Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Research Article

Catechin Protects against Lipopolysaccharide-induced Depressive-like Behaviour in Mice by Regulating Neuronal and Inflammatory Genes

Author(s): Yanfang Su, Ping Qiu, Li Cheng, Lijing Zhang, Wenpeng Peng* and Xianfang Meng*

Volume 24, Issue 4, 2024

Published on: 10 January, 2024

Page: [292 - 306] Pages: 15

DOI: 10.2174/0115665232261045231215054305

Price: $65

Abstract

Background: Many studies have suggested that tea has antidepressant effects; however, the underlying mechanism is not fully studied. As the main anti-inflammatory polyphenol in tea, catechin may contribute to the protective role of tea against depression.

Objective: The objective of this study is to prove that catechin can protect against lipopolysaccharide (LPS)-induced depressive-like behaviours in mice, and then explore the underlying molecular mechanisms.

Methods: Thirty-one C57BL/6J mice were categorized into the normal saline (NS) group, LPS group, catechin group, and amitriptyline group according to their treatments. Elevated Plus Maze (EPM), Tail Suspension Test (TST), and Open Field Test (OFT) were employed to assess depressive- like behaviours in mice. RNA sequencing (RNA-seq) and subsequent Bioinformatics analyses, such as differential gene analysis and functional enrichment, were performed on the four mouse groups.

Results: In TST, the mice in the LPS group exhibited significantly longer immobility time than those in the other three groups, while the immobility times for the other three groups were not significantly different. Similarly in EPM, LPS-treated mice exhibited a significantly lower percentage in the time/path of entering open arms than the mice in the other three groups, while the percentages of the mice in the other three groups were not significantly different. In OFT, LPS-treated mice exhibited significantly lower percentages in the time/path of entering the centre area than those in the other three groups. The results suggested that the LPS-induced depression models were established successfully and catechin can reverse (LPS)-induced depressive-like behaviours in mice. Finally, RNA-seq analyses revealed 57 differential expressed genes (DEGs) between LPS and NS with 19 up-regulated and 38 down-regulated. Among them, 13 genes were overlapped with the DEGs between LPS and cetechin (in opposite directions), with an overlapping p-value < 0.001. The 13 genes included Rnu7, Lcn2, C4b, Saa3, Pglyrp1, Gpx3, Lyz2, S100a8, S100a9, Tmem254b, Gm14288, Hbb-bt, and Tmem254c, which might play key roles in the protection of catechin against LPS-induced depressive-like behaviours in mice. The 13 genes were significantly enriched in defense response and inflammatory response, indicating that catechin might work through counteracting changes in the immune system induced by LPS.

Conclusion: Catechin can protect mice from LPS-induced depressive-like behaviours through affecting inflammatory pathways and neuron-associated gene ontologies.

