Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Meta-Analysis

Efficacy and Possible Mechanisms of Astragali Radix and its Ingredients in Animal Models of Osteoporosis: A Preclinical Review and Metaanalysis

Author(s): Ning Cao*, Zhangxuan Shou, Yi Xiao and Puqing Liu

Volume 25, Issue 2, 2024

Published on: 11 January, 2024

Page: [135 - 148] Pages: 14

DOI: 10.2174/0113894501275292231220062838

Price: $65

Abstract

Background: Astragali Radix (AR) has a long history as a traditional Chinese medicine for anti-osteoporosis (OP) treatment. The aim of the study was to explore the effect and optimal regimens of AR and its main ingredients (IAR) in OP treatment.

Methods: Eligible animal studies were searched in seven databases (PubMed, Web of Science, MEDLINE, SciELO Citation Index, Cochrane Library, China National Knowledge Infrastructure and Wanfang). The primary outcomes were bone metabolic indices. The secondary outcome measure was the anti-OP mechanism of IAR.

Results: 21 studies were enrolled in the study. The primary findings of the present article illustrated that IAR could significantly increase the bone mineral density (BMD), bone volume over the total volume, trabecular number, trabecular thickness, bone maximum load and serum calcium, while trabecular separation and serum C-terminal telopeptide of type 1 collagen were remarkably decreased (P < 0.05). In subgroup analysis, the BMD in the long treatment group (≥ 10 weeks) showed better effect size than the short treatment group (< 10 weeks) (P < 0.05). Modeling methods and animal sex were factors affecting serum alkaline phosphatase and osteocalcin levels.

Conclusion: The findings suggest the possibility of developing IAR as a drug for the treatment of OP. IAR with longer treatment time may achieve better effects regardless of animal strain and age.

