Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

HPLC Analysis of Vitamins C, E, Beta-carotene, and Some Flavonoids in Armenian Red Wines

Author(s): Ani A. Grigoryan, Ani A. Hayrapetyan, Zhermen A. Azaryan, Siranush V. Harutyunyan and Aleksandr P. Yengoyan*

Volume 20, Issue 2, 2024

Published on: 09 January, 2024

Page: [109 - 114] Pages: 6

DOI: 10.2174/0115734110277255240102094823

Price: $65

Abstract

Background: Oxidative damage to biological molecules is mainly caused by free radicals produced in the body. Natural antioxidants can prevent the resulting oxidative stress. For this purpose, particularly grapes and grape products, which contain vitamins and polyphenolic substances with high antioxidant activity, are used.

Methods: In the present study, the content of vitamins C and E, beta-carotene, and some flavonoids (+)-catechin, quercetin, and trans-resveratrol) in the composition of 19 brands of red wines that are produced in Armenia, was determined by HPLC. Vitamins C, E, beta-carotene, as well as flavonoids manufactured by Sigma-Aldrich were used as standards.

Results: The amounts of vitamin E and beta-carotene were below the sensitivity threshold of the method, and the content of vitamins C and flavonoids varied over a wide range (vitamins C 2.15- 56.1, (+)-catechin 0-620.3; quercetin 0-10.55; trans-resveratrol 0-5.89 mg/L).

Conclusion: The chromatographic analysis of vitamins and flavonoids allowed us to investigate not only the content of useful substances that make up red wines but also to identify counterfeit products. In this study, wines presented directly to retailers were analyzed since the task was both to determine vitamins and flavonoids and to identify counterfeits. The results of our study showed that among all the selected wine brands, there were no samples that, in terms of their properties, would not meet the required parameters.

Next »
Graphical Abstract

[1]
Halliwell, B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic. Res., 1999, 31(4), 261-272.
[http://dx.doi.org/10.1080/10715769900300841] [PMID: 10517532]
[2]
Tsang, C.; Higgins, S.; Duthie, G.G.; Duthie, S.J.; Howie, M.; Mullen, W.; Lean, M.E.J.; Crozier, A. The influence of moderate red wine consumption on antioxidant status and indices of oxidative stress associated with CHD in healthy volunteers. Br. J. Nutr., 2005, 93(2), 233-240.
[http://dx.doi.org/10.1079/BJN20041311] [PMID: 15788107]
[3]
Beatty, E.R.; O’Reilly, J.D.; England, T.G.; McAnlis, G.T.; Young, I.S.; Halliwell, B.; Geissler, C.A.; Sanders, T.A.B.; Wiseman, H. Effect of dietary quercetin on oxidative DNA damage in healthy human subjects. Br. J. Nutr., 2000, 84(6), 919-925.
[http://dx.doi.org/10.1017/S0007114500002555] [PMID: 11177210]
[4]
Ravanat, J.L.; Di Mascio, P.; Martinez, G.R.; Medeiros, M.H.G.; Cadet, J. Singlet oxygen induces oxidation of cellular DNA. J. Biol. Chem., 2000, 275(51), 40601-40604.
[http://dx.doi.org/10.1074/jbc.M006681200] [PMID: 11007783]
[5]
Berry, E.M.; Arnoni, Y.; Aviram, M. The Middle Eastern and biblical origins of the mediterranean diet. Public Health Nutr., 2011, 14(12A), 2288-2295.
[http://dx.doi.org/10.1017/S1368980011002539] [PMID: 22166186]
[6]
Constant, J. Alcohol, ischemic heart disease, and the french paradox. Clin. Cardiol., 1997, 20(5), 420-424.
[http://dx.doi.org/10.1002/clc.4960200504] [PMID: 9134271]
[7]
Perez-Campo, R.; López-Torres, M.; Cadenas, S.; Rojas, C.; Barja, G. The rate of free radical production as a determinant of the rate of aging: Evidence from the comparative approach. J. Comp. Physiol. B, 1998, 168(3), 149-158.
[http://dx.doi.org/10.1007/s003600050131] [PMID: 9591361]
[8]
Hodgson, J.M. Red wine flavonoids and vascular health. Nutr. Aging , 2014, 2(2,3), 139-144.
[http://dx.doi.org/10.3233/NUA-130026]
[9]
Frombaum, M.; Le Clanche, S.; Bonnefont-Rousselot, D.; Borderie, D. Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and NO bioavailability: Potential benefits to cardiovascular diseases. Biochimie, 2012, 94(2), 269-276.
[http://dx.doi.org/10.1016/j.biochi.2011.11.001] [PMID: 22133615]
[10]
Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules, 2019, 24(19), 3626-3646.
[http://dx.doi.org/10.3390/molecules24193626] [PMID: 31597344]
[11]
Cooper, K.A.; Chopra, M.; Thurnham, D.I. Wine polyphenols and promotion of cardiac health. Nutr. Res. Rev., 2004, 17(1), 111-130.
[http://dx.doi.org/10.1079/NRR200482] [PMID: 19079920]
[12]
Andriantsitohaina, R.; Auger, C.; Chataigneau, T.; Étienne-Selloum, N.; Li, H.; Martínez, M.C.; Schini-Kerth, V.B.; Laher, I. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br. J. Nutr., 2012, 108(9), 1532-1549.
[http://dx.doi.org/10.1017/S0007114512003406] [PMID: 22935143]
[13]
Pérez-Jiménez, J.; Saura-Calixto, F. Grape products and cardiovascular disease risk factors. Nutr. Res. Rev., 2008, 21(2), 158-173.
[http://dx.doi.org/10.1017/S0954422408125124] [PMID: 19087369]
[14]
Markoski, M.M.; Garavaglia, J.; Oliveira, A.; Olivaes, J.; Marcadenti, A. Molecular properties of red wine compounds and cardiometabolic benefits. Nutr. Metab. Insights, 2016, 9, S32909.
[http://dx.doi.org/10.4137/NMI.S32909] [PMID: 27512338]
[15]
Champ, C.E.; Kundu-Champ, A. Maximizing polyphenol content to uncork the relationship between wine and cancer. Front. Nutr., 2019, 6, 44.
[http://dx.doi.org/10.3389/fnut.2019.00044] [PMID: 31114789]
[16]
Bondonno, N.P.; Dalgaard, F.; Kyrø, C.; Murray, K.; Bondonno, C.P.; Lewis, J.R.; Croft, K.D.; Gislason, G.; Scalbert, A.; Cassidy, A.; Tjønneland, A.; Overvad, K.; Hodgson, J.M. Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort. Nat. Commun., 2019, 10(1), 3651.
[http://dx.doi.org/10.1038/s41467-019-11622-x] [PMID: 31409784]
[17]
Martel, F.; Monteiro, R.; Calhau, C. Effect of polyphenols on the intestinal and placental transport of some bioactive compounds. Nutr. Res. Rev., 2010, 23(1), 47-64.
[http://dx.doi.org/10.1017/S0954422410000053] [PMID: 20392307]
[18]
Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 2010, 69(3), 273-278.
[http://dx.doi.org/10.1017/S002966511000162X] [PMID: 20569521]
[19]
Miyagi, Y.; Miwa, K.; Inoue, H. Inhibition of human low-density lipoprotein oxidation by flavonoids in red wine and grape juice. Am. J. Cardiol., 1997, 80(12), 1627-1631.
[http://dx.doi.org/10.1016/S0002-9149(97)00755-8] [PMID: 9416955]
[20]
Day, A.P.; Kemp, H.J.; Bolton, C.; Hartog, M.; Stansbie, D. Effect of concentrated red grape juice consumption on serum antioxidant capacity and low-density lipoprotein oxidation. Ann. Nutr. Metab., 1997, 41(6), 353-357.
[http://dx.doi.org/10.1159/000178006] [PMID: 9491190]
[21]
Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; de Freitas, V. Wine flavonoids in health and disease prevention. Molecules, 2017, 22(2), 292-222.
[http://dx.doi.org/10.3390/molecules22020292] [PMID: 28216567]
[22]
Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical composition and polyphenolic compounds of red wines: their antioxidant activities and effects on human health - A review. Beverages, 2021, 8(1), 1-18.
[http://dx.doi.org/10.3390/beverages8010001]
[23]
Osorio-Macías, D.; Vásquez, P.; Carrasco, C.; Bergenstahl, B.; Peñarrieta, M. Resveratrol, phenolic antioxidants, and saccharides in South American red wines. Int. J. Wine Res., 2018, 10, 1-11.
[http://dx.doi.org/10.2147/IJWR.S152026]
[24]
Cassino, C.; Gianotti, V.; Bonello, F.; Tsolakis, C.; Cravero, M.C.; Osella, D. Antioxidant composition of a selection of Italian red wines and their corresponding free-radical scavenging ability. J. Chem., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/4565391]
[25]
Butkhup, L.; Chowtivannakul, S.; Gaensakoo, R.; Prathepha, P.; Samappito, S. Study of the phenolic composition of Shiraz red grape cultivar (Vitis vinifera L.) cultivated in North-Eastern Thailand and its antioxidant and antimicrobial activity. S. Afr. J. Enol. Vitic., 2010, 31(2), 89-98.
[26]
Katalinić, V.; Milos, M.; Modun, D.; Musić, I.; Boban, M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem., 2004, 86(4), 593-600.
[http://dx.doi.org/10.1016/j.foodchem.2003.10.007]
[27]
López-Vélez, M.; Martínez-Martínez, F.; Valle-Ribes, C.D. The study of phenolic compounds as natural antioxidants in wine. Crit. Rev. Food Sci. Nutr., 2003, 43(3), 233-244.
[http://dx.doi.org/10.1080/727072831] [PMID: 12822671]
[28]
Dutra, S.V.; Adami, L.; Marcon, A.R.; Carnieli, G.J.; Roani, C.A.; Spinelli, F.R.; Leonardelli, S.; Vanderlinde, R. Characterization of wines according the geographical origin by analysis of isotopes and minerals and the influence of harvest on the isotope values. Food Chem., 2013, 141(3), 2148-2153.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.106] [PMID: 23870940]
[29]
Serapinas, P.; Venskutonis, P.R.; Aninkevičius, V.; Ežerinskis, Ž.; Galdikas, A.; Juzikienė, V. Step by step approach to multi-element data analysis in testing the provenance of wines. Food Chem., 2008, 107(4), 1652-1660.
[http://dx.doi.org/10.1016/j.foodchem.2007.09.003]
[30]
Padilha, C.V.S.; Miskinis, G.A.; de Souza, M.E.A.O.; Pereira, G.E.; de Oliveira, D.; Bordignon-Luiz, M.T.; Lima, M.S. Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chem., 2017, 228, 106-115.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.137] [PMID: 28317702]
[31]
Fang, F.; Li, J.M.; Pan, Q.H.; Huang, W.D. Determination of red wine flavonoids by HPLC and effect of aging. Food Chem., 2007, 101(1), 428-433.
[http://dx.doi.org/10.1016/j.foodchem.2005.12.036]
[32]
Mattivi, F. Solid phase extraction oftrans-resveratrol from wines for HPLC analysis. Z. Lebensm. Unters. Forsch., 1993, 196(6), 522-525.
[http://dx.doi.org/10.1007/BF01201331] [PMID: 8328217]
[33]
Baldi, A.; Romani, A.; Mulinacci, N.; Vincieri, F.F.; Casetta, B. HPLC/MS application to anthocyanins of vitis vinifera L. J. Agric. Food Chem., 1995, 43(8), 2104-2109.
[http://dx.doi.org/10.1021/jf00056a027]
[34]
Brescia, M.A.; Caldarola, V.; De Giglio, A.; Benedetti, D.; Fanizzi, F.P.; Sacco, A. Characterization of the geographical origin of Italian red wines based on traditional and nuclear magnetic resonance spectrometric determinations. Anal. Chim. Acta, 2002, 458(1), 177-186.
[http://dx.doi.org/10.1016/S0003-2670(01)01532-X]
[35]
Bréas, O.; Reniero, F.; Serrini, G.; Martin, G.J.; Rossmann, A. Isotope ratio mass spectrometry: Analysis of wines from different european countries. Rapid Commun. Mass Spectrom., 1994, 8(12), 967-970.
[http://dx.doi.org/10.1002/rcm.1290081212]
[36]
Calderone, G.; Guillou, C.; Reniero, F.; Naulet, N. Helping to authenticate sparkling drinks with 13C/12C of CO2 by gas chromatography-isotope ratio mass spectrometry. Food Res. Int., 2007, 40(3), 324-331.
[http://dx.doi.org/10.1016/j.foodres.2006.10.001]
[37]
Zyakun, A.M.; Oganesyants, L.A.; Panasyuk, A.L.; Kuz’mina, E.I.; Shilkin, A.A.; Baskunov, B.P.; Zakharchenko, V.N.; Peshenko, V.P. Mass spectrometric analysis of the 13C/12C abundance ratios in vine plants and wines depending on regional climate factors (Krasnodar krai and Rostov oblast, Russia). J. Anal. Chem., 2013, 68(13), 1136-1141.
[http://dx.doi.org/10.1134/S106193481313011X]
[38]
Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A Review. Molecules, 2021, 26(3), 718-772.
[http://dx.doi.org/10.3390/molecules26030718] [PMID: 33573150]
[39]
Faustino, R.S.; Sobrattee, S.; Edel, A.L.; Pierce, G.N. Comparative analysis of the phenolic content of selected chilean, canadian and american merlot red wines. Mol. Cell. Biochem., 2003, 249(1/2), 11-19.
[http://dx.doi.org/10.1023/A:1024745513314] [PMID: 12956393]
[40]
Belajová, E. Determination of selected wine phenolic constituents as possible markers for differentiation of wines. J. Food Nutr. Res., 2012, 51(2), 117-122.
[41]
Azaryan, Zh.A.; Grigoryan, A.A.; Hayrapetyan, A.A.; Yengoyan, A.P. Analysis of antioxidant content in armenian red wines. International Scientific and Practical Conference “Modern science: new approaches and actual studies”. Prague, Czech Republic, 2020, p. 11.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy