Abstract
Colloidal quantum well light-emitting diodes (CQW-LEDs) show great potential for applications in displays and lighting due to their advantages, such as high color purity, spectral tunability and compatibility with flexible electronics. So far, attention has been mainly devoted to pursuing device efficiencies rather than achieving device stability, leading to the fact that the lifetime of CQW-LEDs is far from the demand for practical applications. In this perspective, various approaches to enhance the stability of CQW-LEDs have been discussed, including the synthesis of stable CQW materials, the selection of stable transport layers, the improvement of charge balance, and the introduction of advanced encapsulation techniques.