Graphical Abstract

[1]
Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet 2019; 393(10169): 364-76.
[http://dx.doi.org/10.1016/S0140-6736(18)32112-3] [PMID: 30696576]
[2]
Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 2006; 194(2) (Suppl.): S3-S11.
[http://dx.doi.org/10.1016/j.ajog.2005.08.047] [PMID: 16448873]
[3]
Arcos D, Boccaccini AR, Bohner M, et al. The relevance of biomaterials to the prevention and treatment of osteoporosis. Acta Biomater 2014; 10(5): 1793-805.
[http://dx.doi.org/10.1016/j.actbio.2014.01.004] [PMID: 24418434]
[4]
Miller PD. Management of severe osteoporosis. Expert Opin Pharmacother 2016; 17(4): 473-88.
[http://dx.doi.org/10.1517/14656566.2016.1124856] [PMID: 26605922]
[5]
Sözen T, Özışık L, Calik Basaran N. An overview and management of osteoporosis. Eur J Rheumatol 2017; 4(1): 46-56.
[http://dx.doi.org/10.5152/eurjrheum.2016.048] [PMID: 28293453]
[6]
Reymondier A, Caillet P, Abbas-Chorfa F, et al. MENOPOST - Calcium and vitamin D supplementation in postmenopausal osteoporosis treatment: a descriptive cohort study. Osteoporos Int 2013; 24(2): 559-66.
[http://dx.doi.org/10.1007/s00198-012-1999-5] [PMID: 22588183]
[7]
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14: 1203767.
[http://dx.doi.org/10.3389/fphar.2023.1203767] [PMID: 37441527]
[8]
Fu J, Wang Z, Huang L, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother Res 2014; 28(9): 1275-83.
[http://dx.doi.org/10.1002/ptr.5188] [PMID: 25087616]
[9]
Li M, Han B, Zhao H, et al. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine 2022; 98: 153918.
[http://dx.doi.org/10.1016/j.phymed.2021.153918] [PMID: 35104756]
[10]
Xiao Q, Bai X, Gao P, He Y. Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of radix Astragali by visible/short-wave near-infrared and near infrared hyperspectral imaging. Sensors (Basel) 2020; 20(17): 4940.
[http://dx.doi.org/10.3390/s20174940] [PMID: 32882807]
[11]
Yang Y, Chin A, Zhang L, Lu J, Wong RWK. The role of traditional Chinese medicines in osteogenesis and angiogenesis. Phytother Res 2014; 28(1): 1-8.
[http://dx.doi.org/10.1002/ptr.4959] [PMID: 23494901]
[12]
Rebhun JF, Du Q, Hood M, et al. Evaluation of selected traditional Chinese medical extracts for bone mineral density maintenance: A mechanistic study. J Tradit Complement Med 2019; 9(3): 227-35.
[http://dx.doi.org/10.1016/j.jtcme.2017.07.004] [PMID: 31193882]
[13]
Li J, Fu S F, Yang Y, An R, Liu H Y, Mao H P. Clinical practice of traditional Chinese medicine for the treatment of postmenopausal osteoporosis: A literature review. Climacteric 2022; 25(6): 562-9.
[14]
Kong X, Wang F, Niu Y, Wu X, Pan Y. A comparative study on the effect of promoting the osteogenic function of osteoblasts using isoflavones from R adix A stragalus. Phytother Res 2018; 32(1): 115-24.
[http://dx.doi.org/10.1002/ptr.5955] [PMID: 29044703]
[15]
Kwan KKL, Dong TTX, Tsim KWK. Danggui Buxue Tang, a Chinese herbal decoction containing Astragali Radix and Angelicae Sinensis Radix, improves mitochrondial bioenergetics in osteoblast. Phytomedicine 2021; 88: 153605.
[http://dx.doi.org/10.1016/j.phymed.2021.153605] [PMID: 34107409]
[16]
Liu Y, Liu JP, Xia Y. Chinese herbal medicines for treating osteoporosis. Cochrane Libr 2014; 2014(3): CD005467.
[http://dx.doi.org/10.1002/14651858.CD005467.pub2] [PMID: 24599707]
[17]
Guo CC, Zheng LH, Fu JY, et al. Antiosteoporotic Effects of Huangqi Sanxian Decoction in Cultured Rat Osteoblasts by Proteomic Characterization of the Target and Mechanism. Evid Based Complement Alternat Med 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/514063] [PMID: 26557149]
[18]
Xu Z, Zhou Z. Clinical Study on the Treatment of 36 Cases of Postmenopausal Osteoporosis With HuangQiSanXian Tang. Guiding Journal of Traditional Chinese Medicine and Pharmacy 2009; 15(5): 9-11.
[19]