[1]
Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol 2022; 19(11): 717-26.
[http://dx.doi.org/10.1038/s41575-022-00634-6] [PMID: 35732730]
[2]
Yu H, Chen L, Lei H, et al. Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours. Nat Commun 2022; 13(1): 5462.
[http://dx.doi.org/10.1038/s41467-022-33139-6] [PMID: 36115848]
[3]
Moncrieff J, Cooper RE, Stockmann T, et al. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol Psychiatry 2023; 28(8): 3243-56.
[PMID: 35854107]
[4]
Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci 2019; 20(11): 686-701.
[http://dx.doi.org/10.1038/s41583-019-0221-6] [PMID: 31578460]
[5]
Qi C, Cai Y, Qian K, et al. gutMDisorder v2.0: A comprehensive database for dysbiosis of gut microbiota in phenotypes and interventions. Nucleic Acids Res 2023; 51(D1): D717-22.
[PMID: 36215029]
[6]
Senthilkumar S, Maiya K, Jain NK, et al. Reversal of neuropsychiatric comorbidities in animal model of temporal lobe epilepsy following systemic administration of dental pulp stem cells and bone marrow mesenchymal stem cells. Curr Gene Ther 2023; 23(3): 198-214.
[PMID: 36305152]
[7]
Chan EC, Tie PP, Soh EY, Law Y. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis. Pharmacognosy Res 2011; 3(4): 266-72.
[http://dx.doi.org/10.4103/0974-8490.89748] [PMID: 22224051]
[8]
Park HJ, Lee JY, Chung MY, et al. Green tea extract suppresses NFκB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis. J Nutr 2012; 142(1): 57-63.
[http://dx.doi.org/10.3945/jn.111.148544] [PMID: 22157544]
[9]
Renaud-Charest O, Lui LMW, Eskander S, et al. Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. J Psychiatr Res 2021; 144: 129-37.
[http://dx.doi.org/10.1016/j.jpsychires.2021.09.054] [PMID: 34619491]
[10]
Tomfohr-Madsen LM, Racine N, Giesbrecht GF, Lebel C, Madigan S. Depression and anxiety in pregnancy during COVID-19: A rapid review and meta-analysis. Psychiatry Res 2021; 300: 113912.
[http://dx.doi.org/10.1016/j.psychres.2021.113912] [PMID: 33836471]
[11]
Titze-de-Almeida R, Titze-de-Almeida SS. miR-7 replacement therapy in Parkinson’s disease. Curr Gene Ther 2018; 18(3): 143-53.
[http://dx.doi.org/10.2174/1566523218666180430121323] [PMID: 29714132]
[12]
Cheng L, Han X, Zhu Z, Qi C, Wang P, Zhang X. Functional alterations caused by mutations reflect evolutionary trends of SARS- CoV-2. Brief Bioinform 2021; 22(2): 1442-50.
[http://dx.doi.org/10.1093/bib/bbab042] [PMID: 33580783]
[13]
Chen W, Li X, Xiang L, Lin Y, Tang Q, Meng F. Computational analysis illustrates the mechanism of qingfei paidu decoction in blocking the transition of COVID-19 patients from mild to severe stage. Curr Gene Ther 2022; 22(3): 277-89.
[http://dx.doi.org/10.2174/1566523221666210907162005] [PMID: 34493195]
[14]
Burke MJ, Romanella SM, Mencarelli L, et al. Placebo effects and neuromodulation for depression: A meta-analysis and evaluation of shared mechanisms. Mol Psychiatry 2022; 27(3): 1658-66.
[http://dx.doi.org/10.1038/s41380-021-01397-3] [PMID: 34903861]
[15]
Bangasser DA, Cuarenta A. Sex differences in anxiety and depression: Circuits and mechanisms. Nat Rev Neurosci 2021; 22(11): 674-84.
[http://dx.doi.org/10.1038/s41583-021-00513-0] [PMID: 34545241]
[16]
Fu Z, Zhen W, Yuskavage J, Liu D. Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr 2011; 105(8): 1218-25.
[http://dx.doi.org/10.1017/S0007114510004824] [PMID: 21144096]
[17]
Potenza MA, Marasciulo FL, Tarquinio M, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 2007; 292(5): E1378-87.
[http://dx.doi.org/10.1152/ajpendo.00698.2006] [PMID: 17227956]
[18]
Mereles D, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int J Mol Sci 2011; 12(9): 5592-603.
[http://dx.doi.org/10.3390/ijms12095592] [PMID: 22016611]
[19]
Chu AL, Hickman M, Steel N, Jones PB, Smith G, Khandaker GM. Inflammation and depression: A public health perspective. Brain Behav Immun 2021; 95: 1-3.
[http://dx.doi.org/10.1016/j.bbi.2021.04.015] [PMID: 33882327]
[20]
Cheng L, Qi C, Yang H, et al. gutMGene: A comprehensive database for target genes of gut microbes and microbial metabolites. Nucleic Acids Res 2022; 50(D1): D795-800.
[http://dx.doi.org/10.1093/nar/gkab786] [PMID: 34500458]
[21]
Wu X, Huang Y, Liu S, et al. AAV9-coGLB1 improves lysosomal storage and rescues central nervous system inflammation in a mutant mouse model of gm1 gangliosidosis. Curr Gene Ther 2022; 22(4): 352-65.
[http://dx.doi.org/10.2174/1566523222666220304092732] [PMID: 35249485]
[22]
Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 2006; 67(1): 27-37.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00318.x] [PMID: 16492146]
[23]
Stevenson DE, Hurst RD. Polyphenolic phytochemicals – just antioxidants or much more? Cell Mol Life Sci 2007; 64(22): 2900-16.
[http://dx.doi.org/10.1007/s00018-007-7237-1] [PMID: 17726576]
[24]
Behl T, Rana T, Alotaibi GH, et al. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed Pharmacother 2022; 146: 112545.
[http://dx.doi.org/10.1016/j.biopha.2021.112545] [PMID: 34922112]
[25]
Rietveld A, Wiseman S. Antioxidant effects of tea: Evidence from human clinical trials. J Nutr 2003; 133(10): 3285S-92S.
[http://dx.doi.org/10.1093/jn/133.10.3285S] [PMID: 14519827]
[26]
Zhang B, Wang B, Cao S, Wang Y. Epigallocatechin-3-Gallate (EGCG) attenuates traumatic brain injury by inhibition of edema formation and oxidative stress. Korean J Physiol Pharmacol 2015; 19(6): 491-7.
[http://dx.doi.org/10.4196/kjpp.2015.19.6.491] [PMID: 26557015]
[27]
Allen J, Caruncho HJ, Kalynchuk LE. Severe life stress, mitochondrial dysfunction, and depressive behavior: A pathophysiological and therapeutic perspective. Mitochondrion 2021; 56: 111-7.
[http://dx.doi.org/10.1016/j.mito.2020.11.010] [PMID: 33220501]
[28]
Ahmed NA, Radwan NM, Aboul Ezz HS, Salama NA. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats. Electromagn Biol Med 2017; 36(1): 63-73.
[PMID: 27400086]
[29]
Bromet E, Andrade LH, Hwang I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 2011; 9(1): 90.
[http://dx.doi.org/10.1186/1741-7015-9-90] [PMID: 21791035]
[30]
Furukawa TA, Suganuma A, Ostinelli EG, et al. Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: A systematic review and component network meta-analysis using individual participant data. Lancet Psychiatry 2021; 8(6): 500-11.
[http://dx.doi.org/10.1016/S2215-0366(21)00077-8] [PMID: 33957075]
[31]
Furukawa TA, Karyotaki E, Suganuma A, et al. Dismantling, personalising and optimising internet cognitive–behavioural therapy for depression: A study protocol for individual participant data component network meta-analysis. BMJ Open 2018; 8(11): e026137.
[http://dx.doi.org/10.1136/bmjopen-2018-026137] [PMID: 30798295]
[32]
Lundstrom K. Gene therapy cargos based on viral vector delivery. Curr Gene Ther 2023; 23(2): 111-34.
[33]
Vázquez GH, Bahji A, Undurraga J, Tondo L, Baldessarini RJ. Efficacy and tolerability of combination treatments for major depression: Antidepressants plus second-generation antipsychotics vs. esketamine vs. lithium. J Psychopharmacol 2021; 35(8): 890-900.
[http://dx.doi.org/10.1177/02698811211013579] [PMID: 34238049]
[34]
Henssler J, Alexander D, Schwarzer G, Bschor T, Baethge C. Combining antidepressants vs antidepressant monotherapy for treatment of patients with acute depression. JAMA Psychiatry 2022; 79(4): 300-12.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.4313] [PMID: 35171215]
[35]
Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1. Carcinogenesis 2011; 32(12): 1881-9.
[http://dx.doi.org/10.1093/carcin/bgr218] [PMID: 21965273]
[36]
Read J, Williams J. Adverse effects of antidepressants reported by a large international cohort: Emotional blunting, suicidality, and withdrawal effects. Curr Drug Saf 2018; 13(3): 176-86.
[http://dx.doi.org/10.2174/1574886313666180605095130] [PMID: 29866014]
[37]
Edinoff AN, Akuly HA, Hanna TA, et al. Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol Int 2021; 13(3): 387-401.
[http://dx.doi.org/10.3390/neurolint13030038] [PMID: 34449705]
[38]
Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G. Antioxidants as antidepressants. CNS Drugs 2012; 26(6): 477-90.
[http://dx.doi.org/10.2165/11633190-000000000-00000] [PMID: 22668245]
[39]
Ferrari AJ, Charlson FJ, Norman RE, et al. Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Med 2013; 10(11): e1001547.
[http://dx.doi.org/10.1371/journal.pmed.1001547] [PMID: 24223526]
[40]
Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386(9995): 743-800.
[http://dx.doi.org/10.1016/S0140-6736(15)60692-4] [PMID: 26063472]
[41]
Choi DK, Koppula S, Suk K. Inhibitors of microglial neurotoxicity: Focus on natural products. Molecules 2011; 16(2): 1021-43.
[http://dx.doi.org/10.3390/molecules16021021] [PMID: 21350391]
[42]
Khalatbary AR, Khademi E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci 2020; 23(4): 281-94.
[http://dx.doi.org/10.1080/1028415X.2018.1500124] [PMID: 30043683]
[43]
Li T, Li F, Liu X, Liu J, Li D. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4–MyD88-mediated NF-κB and MAPK signaling pathways. Phytother Res 2019; 33(3): 756-67.
[http://dx.doi.org/10.1002/ptr.6268] [PMID: 30637814]
[44]
Özduran G, Becer E, Vatansever HS, Yücecan S. Neuroprotective effects of catechins in an experimental Parkinson’s disease model and SK-N-AS cells: Evaluation of cell viability, anti-inflammatory and anti-apoptotic effects. Neurol Res 2022; 44(6): 511-23.
[http://dx.doi.org/10.1080/01616412.2021.2024715] [PMID: 35000557]
[45]
Carrera I, Cacabelos R. Current drugs and potential future neuroprotective compounds for parkinson’s disease. Curr Neuropharmacol 2019; 17(3): 295-306.
[http://dx.doi.org/10.2174/1570159X17666181127125704] [PMID: 30479218]
[46]
Manikandan R, Beulaja M, Arulvasu C, et al. Synergistic anticancer activity of curcumin and catechin: An in vitro study using human cancer cell lines. Microsc Res Tech 2012; 75(2): 112-6.
[http://dx.doi.org/10.1002/jemt.21032] [PMID: 21780253]
[47]
Kuban-Jankowska A, Kostrzewa T, Musial C, et al. Green tea catechins induce inhibition of ptp1b phosphatase in breast cancer cells with potent anti-cancer properties: In vitro assay, molecular docking, and dynamics studies. Antioxidants 2020; 9(12): 1208.
[http://dx.doi.org/10.3390/antiox9121208] [PMID: 33266280]
[48]
Ohgitani E, Shin-Ya M, Ichitani M, et al. Significant inactivation of SARS-CoV-2 in vitro by a green tea catechin, a catechin-derivative, and black tea galloylated theaflavins. Molecules 2021; 26(12): 3572.
[http://dx.doi.org/10.3390/molecules26123572] [PMID: 34208050]
[49]
You HL, Huang CC, Chen CJ, Chang CC, Liao PL, Huang ST. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid. J Chin Med Assoc 2018; 81(5): 458-68.
[http://dx.doi.org/10.1016/j.jcma.2017.11.007] [PMID: 29287704]
[50]
Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: A review of animal studies. Psychopharmacology 2011; 213(2-3): 265-87.
[http://dx.doi.org/10.1007/s00213-010-2097-z] [PMID: 21107537]
[51]
Owens MJ. Selectivity of antidepressants: From the monoamine hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry 2004; 65(4): 5-10.
[PMID: 15046536]
[52]
Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J. Neurobiology of depression: An integrated view of key findings. Int J Clin Pract 2007; 61(12): 2030-40.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01602.x] [PMID: 17944926]
[53]
Matthes S, Mosienko V, Bashammakh S, Alenina N, Bader M. Tryptophan hydroxylase as novel target for the treatment of depressive disorders. Pharmacology 2010; 85(2): 95-109.
[http://dx.doi.org/10.1159/000279322] [PMID: 20130443]
[54]
Motivala SJ, Sarfatti A, Olmos L, Irwin MR. Inflammatory markers and sleep disturbance in major depression. Psychosom Med 2005; 67(2): 187-94.
[http://dx.doi.org/10.1097/01.psy.0000149259.72488.09] [PMID: 15784782]
[55]
Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 2010; 7(4): 231-5.
[http://dx.doi.org/10.4306/pi.2010.7.4.231] [PMID: 21253405]
[56]
Eyre H, Baune BT. Neuroplastic changes in depression: A role for the immune system. Psychoneuroendocrinology 2012; 37(9): 1397-416.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.019] [PMID: 22525700]
[57]
Anacker C, Zunszain PA, Cattaneo A, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 2011; 16(7): 738-50.
[http://dx.doi.org/10.1038/mp.2011.26] [PMID: 21483429]
[58]
Gardner A, Boles RG. Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 730-43.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.030] [PMID: 20691744]
[59]
Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis/chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuroendocrinol Lett 2011; 32(2): 133-40.
[PMID: 21552194]
[60]
Liu L, Dong Y, Shan X, Li L, Xia B, Wang H. Anti-depressive effectiveness of baicalin in vitro and in vivo. Molecules 2019; 24(2): 326.
[http://dx.doi.org/10.3390/molecules24020326] [PMID: 30658416]
[61]
Peng G, Yang L, Wu CY, et al. Whole body vibration training improves depression-like behaviors in a rat chronic restraint stress model. Neurochem Int 2021; 142: 104926.
[http://dx.doi.org/10.1016/j.neuint.2020.104926] [PMID: 33276022]
[62]
Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 2019; 1916: 99-103.
[http://dx.doi.org/10.1007/978-1-4939-8994-2_9] [PMID: 30535687]
[63]
Yeoh BS, Olvera R, Singh V, et al. Epigallocatechin-3- Gallate inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation. Am J Pathol 2016; 186(4): 912-26.
[http://dx.doi.org/10.1016/j.ajpath.2015.12.004] [PMID: 26968114]
[64]
Ferreira N, Cardoso I, Domingues MR, et al. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 2009; 583(22): 3569-76.
[http://dx.doi.org/10.1016/j.febslet.2009.10.062] [PMID: 19861125]
[65]
Uggenti C, Lepelley A, Depp M, et al. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat Genet 2020; 52(12): 1364-72.
[http://dx.doi.org/10.1038/s41588-020-00737-3] [PMID: 33230297]
[66]
Xing C, Wang X, Cheng C, et al. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 2014; 45(7): 2085-92.
[http://dx.doi.org/10.1161/STROKEAHA.114.005733] [PMID: 24916903]
[67]
Liu J, Wang D, Li SQ, Yu Y, Ye RD. Suppression of LPS-induced tau hyperphosphorylation by serum amyloid A. J Neuroinflammation 2016; 13(1): 28.
[http://dx.doi.org/10.1186/s12974-016-0493-y] [PMID: 26838764]
[68]
Ha JS, Choi HR, Kim IS, Kim EA, Cho SW, Yang SJ. Hypoxia-Induced S100A8 expression activates microglial inflammation and promotes neuronal apoptosis. Int J Mol Sci 2021; 22(3): 1205.
[http://dx.doi.org/10.3390/ijms22031205] [PMID: 33530496]
[69]
Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF. Neurons express hemoglobin α- and β-chains in rat and human brains. J Comp Neurol 2009; 515(5): 538-47.
[http://dx.doi.org/10.1002/cne.22062] [PMID: 19479992]
[70]
DeVilliers P, Liu H, Suggs C, et al. Calretinin expression in the differential diagnosis of human ameloblastoma and keratocystic odontogenic tumor. Am J Surg Pathol 2008; 32(2): 256-60.
[http://dx.doi.org/10.1097/PAS.0b013e3181452176] [PMID: 18223328]
[71]
Crouse JJ, Carpenter JS, Song YJC, et al. Circadian rhythm sleep–wake disturbances and depression in young people: Implications for prevention and early intervention. Lancet Psychiatry 2021; 8(9): 813-23.
[http://dx.doi.org/10.1016/S2215-0366(21)00034-1] [PMID: 34419186]
[72]
Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol 2008; 23(7): 571-85.
[http://dx.doi.org/10.1002/hup.964] [PMID: 18680211]
[73]
Jadhakhan F, Lindner OC, Blakemore A, Guthrie E. Prevalence of common mental health disorders in adults who are high or costly users of healthcare services: Protocol for a systematic review and meta-analysis. BMJ Open 2019; 9(9): e028295.
[http://dx.doi.org/10.1136/bmjopen-2018-028295] [PMID: 31488474]
[74]
McAllister-Williams RH, Arango C, Blier P, et al. The identification, assessment and management of difficult-to-treat depression: An international consensus statement. J Affect Disord 2020; 267: 264-82.
[http://dx.doi.org/10.1016/j.jad.2020.02.023] [PMID: 32217227]
[75]
Taniguti EH, Ferreira YS, Stupp IJV, et al. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res Bull 2019; 146: 279-86.
[http://dx.doi.org/10.1016/j.brainresbull.2019.01.018] [PMID: 30690060]
[76]
Samarghandian S, Farkhondeh T, Pourbagher-Shahri AM, et al. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen Res 2020; 15(10): 1792-8.
[http://dx.doi.org/10.4103/1673-5374.280300] [PMID: 32246619]
[77]
Sebastiani G, Almeida-Toledano L, Serra-Delgado M, et al. Therapeutic effects of catechins in less common neurological and neurodegenerative disorders. Nutrients 2021; 13(7): 2232.
[http://dx.doi.org/10.3390/nu13072232] [PMID: 34209677]
[78]
Zhan H, Zhang Z, Xin YM, Li T, Wei SH. Changes of cardiac catecholamines in rats after repeated +Gz exposures and protective effects of low-G preconditioning and tea polyphenols. Space Med Med Eng 2003; 16(4): 239-42.
[PMID: 14594027]
[79]
Liu Y, Jia G, Gou L, et al. Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 2013; 104: 27-32.
[http://dx.doi.org/10.1016/j.pbb.2012.12.024] [PMID: 23290936]
[80]
Zhu WL, Shi HS, Wei YM, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65(1): 74-80.
[http://dx.doi.org/10.1016/j.phrs.2011.09.007] [PMID: 21964320]
[81]
Baranwal A, Aggarwal P, Rai A, Kumar N. Pharmacological actions and underlying mechanisms of catechin: A review. Mini Rev Med Chem 2022; 22(5): 821-33.
[http://dx.doi.org/10.2174/1389557521666210902162120] [PMID: 34477517]
[82]
Ahmed S, Rahman A, Hasnain A, Lalonde M, Goldberg VM, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic Biol Med 2002; 33(8): 1097-105.
[http://dx.doi.org/10.1016/S0891-5849(02)01004-3] [PMID: 12374621]
[83]
Gorham LS, Jernigan T, Hudziak J, Barch DM. Involvement in sports, hippocampal volume, and depressive symptoms in children. Biol Psychiatry Cogn Neurosci Neuroimaging 2019; 4(5): 484-92.
[http://dx.doi.org/10.1016/j.bpsc.2019.01.011] [PMID: 30905689]
[84]
Singal A, Tirkey N, Chopra K. Reversal of LPS-induced immobility in mice by green tea polyphenols: possible COX-2 mechanism. Phytother Res 2004; 18(9): 723-8.
[http://dx.doi.org/10.1002/ptr.1520] [PMID: 15478205]
[85]
Deng Q, Xu J, Yu B, et al. Effect of dietary tea polyphenols on growth performance and cell-mediated immune response of post-weaning piglets under oxidative stress. Arch Anim Nutr 2010; 64(1): 12-21.
[http://dx.doi.org/10.1080/17450390903169138] [PMID: 20496858]
[86]
Onyango IG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 2008; 33(3): 589-97.
[http://dx.doi.org/10.1007/s11064-007-9482-y] [PMID: 17940895]
[87]
Al-Naqeb G, Rousová J, Kubátová A, Picklo MJ Sr. Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes. Chem Biol Interact 2016; 253: 48-59.
[http://dx.doi.org/10.1016/j.cbi.2016.05.013] [PMID: 27163856]
[88]
Luo M, Huang P, Pan Y, et al. Weighted gene coexpression network and experimental analyses identify lncRNA SPRR2C as a regulator of the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. Cell Death Dis 2021; 12(1): 86.
[http://dx.doi.org/10.1038/s41419-020-03305-z] [PMID: 33452236]
[89]
Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm Res 2018; 67(10): 801-12.
[http://dx.doi.org/10.1007/s00011-018-1173-4] [PMID: 30083975]
[90]
Gebhardt C, Németh J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006; 72(11): 1622-31.
[http://dx.doi.org/10.1016/j.bcp.2006.05.017] [PMID: 16846592]
[91]
den Hartigh LJ, Wang S, Goodspeed L, et al. Deletion of serum amyloid A3 improves high fat high sucrose diet-induced adipose tissue inflammation and hyperlipidemia in female mice. PLoS One 2014; 9(9): e108564.
[http://dx.doi.org/10.1371/journal.pone.0108564] [PMID: 25251243]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy