.; Canuti, M.; Eis-Hübinger, A.M.; Hughes, J.; Cotmore, S.F.; Harrach, B. Reorganizing the family Parvoviridae: A revised taxonomy independent of the canonical approach based on host association. Arch. Virol., 2020, 165(9), 2133-2146.
[http://dx.doi.org/10.1007/s00705-020-04632-4] [PMID: 32533329]
[2]
Heegaard, E.D.; Brown, K.E. Human parvovirus B19. Clin. Microbiol. Rev., 2002, 15(3), 485-505.
[http://dx.doi.org/10.1128/CMR.15.3.485-505.2002] [PMID: 12097253]
[3]
Deiss, V.; Tratschin, J.D.; Weitz, M.; Siegl, G. Cloning of the human parvovirus B19 genome and structural analysis of its palindromic termini. Virology, 1990, 175(1), 247-254.
[http://dx.doi.org/10.1016/0042-6822(90)90205-6] [PMID: 2408228]
[4]
Kaufmann, B.; Simpson, A.A.; Rossmann, M.G. The structure of human parvovirus B19. Proc. Natl. Acad. Sci. USA, 2004, 101(32), 11628-11633.
[http://dx.doi.org/10.1073/pnas.0402992101] [PMID: 15289612]
[5]
Zádori, Z.; Szelei, J.; Lacoste, M.C.; Li, Y.; Gariépy, S.; Raymond, P.; Allaire, M.; Nabi, I.R.; Tijssen, P. A viral phospholipase A2 is required for parvovirus infectivity. Dev. Cell, 2001, 1(2), 291-302.
[http://dx.doi.org/10.1016/S1534-5807(01)00031-4] [PMID: 11702787]
[6]
Leisi, R.; Di Tommaso, C.; Kempf, C.; Ros, C. The receptor-binding domain in the VP1U region of parvovirus B19. Viruses, 2016, 8(3), 61.
[http://dx.doi.org/10.3390/v8030061] [PMID: 26927158]
[7]
Leisi, R.; Von Nordheim, M.; Ros, C.; Kempf, C. The VP1u receptor restricts parvovirus B19 uptake to permissive erythroid cells. Viruses, 2016, 8(10), 265.
[http://dx.doi.org/10.3390/v8100265] [PMID: 27690083]
[8]
Ning, K.; Zou, W.; Xu, P.; Cheng, F.; Zhang, E.Y.; Zhang-Chen, A.; Kleiboeker, S.; Qiu, J. Identification of AXL as a co-receptor for human parvovirus B19 infection of human erythroid progenitors. Sci. Adv., 2023, 9(2), eade0869.
[http://dx.doi.org/10.1126/sciadv.ade0869] [PMID: 36630517]
[9]
Quattrocchi, S.; Ruprecht, N.; Bönsch, C.; Bieli, S.; Zürcher, C.; Boller, K.; Kempf, C.; Ros, C. Characterization of the early steps of human parvovirus B19 infection. J. Virol., 2012, 86(17), 9274-9284.
[http://dx.doi.org/10.1128/JVI.01004-12] [PMID: 22718826]
[10]
Zuffi, E.; Manaresi, E.; Gallinella, G.; Gentilomi, G.A.; Venturoli, S.; Zerbini, M.; Musiani, M. Identification of an immunodominant peptide in the parvovirus B19 VP1 unique region able to elicit a long-lasting immune response in humans. Viral Immunol., 2001, 14(2), 151-158.
[http://dx.doi.org/10.1089/088282401750234529] [PMID: 11398810]
[11]
Lakshmanan, R.V.; Hull, J.A.; Berry, L.; Burg, M.; Bothner, B.; McKenna, R.; Agbandje-McKenna, M. Structural dynamics and activity of B19V VP1u during the pHs of cell entry and endosomal trafficking. Viruses, 2022, 14(9), 1922.
[http://dx.doi.org/10.3390/v14091922] [PMID: 36146728]
[12]
Sattler, M.; Fesik, S.W. Use of deuterium labeling in NMR: Overcoming a sizeable problem. Structure, 1996, 4(11), 1245-1249.
[http://dx.doi.org/10.1016/S0969-2126(96)00133-5] [PMID: 8939758]
[13]
Frueh, D.P. Practical aspects of NMR signal assignment in larger and challenging proteins. Prog. Nucl. Magn. Reson. Spectrosc., 2014, 78, 47-75.
[http://dx.doi.org/10.1016/j.pnmrs.2013.12.001] [PMID: 24534088]
[14]
Muona, M.; Aranko, A.S.; Raulinaitis, V.; Iwaï, H. Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat. Protoc., 2010, 5(3), 574-587.
[http://dx.doi.org/10.1038/nprot.2009.240] [PMID: 20203672]
[15]
Minato, Y.; Ueda, T.; Machiyama, A.; Shimada, I.; Iwaï, H. Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing. J. Biomol. NMR, 2012, 53(3), 191-207.
[http://dx.doi.org/10.1007/s10858-012-9628-3] [PMID: 22740268]
[16]
Iwai, H.; Züger, S.; Jin, J.; Tam, P.H. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett., 2006, 580(7), 1853-1858.
[http://dx.doi.org/10.1016/j.febslet.2006.02.045] [PMID: 16516207]
[17]
Bieri, J.; Leisi, R.; Bircher, C.; Ros, C. Human parvovirus B19 interacts with globoside under acidic conditions as an essential step in endocytic trafficking. PLoS Pathog., 2021, 17(4), e1009434.
[http://dx.doi.org/10.1371/journal.ppat.1009434] [PMID: 33878123]
[18]
Zou, W. The N-terminal 5-68 amino acids domain of the minor capsid protein VP1 of human parvovirus B19 enters human erythroid progenitors and inhibits B19 infection J Virol, 2021, JVI.00466-21.
[http://dx.doi.org/10.1128/JVI.00466-21]
[19]
Drozdetskiy, A.; Cole, C.; Procter, J.; Barton, G.J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res., 2015, 43(W1), W389-W394.
[http://dx.doi.org/10.1093/nar/gkv332] [PMID: 25883141]
[20]
Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Opperman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876.
[http://dx.doi.org/10.1126/science.abj8754] [PMID: 34282049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy