[1]
Ali, I.; Alsehli, M.; Scotti, L.; Scotti, M. T.; Tsai, S.-T.; Yu, R.-S.; Hsieh, M. F.; Chen, J.-C. Progress in Polymeric Nano-Medicines for Theranostic Cancer Treatment. Polymers, 2020, 12(3)
[http://dx.doi.org/10.3390/polym12030598]
[http://dx.doi.org/10.3390/polym12030598]
[2]
Aquino de Araujo, R. S.; da Silva-Junior, E. F.; de Aquino, T. M.; Scotti, M. T.; Ishiki, H. M.; Scotti, L.; Bezerra Mendonca-Junior, F. J. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr. Top. Med. Chem., 2020, 20(19), 1677-1703.
[http://dx.doi.org/10.2174/1568026620666200607191838]
[http://dx.doi.org/10.2174/1568026620666200607191838]
[3]
Cavalcanti, E. B. V. S.; Felix, M. B.; Scotti, L.; Scotti, M. T. Virtual Screening of Natural Products to Select Compounds with Potential Anticancer Activity. Anti-Cancer Agents Med. Chem., 2019, 19(2), 154-171.
[http://dx.doi.org/10.2174/1871520618666181119110934]
[http://dx.doi.org/10.2174/1871520618666181119110934]
[4]
Cebrian-Torrejon, G.; Domenech-Carbo, A.; Scotti, M. T.; Fournet, A.; Figadere, B.; Poupon, E. Experimental and theoretical study of possible correlation between the electrochemistry of canthin-6-one and the anti-proliferative activity against human cancer stem cells. J. Mol. Struct., 2015, 1102, 242-246.
[http://dx.doi.org/10.1016/j.molstruc.2015.08.042]
[http://dx.doi.org/10.1016/j.molstruc.2015.08.042]
[5]
da Silva, L. A. L.; Sandjo, L. P.; Assuncao, L. S.; Prigol, A. N.; de Siqueira, C. D.; Creczynski-Pasa, T. B.; Scotti, M. T.; Scotti, L.; Filippin-Monteiro, F. B.; Biavatti, M. W. Semisynthetic Sesquiterpene Lactones Generated by the Sensibility of Glaucolide B to Lewis and Bronsted-Lowry Acids and Bases: Cytotoxicity and Anti-Inflammatory Activities. Molecules, 2023, 28(3)
[http://dx.doi.org/10.3390/molecules28031243]
[http://dx.doi.org/10.3390/molecules28031243]
[6]
de Lira, M. A. d. C.; da Silva, M. M.; Rocha, T. A.; de Moura, D. F.; Costa, E. C. S.; Maia, M. d. S.; Scotti, L.; Scotti, M. T.; Buril, M. d. L. L.; Pereira, E. C.; et al. Assessment of Cytotoxic/Antitumour Potential and in silico Study of Salazinic Acid Isolated from Parmotrema concurrens. Anti-Cancer. Agents Med. Chem., 2023, 23(12), 1469-1481.
[http://dx.doi.org/10.2174/1871520623666230407105219]
[http://dx.doi.org/10.2174/1871520623666230407105219]
[7]
De, B.; Bhandari, K.; Mendonca, F. J. B., Jr.; Scotti, M. T.; Scotti, L. Computational Studies in Drug Design Against Cancer. Anti-Cancer. Agents Med. Chem., 2019, 19(5), 587-591.
[http://dx.doi.org/10.2174/1871520618666180911125700]
[http://dx.doi.org/10.2174/1871520618666180911125700]
[8]
Fayyazi, N.; Esmaeili, S.; Taheri, S.; Ribeiro, F. F.; Scotti, M. T.; Scotti, L.; Ghasemi, J. B.; Saghaei, L.; Fassihi, A. Pharmacophore Modeling, Synthesis, Scaffold Hopping and Biological beta-Hematin Inhibition Interaction Studies for Anti-malaria Compounds. Curr. Top. Med. Chem., 2019, 19(30), 2743-2765.
[http://dx.doi.org/10.2174/1568026619666191116160326]
[http://dx.doi.org/10.2174/1568026619666191116160326]
[9]
Ferreira de Queiroz, E. F.; de Sousa Luis, J. A.; Dantas, D. d. S.; Pereira Arruda, L. C.; Bento da Silva, E. C.; de Sousa Silva, J. M.; da Silva Souza, H. D.; Costa Barros, R. P.; de Mascena Costa, L. A.; de Athayde Filho, P. F.; et al. Virtual screening and assessment of anticancer potential of selenium-based compounds against HL-60 and MCF7 cells. Future Med. Chem., 2020, 12(24)
[http://dx.doi.org/10.4155/fmc-2020-0110]
[http://dx.doi.org/10.4155/fmc-2020-0110]
[10]
Gandhi, G. R.; Sharanya, C. S.; Jayanandan, A.; Haridas, M.; Hillary, V. E.; Gandhi, S. R.; Sridharan, G.; Sivasubramanian, R.; Vasconcelos, A. B. S.; Montalvao, M. M.; et al. Multitargeted molecular docking and dynamics simulation studies of flavonoids and volatile components from the peel of Citrus sinensis L. (Osbeck) against specific tumor protein markers. J. Biomolecul. Struc. Dyn., 2023. Article; Early Access.
[http://dx.doi.org/10.1080/07391102.2023.2212062]
[http://dx.doi.org/10.1080/07391102.2023.2212062]