Ma Q, Zhang J. Clinical curative effect analysis of modified buzhong yiqi decoction in treating spleen kidney deficiency syndrome senile osteoporosis. Clin J Trad Chin Med 2017; 29(4): 551-3.
[20]
Xiang K, Yang J, Liu W, et al. Efficacy and safety of Chinese herbal medicine Buzhong Yiqi decoction for postmenopausal women with osteoporosis: A protocol for systematic review and meta-analysis. Medicine 2022; 101(45): e31771.
[http://dx.doi.org/10.1097/MD.0000000000031771] [PMID: 36397378]
[21]
Zhang C, Yang X, Wei J, et al. Ethnopharmacology, phytochemistry, pharmacology, toxicology and clinical applications of radix astragali. Chin J Integr Med 2021; 27(3): 229-40.
[http://dx.doi.org/10.1007/s11655-019-3032-8] [PMID: 31502185]
[22]
Kang SC, Kim HJ, Kim MH. Effects of Astragalus membranaceus with supplemental calcium on bone mineral density and bone metabolism in calcium-deficient ovariectomized rats. Biol Trace Elem Res 2013; 151(1): 68-74.
[http://dx.doi.org/10.1007/s12011-012-9527-1] [PMID: 23136088]
[23]
Li H, Nie D, Wang C, Fang J, Li D. Anti-osteoporosis activity of <i>Astragalus membranaceus</i> Bunge extract in experimental rats. Trop J Pharm Res 2016; 15(9): 1897.
[http://dx.doi.org/10.4314/tjpr.v15i9.12]
[24]
Zhou LP, Wong KY, Yeung HT, et al. Bone protective effects of danggui buxue tang alone and in combination with tamoxifen or raloxifene in vivo and in vitro. Front Pharmacol 2018; 9: 779.
[http://dx.doi.org/10.3389/fphar.2018.00779] [PMID: 30150931]
[25]
Choi RCY, Gao QT, Cheung AWH, et al. A chinese herbal decoction, danggui buxue tang, stimulates proliferation, differentiation and gene expression of cultured osteosarcoma cells: Genomic approach to reveal specific gene activation. Evid Based Complement Alternat Med 2011; 2011: 1-13.
[http://dx.doi.org/10.1093/ecam/nen085] [PMID: 19131392]
[26]
Jung Koo H, Sohn EH, Kim YJ, Jang SA, Namkoong S, Chan Kang S. Effect of the combinatory mixture of Rubus coreanus Miquel and Astragalus membranaceus Bunge extracts on ovariectomy-induced osteoporosis in mice and anti-RANK signaling effect. J Ethnopharmacol 2014; 151(2): 951-9.
[http://dx.doi.org/10.1016/j.jep.2013.12.008] [PMID: 24333364]
[27]
Huh JE, Kim SJ, Kang JW, et al. The standardized BHH10 extract, a combination of Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, reverses bone mass and metabolism in a rat model of postmenopausal osteoporosis. Phytother Res 2015; 29(1): 30-9.
[http://dx.doi.org/10.1002/ptr.5218] [PMID: 25230217]
[28]
Kang W, Wei P, Ou L, Li M, Liu C. The mechanism study of inhibition effect of prepared Radix Rehmanniainon combined with Radix Astragali osteoporosis through PI3K-AKT signaling pathway. Acta Cir Bras 2022; 37(11): e371101.
[http://dx.doi.org/10.1590/acb371101] [PMID: 36629528]
[29]
Liu J, Liu J, Liu L, Zhang G, Peng X. Reprogrammed intestinal functions in Astragalus polysaccharide-alleviated osteoporosis: Combined analysis of transcriptomics and DNA methylomics demonstrates the significance of the gut–bone axis in treating osteoporosis. Food Funct 2021; 12(10): 4458-70.
[http://dx.doi.org/10.1039/D1FO00113B] [PMID: 33881125]
[30]
Liu J, Liu J, Duan S, Liu L, Zhang G, Peng X. Reprogrammed epigenetic landscape-prophesied functions of bioactive polysaccharides in alleviating diseases: A pilot study of DNA methylome remodeling in astragalus polysaccharide (APS)-improved osteoporosis in a rat model. J Agric Food Chem 2020; 68(52): 15449-59.
[http://dx.doi.org/10.1021/acs.jafc.0c06483] [PMID: 33320666]
[31]
Jin H, Du J, Ren H, Yang G, Wang W, Du J. Astragaloside IV protects against iron loading-induced abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs). FEBS Open Bio 2021; 11(4): 1223-36.
[http://dx.doi.org/10.1002/2211-5463.13082] [PMID: 33445204]
[32]
Yu Y, Wu J, Li J, et al. Cycloastragenol prevents age-related bone loss: Evidence in d-galactose-treated and aged rats. Biomed Pharmacother 2020; 128: 110304.
[http://dx.doi.org/10.1016/j.biopha.2020.110304] [PMID: 32497865]
[33]
Wang G, Ma C, Chen K, et al. Cycloastragenol attenuates osteoclastogenesis and bone loss by targeting RANKL-induced Nrf2/Keap1/ARE, NF-κB, calcium, and NFATc1 pathways. Front Pharmacol 2022; 12: 810322.
[http://dx.doi.org/10.3389/fphar.2021.810322] [PMID: 35126144]
[34]
Deng M, Chen H, Long J, Song J, Xie L, Li X. Calycosin: A review of its pharmacological effects and application prospects. Expert Rev Anti Infect Ther 2021; 19(7): 911-25.
[http://dx.doi.org/10.1080/14787210.2021.1863145] [PMID: 33346681]
[35]
Jin X, Wang H, Li F, et al. Formononetin ameliorates simulated microgravity-induced bone loss by suppressing bone turnover in rats. Acta Astronaut 2022; 200: 77-85.
[http://dx.doi.org/10.1016/j.actaastro.2022.07.049]
[36]
Huang YY, Wang ZH, Deng LH, Wang H, Zheng Q. Oral administration of quercetin or its derivatives inhibit bone loss in animal model of osteoporosis. Oxid Med Cell Longev 2020; 2020: 1-21.
[http://dx.doi.org/10.1155/2020/6080597] [PMID: 33194005]
[37]
Forte L, Torricelli P, Boanini E, Rubini K, Fini M, Bigi A. Quercetin and alendronate multi-functionalized materials as tools to hinder oxidative stress damage. J Biomed Mater Res A 2017; 105(12): 3293-303.
[http://dx.doi.org/10.1002/jbm.a.36192] [PMID: 28865182]
[38]
Sun J, Pan Y, Li X, et al. Quercetin attenuates osteoporosis in orchiectomy mice by regulating glucose and lipid metabolism via the GPRC6A/AMPK/mTOR signaling pathway. Front Endocrinol 2022; 13: 849544.
[http://dx.doi.org/10.3389/fendo.2022.849544] [PMID: 35547008]
[39]
Oršolić N, Jeleč Ž, Nemrava J, Balta V, Gregorović G, Jeleč D. Effect of quercetin on bone mineral status and markers of bone turnover in retinoic acid-induced osteoporosis. J Food Nutr Sci 2018; 68: 149-62.
[40]
Wong SK, Chin KY, Ima-Nirwana S. The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies. Drug Des Devel Ther 2019; 13: 3497-514.
[http://dx.doi.org/10.2147/DDDT.S227738] [PMID: 31631974]
[41]
Trivedi R, Kumar S, Kumar A, et al. Kaempferol has osteogenic effect in ovariectomized adult Sprague–Dawley rats. Mol Cell Endocrinol 2008; 289(1-2): 85-93.
[http://dx.doi.org/10.1016/j.mce.2008.02.027] [PMID: 18400372]
[42]
Wang A, Yuan W, Song Y, Zang Y, Yu Y. Osseointegration effect of micro-nano implants loaded with kaempferol in osteoporotic rats. Front Bioeng Biotechnol 2022; 10: 842014.
[http://dx.doi.org/10.3389/fbioe.2022.842014] [PMID: 35284417]
[43]
Kumar A, Gupta GK, Khedgikar V, et al. in vivo efficacy studies of layer-by-layer nano-matrix bearing kaempferol for the conditions of osteoporosis: A study in ovariectomized rat model. Eur J Pharm Biopharm 2012; 82(3): 508-17.
[http://dx.doi.org/10.1016/j.ejpb.2012.08.001] [PMID: 22926146]
[44]
Lin Z, Zheng J, Chen J, Chen M, Dong S. Antiosteoporosis effect and possible mechanisms of the ingredients of fructus psoraleae in animal models of osteoporosis: A preclinical systematic review and meta-analysis. Oxid Med Cell Longev 2021; 2021: 1-27.
[http://dx.doi.org/10.1155/2021/2098820] [PMID: 34868453]
[45]
Qin C, Guo Y, Yang DG, Yang ML, Du LJ, Li JJ. Induced pluripotent stem cell transplantation improves locomotor recovery in rat models of spinal cord injury: A systematic review and meta-analysis of randomized controlled trials. Cell Physiol Biochem 2018; 47(5): 1835-52.
[http://dx.doi.org/10.1159/000491064] [PMID: 29961052]
[46]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg 2021; 88: 105906.
[http://dx.doi.org/10.1016/j.ijsu.2021.105906] [PMID: 33789826]
[47]
Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[48]
Chai Y, Pu X, Wu Y, et al. Inhibitory effect of astragalus membranaceus on osteoporosis in SAMP6 mice by regulating vitaminD/FGF23/Klotho signaling pathway. Bioengineered 2021; 12(1): 4464-74.
[http://dx.doi.org/10.1080/21655979.2021.1946633] [PMID: 34304712]
[49]
Zhang X, Chen H, Ma J, Ma Z, Wang Y. Effect of astragalus polysaccharide treatment on bone mineral density, bone mass, and bone metabolism in ovariectomized osteoporotic rats. Zhongguo Guzhi Shusong Zazhi 2021; 27(1): 21-5.
[50]
Cheng P, Bai Y, Hu C, Lian F, Zhou H. Inhibitory effect of astragaloside on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt2/ β-catenin pathway. Zhongguo Shiyan Fangjixue Zazhi 2018; 24(5): 161-6.
[51]
Cui H, Jia W, Yang Q, Feng Y. Antioxidative mechanism of Astragalus membranaceus in the treatment of postmenopausal osteoporosis. J Int Obstet Gynecol 2015; 42(5): 504-7.
[52]
Nowak B, Matuszewska A, Nikodem A, et al. Oral administration of kaempferol inhibits bone loss in rat model of ovariectomy-induced osteopenia. Pharmacol Rep 2017; 69(5): 1113-9.
[http://dx.doi.org/10.1016/j.pharep.2017.05.002] [PMID: 29031689]
[53]
Wang X, Yang S, Zhang Z, Cao L. Protective effects of kaempferol on bone collagen production and trabecular bone loss in ovariectomized rats. Chin J Clin Pharmacol 2020; 36(10): 1302-5.
[54]
Zheng H, Tang W, Jiao J, Wu C, Yuan X, Zhao H. Molecular mechanism of quercetin ameliorates on the castration osteoporosis rats by promoting osteogenetic differentiation. Pharmacol Clin Chin Med 2017; 33(5): 16-20.
[55]
Zhu X, Wei S. Protective effect of quercetin on ovariectomy-induced bone loss in rats. Zhongguo Guzhi Shusong Zazhi 2005; 11(4): 504-8.
[56]
Liu J, Liu J, Liu L, Zhang G, Zhou A, Peng X. The gut microbiota alteration and the key bacteria in Astragalus polysaccharides (APS)-improved osteoporosis. Food Res Int 2020; 138(Pt B): 109811.
[57]
Liang W, Luo Z, Ge S, et al. Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur J Pharmacol 2011; 670(1): 317-24.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.014] [PMID: 21914440]
[58]
Ahmad N, Banala VT, Kushwaha P, et al. Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: A preventive strategy for post-menopausal osteoporosis. RSC Advances 2016; 6(100): 97613-28.
[http://dx.doi.org/10.1039/C6RA17141A]
[59]
Lai CY, Yang JY, Rayalam S, et al. Preventing bone loss and weight gain with combinations of vitamin D and phytochemicals. J Med Food 2011; 14(11): 1352-62.
[http://dx.doi.org/10.1089/jmf.2010.0232] [PMID: 21663481]
[60]
Ou L, Wei P, Li M, Gao F. Inhibitory effect of Astragalus polysaccharide on osteoporosis in ovariectomized rats by regulating FoxO3a /Wnt signaling pathway. Acta Cir Bras 2019; 34(5): e201900502.
[http://dx.doi.org/10.1590/s0102-865020190050000002] [PMID: 31166463]
[61]
Kaczmarczyk-Sedlak I, Wojnar W, Zych M, Ozimina-Kamińska E, Taranowicz J, Siwek A. Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. Evid Based Complement Alternat Med 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/457052] [PMID: 23762138]
[62]
Derakhshanian H, Ghadbeigi S, Rezaian M, et al. Quercetin improves bone strength in experimental biliary cirrhosis. Hepatol Res 2013; 43(4): 394-400.
[http://dx.doi.org/10.1111/j.1872-034X.2012.01075.x] [PMID: 22882531]
[63]
Derakhshanian H, Djalali M, Djazayery A, et al. Quercetin prevents experimental glucocorticoid-induced osteoporosis: A comparative study with alendronate. Can J Physiol Pharmacol 2013; 91(5): 380-5.
[http://dx.doi.org/10.1139/cjpp-2012-0190] [PMID: 23656499]
[64]
Pan J, Zhang H, Li F, Yin Z, Li E. Dynamic effect of Astragalus membranaceus on bone tissue of ovariectomized rats. Chin J Bas Med Tradit Chin Med 2010; 16(3): 251-3.
[65]
Pandit AP, Omase SB, Mute VM. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv Transl Res 2020; 10(5): 1495-506.
[http://dx.doi.org/10.1007/s13346-020-00708-5] [PMID: 31942700]
[66]
Li N, Tu Y, Shen Y, Qin Y, Lei C, Liu X. Calycosin attenuates osteoporosis and regulates the expression of OPG/RANKL in ovariectomized rats via MAPK signaling. Pharmazie 2016; 71(10): 607-12.
[PMID: 29441931]
[67]
Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene 2020; 754: 144855.
[http://dx.doi.org/10.1016/j.gene.2020.144855] [PMID: 32522695]
[68]
Vasikaran SD, Miura M, Pikner R, Bhattoa HP, Cavalier E, Metabolism I-IJ. Practical considerations for the clinical application of bone turnover markers in osteoporosis. Calcif Tissue Int 2023; 112(2): 148-57.
[http://dx.doi.org/10.1007/s00223-021-00930-4] [PMID: 34846540]
[69]
Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM. The role of alkaline phosphatase in cartilage mineralization. Bone Miner 1992; 17(2): 273-8.
[http://dx.doi.org/10.1016/0169-6009(92)90750-8] [PMID: 1611320]
[70]
Kato H, Ochiai-Shino H, Onodera S, Saito A, Shibahara T, Azuma T. Promoting effect of 1,25(OH) 2 vitamin D 3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biol 2015; 5(2): 140201.
[http://dx.doi.org/10.1098/rsob.140201] [PMID: 25652541]
[71]
Sun W, Shi A, Ma D, et al. All-trans retinoic acid and human salivary histatin-1 promote the spreading and osteogenic activities of pre-osteoblasts in vitro. FEBS Open Bio 2020; 10(3): 396-406.
[http://dx.doi.org/10.1002/2211-5463.12792] [PMID: 31957262]
[72]
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244: 108383.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108383] [PMID: 36933702]
[73]
Komori T. Animal models for osteoporosis. Eur J Pharmacol 2015; 759: 287-94.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.028] [PMID: 25814262]
[74]
Huidrom S, Beg MA, Masood T. Post-menopausal osteoporosis and probiotics. Curr Drug Targets 2021; 22(7): 816-22.
[http://dx.doi.org/10.2174/18735592MTEwrOTUbx] [PMID: 33109043]
[75]
Diemar SS, Møllehave LT, Quardon N, et al. Effects of age and sex on osteocalcin and bone-specific alkaline phosphatase—reference intervals and confounders for two bone formation markers. Arch Osteoporos 2020; 15(1): 26.
[http://dx.doi.org/10.1007/s11657-020-00715-6] [PMID: 32095898]
[76]
Hassler E, Almer G, Reishofer G, et al. Investigation of the relationship between the mid_thigh adipose tissue distribution measured by MRI and serum osteocalcin—a sex-based approach. Nutrients 2021; 14(1): 112.
[http://dx.doi.org/10.3390/nu14010112] [PMID: 35010988]
[77]
Hiam D, Landen S, Jacques M, et al. Osteocalcin and its forms respond similarly to exercise in males and females. Bone 2021; 144: 115818.
[http://dx.doi.org/10.1016/j.bone.2020.115818] [PMID: 33338665]
[78]
Kord-Varkaneh H, Djafarian K, khorshidi M, Shab-Bidar S. Association between serum osteocalcin and body mass index: A systematic review and meta-analysis. Endocrine 2017; 58(1): 24-32.
[http://dx.doi.org/10.1007/s12020-017-1384-4] [PMID: 28822067]
[79]
Brown JP. Long-term treatment of postmenopausal osteoporosis. Endocrinol Metab 2021; 36(3): 544-52.
[http://dx.doi.org/10.3803/EnM.2021.301] [PMID: 34154042]
[80]
Koo HJ, Sohn EH, Kang SC. Combinatory mixture of Rubus coreanus and Astragalus membranaceus attenuates bone loss through RANK signal pathway in ovariectized mice (1034.9). FASEB J 2014; 28(S1): 1034.9.
[http://dx.doi.org/10.1096/fasebj.28.1_supplement.1034.9]
[81]
Huo J, Sun X. Effect of Astragalus polysaccharides on ovariectomy-induced osteoporosis in mice. Genet Mol Res 2016; 15(4): 1-9.
[http://dx.doi.org/10.4238/gmr15049169] [PMID: 28002602]
[82]
Li M, Wang W, Geng L, et al. Inhibition of RANKL-induced osteoclastogenesis through the suppression of the ERK signaling pathway by astragaloside IV and attenuation of titanium-particle-induced osteolysis. Int J Mol Med 2015; 36(5): 1335-44.
[http://dx.doi.org/10.3892/ijmm.2015.2330] [PMID: 26324422]
[83]
Kimball JS, Johnson JP, Carlson DA. Oxidative stress and osteoporosis. J Bone Joint Surg Am 2021; 103(15): 1451-61.
[http://dx.doi.org/10.2106/JBJS.20.00989] [PMID: 34014853]
[84]
Zhao F, Guo L, Wang X, Zhang Y. Correlation of oxidative stress-related biomarkers with postmenopausal osteoporosis: A systematic review and meta-analysis. Arch Osteoporos 2021; 16(1): 4.
[http://dx.doi.org/10.1007/s11657-020-00854-w] [PMID: 33400044]
[85]
Yang F, Yan G, Li Y, et al. Astragalus polysaccharide attenuated iron overload-induced dysfunction of mesenchymal stem cells via suppressing mitochondrial ROS. Cell Physiol Biochem 2016; 39(4): 1369-79.
[http://dx.doi.org/10.1159/000447841] [PMID: 27607448]
[86]
Pu X, Chai Y, Guan L, et al. Astragalus improve aging bone marrow mesenchymal stem cells (BMSCs) vitality and osteogenesis through VD-FGF23-Klotho axis. Int J Clin Exp Pathol 2020; 13(4): 721-9.
[PMID: 32355520]
[87]
Fang Y, Xue Z, Zhao L, et al. Calycosin stimulates the osteogenic differentiation of rat calvarial osteoblasts by activating the IGF1R/PI3K/Akt signaling pathway. Cell Biol Int 2019; 43(3): 323-32.
[http://dx.doi.org/10.1002/cbin.11102] [PMID: 30632644]
[88]
Shi X, Jie L, Wu P, et al. Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways. J Ethnopharmacol 2022; 297: 115536.
[http://dx.doi.org/10.1016/j.jep.2022.115536] [PMID: 35843413]
[89]
Jian J, Sun L, Cheng X, Hu X, Liang J, Chen Y. Calycosin-7-O-β-d-glucopyranoside stimulates osteoblast differentiation through regulating the BMP/WNT signaling pathways. Acta Pharm Sin B 2015; 5(5): 454-60.
[http://dx.doi.org/10.1016/j.apsb.2015.06.005] [PMID: 26579475]
[90]
Park KR, Park JE, Kim B, Kwon IK, Hong JT, Yun HM. Calycosin-7-O-β-glucoside isolated from astragalus membranaceus promotes osteogenesis and mineralization in human mesenchymal stem cells. Int J Mol Sci 2021; 22(21): 11362.
[http://dx.doi.org/10.3390/ijms222111362] [PMID: 34768792]
[91]
Sun NY, Liu XL, Gao J, Wu XH, Dou B. Astragaloside-IV modulates NGF-induced osteoblast differentiation via the GSK3&β;/ &β;-catenin signalling pathway. Mol Med Rep 2021; 23(1): 108.
[PMID: 33179111]
[92]
Wu XH, Dou B, Sun NY, Gao J, Liu XL. Astragalus saponin IV promotes osteogenic differentiation of bone marrow mesenchymal stem cells via miR-21/NGF/BMP2/Runx2 pathway. Acta Histochem 2020; 122(4): 151549.
[http://dx.doi.org/10.1016/j.acthis.2020.151549] [PMID: 32381364]
[93]
Adhikary S, Choudhary D, Ahmad N, et al. Dietary flavonoid kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival. Nutrition 2018; 53: 64-76.
[http://dx.doi.org/10.1016/j.nut.2017.12.003] [PMID: 29655780]
[94]
Gong AGW, Duan R, Wang HY, Dong TTX, Tsim KWK. Calycosin orchestrates osteogenesis of danggui buxue tang in cultured osteoblasts: Evaluating the mechanism of action by omics and chemical knock-out methodologies. Front Pharmacol 2018; 9: 36.
[http://dx.doi.org/10.3389/fphar.2018.00036] [PMID: 29449812]
[95]
Schilling T, Ebert R, Raaijmakers N, Schütze N, Jakob F. Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration. J Steroid Biochem Mol Biol 2014; 139: 252-61.
[http://dx.doi.org/10.1016/j.jsbmb.2012.12.006] [PMID: 23262262]
[96]
An J, Yang H, Zhang Q, et al. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci 2016; 147: 46-58.
[http://dx.doi.org/10.1016/j.lfs.2016.01.024] [PMID: 26796578]
[97]
Zhou J, Cheng J, Liu L, Luo J, Peng X. Lactobacillus acidophilus (LA) Fermenting Astragalus Polysaccharides (APS) Improves Calcium Absorption and Osteoporosis by Altering Gut Microbiota. Foods 2023; 12(2): 275.
[http://dx.doi.org/10.3390/foods12020275] [PMID: 36673366]
[98]
Xu Q, Li D, Chen J, et al. Crosstalk between the gut microbiota and postmenopausal osteoporosis: Mechanisms and applications. Int Immunopharmacol 2022; 110: 108998.
[http://dx.doi.org/10.1016/j.intimp.2022.108998] [PMID: 35785728]
[99]
Li JY, Chassaing B, Tyagi AM, et al. Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 2016; 126(6): 2049-63.
[http://dx.doi.org/10.1172/JCI86062] [PMID: 27111232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy