Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Perillyl Alcohol Promotes Relaxation in Human Umbilical Artery

In Press, (this is not the final "Version of Record"). Available online 08 January, 2024
Author(s): Carla Mikevely de Sena Bastos, Luis Pereira-de-Morais*, Andressa de Alencar Silva, Débora de Menezes Dantas, Paulo Ricardo Batista, Maria Franciele Lima Gomes, Gyllyandeson de Araújo Delmondes, Irwin Rose Alencar de Menezes, Renata Evaristo Rodrigues da Silva and Roseli Barbosa
Published on: 08 January, 2024

DOI: 10.2174/0109298673269428231204064101

Price: $95

Abstract

Background: Perillyl alcohol (POH) is a monoterpenoid found in plant essential oils and has been shown to relax murine vessels, but its effect on human vessels remains poorly studied.

Objective: The study aimed to characterize the effect of POH on human umbilical arteries (HUA).

Methods: Rings of HUA were obtained from uncomplicated patients and suspended in an organ bath for isometric recording. The vasorelaxant effect of POH in HUA was evaluated on basal tone and electromechanical or pharmacomechanical contractions, and possible mechanisms of action were also investigated.

Results: POH (1-1000 μM) altered the basal tone of HUA and completely relaxed HUA rings precontracted with KCl (60 mM) or 5-HT (10 μM), obtaining greater potency in the pharmacomechanical pathway (EC50 110.1 μM), suggesting a complex interference in the mobilization of extra- and intracellular Ca2+. POH (1000 μM) inhibited contractions induced by BaCl2 (0.1-30 mM) in a similar way to nifedipine (10 μM), indicating a possible blockade of L-type VOCC. In the presence of potassium channel blockers, tetraethylammonium (1 mM), 4-aminopyridine (1 mM), or glibenclamide (10 μM), an increase in the EC50 value of the POH was observed, suggesting a modulation of the activity of BKCa, KV, and KATP channels.

Conclusion: The data from this study suggest that POH modulates Ca2+ and K+ ion channels to induce a relaxant response in HUA.

[1]
Bhatia, S.P.; McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance material review on carveol. Food Chem. Toxicol., 2008, 46(11), S85-S87.
[http://dx.doi.org/10.1016/j.fct.2008.06.032] [PMID: 18640224]
[2]
Garcia, D.G.; Amorim, L.M.F.; de Castro Faria, M.V.; Freire, A.S.; Santelli, R.E.; Da Fonseca, C.O.; Quirico-Santos, T.; Burth, P. The anticancer drug perillyl alcohol is a Na/K-ATPase inhibitor. Mol. Cell. Biochem., 2010, 345(1-2), 29-34.
[http://dx.doi.org/10.1007/s11010-010-0556-9] [PMID: 20689980]
[3]
Gomes, A.C.; Mello, A.L.; Ribeiro, M.G.; Garcia, D.G.; Da Fonseca, C.O.; Salazar, M.D.A.; Schönthal, A.H.; Quirico-Santos, T. Perillyl alcohol, a pleiotropic natural compound suitable for brain tumor therapy, targets free radicals. Arch. Immunol. Ther. Exp., 2017, 65(4), 285-297.
[http://dx.doi.org/10.1007/s00005-017-0459-5] [PMID: 28314870]
[4]
Bejeshk, M.A.; Beik, A.; Aminizadeh, A.H.; Salimi, F.; Bagheri, F.; Sahebazzamani, M.; Najafipour, H.; Rajizadeh, M.A. Perillyl alcohol (PA) mitigates inflammatory, oxidative, and histopathological consequences of allergic asthma in rats. Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(6), 1235-1245.
[http://dx.doi.org/10.1007/s00210-023-02398-5] [PMID: 36707429]
[5]
Khan, A.Q.; Nafees, S.; Sultana, S. Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production. Toxicology, 2011, 279(1-3), 108-114.
[http://dx.doi.org/10.1016/j.tox.2010.09.017] [PMID: 20923693]
[6]
Sousa, M.; Afonso, A.C.; Teixeira, L.S.; Borges, A.; Saavedra, M.J.; Simões, L.C.; Simões, M. Hydrocinnamic acid and perillyl alcohol potentiate the action of antibiotics against Escherichia coli. Antibiotics, 2023, 12(2), 360.
[http://dx.doi.org/10.3390/antibiotics12020360] [PMID: 36830271]
[7]
Greay, S.J.; Hammer, K.A. Recent developments in the bioactivity of mono- and diterpenes: Anticancer and antimicrobial activity. Phytochem. Rev., 2015, 14(1), 1-6.
[http://dx.doi.org/10.1007/s11101-011-9212-6]
[8]
Ripple, G.H.; Gould, M.N.; Stewart, J.A.; Tutsch, K.D.; Arzoomanian, R.Z.; Alberti, D.; Feierabend, C.; Pomplun, M.; Wilding, G.; Bailey, H.H. Phase I clinical trial of perillyl alcohol administered daily. Clin. Cancer Res., 1998, 4(5), 1159-1164.
[PMID: 9607573]
[9]
Hudes, G.R.; Szarka, C.E.; Adams, A.; Ranganathan, S.; McCauley, R.A.; Weiner, L.M.; Langer, C.J.; Litwin, S.; Yeslow, G.; Halberr, T.; Qian, M.; Gallo, J.M. Phase I pharmacokinetic trial of perillyl alcohol (NSC 641066) in patients with refractory solid malignancies. Clin. Cancer Res., 2000, 6(8), 3071-3080.
[PMID: 10955786]
[10]
Ripple, G.H.; Gould, M.N.; Arzoomanian, R.Z.; Alberti, D.; Feierabend, C.; Simon, K.; Binger, K.; Tutsch, K.D.; Pomplun, M.; Wahamaki, A.; Marnocha, R.; Wilding, G.; Bailey, H.H. Phase I clinical and pharmacokinetic study of perillyl alcohol administered four times a day. Clin. Cancer Res., 2000, 6(2), 390-396.
[PMID: 10690515]
[11]
Azzoli, C.G.; Miller, V.A.; Ng, K.K.; Krug, L.M.; Spriggs, D.R.; Tong, W.P.; Riedel, E.R.; Kris, M.G. A phase I trial of perillyl alcohol in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2003, 51(6), 493-498.
[http://dx.doi.org/10.1007/s00280-003-0599-7] [PMID: 12695855]
[12]
Morgan-Meadows, S.; Dubey, S.; Gould, M.; Tutsch, K.; Marnocha, R.; Arzoomanin, R.; Alberti, D.; Binger, K.; Feierabend, C.; Volkman, J.; Ellingen, S.; Black, S.; Pomplun, M.; Wilding, G.; Bailey, H. Phase I trial of perillyl alcohol administered four times daily continuously. Cancer Chemother. Pharmacol., 2003, 52(5), 361-366.
[http://dx.doi.org/10.1007/s00280-003-0684-y] [PMID: 12904896]
[13]
Bailey, H.; Wilding, G.; Tutsch, K.; Arzoomanian, R.; Alberti, D.; Feierabend, C.; Simon, K.; Marnocha, R.; Holstein, S.; Stewart, J.; Lewis, K.; Hohl, R. A phase I trial of perillyl alcohol administered four times daily for 14 days out of 28 days. Cancer Chemother. Pharmacol., 2004, 54(4), 368-376.
[http://dx.doi.org/10.1007/s00280-004-0788-z] [PMID: 15205914]
[14]
Schönthal, A.H.; Peereboom, D.M.; Wagle, N.; Lai, R.; Mathew, A.J.; Hurth, K.M.; Simmon, V.F.; Howard, S.P.; Taylor, L.P.; Chow, F.; da Fonseca, C.O.; Chen, T.C. Phase I trial of intranasal NEO100, highly purified perillyl alcohol, in adult patients with recurrent glioblastoma. Neurooncol. Adv., 2021, 3(1), vdab005.
[http://dx.doi.org/10.1093/noajnl/vdab005] [PMID: 33604574]
[15]
Bailey, H.H.; Levy, D.; Harris, L.S.; Schink, J.C.; Foss, F.; Beatty, P.; Wadler, S. A phase II trial of daily perillyl alcohol in patients with advanced ovarian cancer: Eastern Cooperative Oncology Group Study E2E96. Gynecol. Oncol., 2002, 85(3), 464-468.
[http://dx.doi.org/10.1006/gyno.2002.6647] [PMID: 12051875]
[16]
Meadows, S.M.; Mulkerin, D.; Berlin, J.; Bailey, H.; Kolesar, J.; Warren, D.; Thomas, J.P. Phase II trial of perillyl alcohol in patients with metastatic colorectal cancer. Int. J. Gastrointest. Cancer, 2002, 32(2-3), 125-128.
[http://dx.doi.org/10.1385/IJGC:32:2-3:125] [PMID: 12794248]
[17]
Liu, G.; Oettel, K.; Bailey, H.; Ummersen, L.V.; Tutsch, K.; Staab, M.J.; Horvath, D.; Alberti, D.; Arzoomanian, R.; Rezazadeh, H.; McGovern, J.; Robinson, E.; DeMets, D.; Wilding, G. Phase II trial of perillyl alcohol (NSC 641066) administered daily in patients with metastatic androgen independent prostate cancer. Invest. New Drugs, 2003, 21(3), 367-372.
[http://dx.doi.org/10.1023/A:1025437115182] [PMID: 14578686]
[18]
Bailey, H.H.; Attia, S.; Love, R.R.; Fass, T.; Chappell, R.; Tutsch, K.; Harris, L.; Jumonville, A.; Hansen, R.; Shapiro, G.R.; Stewart, J.A. Phase II trial of daily oral perillyl alcohol (NSC 641066) in treatment-refractory metastatic breast cancer. Cancer Chemother. Pharmacol., 2008, 62(1), 149-157.
[http://dx.doi.org/10.1007/s00280-007-0585-6] [PMID: 17885756]
[19]
da Fonseca, C.O.; Schwartsmann, G.; Fischer, J.; Nagel, J.; Futuro, D.; Quirico-Santos, T.; Gattass, C.R. Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg. Neurol., 2008, 70(3), 259-266.
[http://dx.doi.org/10.1016/j.surneu.2007.07.040] [PMID: 18295834]
[20]
Kennedy, S.; Wadsworth, R.M.; Wainwright, C.L. Effect of antiproliferative agents on vascular function in normal and in vitro balloon-injured porcine coronary arteries. Eur. J. Pharmacol., 2003, 481(1), 101-107.
[http://dx.doi.org/10.1016/j.ejphar.2003.09.010] [PMID: 14637181]
[21]
Cardoso-Teixeira, A.; Ferreira-da-Silva, F.; Peixoto-Neves, D.; Oliveira-Abreu, K.; Pereira-Gonçalves, Á.; Coelho-de-Souza, A.; Leal-Cardoso, J. Hydroxyl group and vasorelaxant effects of perillyl alcohol, carveol, limonene on aorta smooth muscle of rats. Molecules, 2018, 23(6), 1430.
[http://dx.doi.org/10.3390/molecules23061430] [PMID: 29899230]
[22]
de Menezes Dantas, D.; Pereira-de-Morais, L.; de Alencar Silva, A.; da Silva, R.E.R.; Dias, F.J.; de Sousa Amorim, T.; Cruz-Martins, N.; Melo Coutinho, H.D.; Barbosa, R. Pharmacological screening of species from the Lippia genus, content in terpenes and phenylpropanoids, and their vasorelaxing effects on human umbilical artery. Curr. Pharm. Des., 2023, 29(7), 535-542.
[http://dx.doi.org/10.2174/1381612829666221124101321]
[23]
Pereira-de-Morais, L.; Silva, A.A.; Bastos, C.M.S.; Calixto, G.L.; Araújo, I.M.; Araújo, M.C.; Barbosa, R.; Leal-Cardoso, J.H. The preeclampsia condition alters external potassium-evoked contraction of human umbilical vessels. Placenta, 2023, 138, 68-74.
[http://dx.doi.org/10.1016/j.placenta.2023.05.005] [PMID: 37209614]
[24]
Houlihan, D.D.; Dennedy, M.C.; Ravikumar, N.; Morrison, J.J. Anti-hypertensive therapy and the feto-placental circulation: Effects on umbilical artery resistance. J. Perinat. Med., 2004, 32(4), 315-319.
[http://dx.doi.org/10.1515/JPM.2004.058] [PMID: 15346815]
[25]
Evaristo Rodrigues da Silva, R.; de Alencar Silva, A.; Pereira-de-Morais, L.; de Sousa Almeida, N.; Iriti, M.; Kerntopf, M.R.; Menezes, I.R.A.; Coutinho, H.D.M.; Barbosa, R. Relaxant effect of monoterpene (−)-carveol on isolated human umbilical cord arteries and the involvement of ion channels. Molecules, 2020, 25(11), 2681.
[http://dx.doi.org/10.3390/molecules25112681] [PMID: 32527034]
[26]
Dantas, D.M.; Silva, A.A.; Pereira-de-Morais, L.; Bastos, C.M.S.; Calixto, G.L.; Kerntopf, M.R.; Menezes, I.R.A.; Weinreich, D.; Barbosa, R. Characterization of the vasodilator effect of eugenol in isolated human umbilical cord arteries. Chem. Biol. Interact., 2022, 359, 109890.
[http://dx.doi.org/10.1016/j.cbi.2022.109890] [PMID: 35318036]
[27]
Đukanović, Đ.; Bojić, M.G.; Marinković, S.; Trailović, S.; Stojiljković, M.P.; Škrbić, R. Vasorelaxant effect of monoterpene carvacrol on isolated human umbilical artery. Can. J. Physiol. Pharmacol., 2022, 100(8), 755-762.
[http://dx.doi.org/10.1139/cjpp-2021-0736] [PMID: 35507953]
[28]
Batista, P.R.; Silva, A.A.; de Sena Bastos, C.M.; Rodrigues da Silva, R.E.; Calixto, G.L.; de Morais, L.P.; Delmondes, G.A.; Kerntopf, M.R.; de Menezes, I.R.A.; Barbosa, R. Vasodilation promoted by (E,E)-farnesol involving ion channels in human umbilical arteries. Heliyon, 2023, 9(6), e17328.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17328] [PMID: 37441374]
[29]
Leonardi, A.; Hieble, J.P.; Guarneri, L.; Naselsky, D.P.; Poggesi, E.; Sironi, G.; Sulpizio, A.C.; Testa, R. Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): Role of the alpha-1L adrenoceptor in tissue selectivity, part I. J. Pharmacol. Exp. Ther., 1997, 281(3), 1272-1283.
[PMID: 9190863]
[30]
Lo, Y.C.; Wang, C.C.; Shen, K.P.; Wu, B.N.; Yu, K.L.; Chen, I.J. Urgosedin inhibits hypotension, hypoglycemia, and pro-inflammatory mediators induced by lipopolysaccharide. J. Cardiovasc. Pharmacol., 2004, 44(3), 363-371.
[http://dx.doi.org/10.1097/01.fjc.0000137155.63604.7a] [PMID: 15475835]
[31]
Silva, R.M.; Oliveira, F.A.; Cunha, K.M.A.; Maia, J.L.; Maciel, M.A.M.; Pinto, A.C.; Nascimento, N.R.F.; Santos, F.A.; Rao, V.S.N. Cardiovascular effects of trans-dehydrocrotonin, a diterpene from Croton cajucara in rats. Vascul. Pharmacol., 2005, 43(1), 11-18.
[http://dx.doi.org/10.1016/j.vph.2005.02.015] [PMID: 15975531]
[32]
Tufan, H.; Ayan-Polat, B.; Tecder-Ünal, M.; Polat, G.; Kayhan, Z.; Öğüş, E. Contractile responses of the human umbilical artery to KCl and serotonin in Ca-free medium and the effects of levcromakalim. Life Sci., 2003, 72(12), 1321-1329.
[http://dx.doi.org/10.1016/S0024-3205(02)02382-2] [PMID: 12527030]
[33]
Yildiz, O.; Nacitarhan, C.; Seyrek, M. Potassium channels in the vasodilating action of levosimendan on the human umbilical artery. J. Soc. Gynecol. Investig., 2006, 13(4), 312-315.
[http://dx.doi.org/10.1016/j.jsgi.2006.02.005] [PMID: 16697949]
[34]
Perusquía, M.; Navarrete, E.; González, L.; Villalón, C.M. The modulatory role of androgens and progestins in the induction of vasorelaxation in human umbilical artery. Life Sci., 2007, 81(12), 993-1002.
[http://dx.doi.org/10.1016/j.lfs.2007.07.024] [PMID: 17804019]
[35]
Hehir, M.P.; Moynihan, A.T.; Glavey, S.V.; Morrison, J.J. Umbilical artery tone in maternal obesity. Reprod. Biol. Endocrinol., 2009, 7(1), 6.
[http://dx.doi.org/10.1186/1477-7827-7-6] [PMID: 19161625]
[36]
Mohammed, R.; Provitera, L.; Cavallaro, G.; Lattuada, D.; Ercoli, G.; Mosca, F.; Villamor, E. Vasomotor effects of hydrogen sulfide in human umbilical vessels. J. Physiol. Pharmacol., 2017, 68(5), 737-747.
[PMID: 29375049]
[37]
Britto-Júnior, J.; Jacintho, F.F.; Figueiredo Murari, G.M.; Campos, R.; Moreno, R.A.; Antunes, E.; Mónica, F.Z.; De Nucci, G. Electrical field stimulation induces endothelium-dependent contraction of human umbilical cord vessels. Life Sci., 2020, 243, 117257.
[http://dx.doi.org/10.1016/j.lfs.2020.117257] [PMID: 31917992]
[38]
Borges, A.S.; Bastos, C.M.S.; Dantas, D.M.; Milfont, C.G.B.; Brito, G.M.H.; Pereira-de-Morais, L.; Delmondes, G.A.; da Silva, R.E.R.; Kennedy-Feitosa, E.; Maia, F.P.A.; Lima, C.M.G.; Bin Emran, T.; Coutinho, H.D.M.; Menezes, I.R.A.; Kerntopf, M.R.; Caruso, G.; Barbosa, R. Effect of Lippia alba (Mill.) N.E. Brown essential oil on the human umbilical artery. Plants, 2022, 11(21), 3002.
[http://dx.doi.org/10.3390/plants11213002] [PMID: 36365458]
[39]
Lorigo, M.; Quintaneiro, C.; Lemos, M.; Martinez-de-Oliveira, J.; Breitenfeld, L.; Cairrao, E. UV-B filter octylmethoxycinnamate induces vasorelaxation by Ca2+ channel inhibition and guanylyl cyclase activation in human umbilical arteries. Int. J. Mol. Sci., 2019, 20(6), 1376.
[http://dx.doi.org/10.3390/ijms20061376] [PMID: 30893788]
[40]
Lorigo, M.; Quintaneiro, C.; Maia, C.J.; Breitenfeld, L.; Cairrao, E. UV-B filter octylmethoxycinnamate impaired the main vasorelaxant mechanism of human umbilical artery. Chemosphere, 2021, 277, 130302.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130302] [PMID: 33789217]
[41]
Cairrão, E.; Álvarez, E.; Santos-Silva, A.J.; Verde, I. Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery. Naunyn Schmiedebergs Arch. Pharmacol., 2008, 376(5), 375-383.
[http://dx.doi.org/10.1007/s00210-007-0213-3] [PMID: 18026936]
[42]
Cairrão, E.; Santos-Silva, A.J.; Verde, I. PKG is involved in testosterone-induced vasorelaxation of human umbilical artery. Eur. J. Pharmacol., 2010, 640(1-3), 94-101.
[http://dx.doi.org/10.1016/j.ejphar.2010.04.025] [PMID: 20444426]
[43]
Lorigo, M.; Mangana, C.; Cairrao, E. Disrupting effects of the emerging contaminant octylmethoxycinnamate (OMC) on human umbilical artery relaxation. Environ. Pollut., 2023, 335, 122302.
[http://dx.doi.org/10.1016/j.envpol.2023.122302] [PMID: 37536478]
[44]
Sakariassen, K.S.; Femia, E.A.; Daray, F.M.; Podda, G.M.; Razzari, C.; Pugliano, M.; Errasti, A.E.; Armesto, A.R.; Nowak, W.; Alberts, P.; Meyer, J.P.; Sorensen, A.S.; Cattaneo, M.; Rothlin, R.P. EV-077 in vitro inhibits platelet aggregation in type-2 diabetics on aspirin. Thromb. Res., 2012, 130(5), 746-752.
[http://dx.doi.org/10.1016/j.thromres.2012.08.309] [PMID: 22959706]
[45]
Leung, S.W.S.; Quan, A.; Lao, T.T.; Man, R.Y.K. Efficacy of different vasodilators on human umbilical arterial smooth muscle under normal and reduced oxygen conditions. Early Hum. Dev., 2006, 82(7), 457-462.
[http://dx.doi.org/10.1016/j.earlhumdev.2005.11.009] [PMID: 16443336]
[46]
Provitera, L.; Cavallaro, G.; Griggio, A.; Raffaeli, G.; Amodeo, I.; Gulden, S.; Lattuada, D.; Ercoli, G.; Lonati, C.; Tomaselli, A.; Mosca, F.; Villamor, E. Cyclic nucleotide-dependent relaxation in human umbilical vessels. J. Physiol. Pharmacol., 2019, 70(4), 619-630.
[http://dx.doi.org/10.26402/jpp.2019.4.13] [PMID: 31741459]
[47]
Nirupama, R.; Divyashree, S.; Janhavi, P.; Muthukumar, S.P.; Ravindra, P.V. Preeclampsia: Pathophysiology and management. J. Gynecol. Obstet. Hum. Reprod., 2021, 50(2), 101975.
[http://dx.doi.org/10.1016/j.jogoh.2020.101975] [PMID: 33171282]
[48]
Agalakova, N.I.; Grigorova, Y.N.; Ershov, I.A.; Reznik, V.A.; Mikhailova, E.V.; Nadei, O.V.; Samuilovskaya, L.; Romanova, L.A.; Adair, C.D.; Romanova, I.V.; Bagrov, A.Y. Canrenone restores vasorelaxation impaired by Marinobufagenin in human umbilical preeclampsia. Int. J. Mol. Sci., 2022, 23(6), 3336.
[http://dx.doi.org/10.3390/ijms23063336] [PMID: 35328757]
[49]
Karadas, B.; Acar-Sahan, S.; Kantarci, S.; Uysal, N.; Horoz, E.; Kaya-Temiz, T. Comparison of relaxant effects of nifedipine and NS11021 on isolated umbilical arteries of healthy and preeclamptic pregnant women. Eur. J. Obstet. Gynecol. Reprod. Biol., 2023, 280, 168-173.
[http://dx.doi.org/10.1016/j.ejogrb.2022.12.009] [PMID: 36508854]
[50]
Dantas, D.M.; Silva-Júnior, C.P.; Barbosa, R.; Pereira-De-Morais, L. Implementation of an alternative method to replace the use of animals in studies with smooth muscle. Ciênc. Anim., 2019, 29, 148-154.
[51]
Lorigo, M.; Cairrao, E. Regulation mechanisms of endocrine disruptors on vasodilation and vasoconstriction: Insights from ex vivo models. Biocell, 2022, 46(6), 1383-1389.
[http://dx.doi.org/10.32604/biocell.2022.018895]
[52]
Protić, D.; Radunović, N.; Spremović-Rađenović, S.; Živanović, V.; Heinle, H.; Petrović, A.; Gojković-Bukarica, L. The role of potassium channels in the vasodilatation induced by resveratrol and naringenin in isolated human umbilical vein. Drug Dev. Res., 2015, 76(1), 17-23.
[http://dx.doi.org/10.1002/ddr.21236] [PMID: 25619904]
[53]
Silva de Sá, M.F.; Meirelles, R.S.; Franco, J.G., Jr; Rodrigues, R. Constriction of human umbilical artery induced by local anesthetics. Gynecol. Obstet. Invest., 1981, 12(3), 123-131.
[http://dx.doi.org/10.1159/000299594] [PMID: 7239348]
[54]
Tuvemo, T.; WilldeckLund, G. Smooth muscle effects of lidocaine, prilocaine, bupivacaine and etiodocaine on the human umbilical artery. Acta Anaesthesiol. Scand., 1982, 26(2), 104-107.
[http://dx.doi.org/10.1111/j.1399-6576.1982.tb01734.x] [PMID: 7102231]
[55]
Norén, H.; Källfelt, B.; Lindblom, B. Influence of bupivacaine and morphine on human umbilical arteries and veins in vitro. Acta Obstet. Gynecol. Scand., 1990, 69(1), 87-91.
[http://dx.doi.org/10.3109/00016349009021045] [PMID: 2346085]
[56]
Bariskaner, H.; Tuncer, S.; Taner, A.; Dogan, N. Effects of bupivacaine and ropivacaine on the isolated human umbilical artery. Int. J. Obstet. Anesth., 2003, 12(4), 261-265.
[http://dx.doi.org/10.1016/S0959-289X(03)00072-4] [PMID: 15321454]
[57]
Martín, P.; Enrique, N.; Palomo, A.R.R.; Rebolledo, A.; Milesi, V. Bupivacaine inhibits large conductance, voltage- and Ca2+ - activated K + channels in human umbilical artery smooth muscle cells. Channels, 2012, 6(3), 174-180.
[http://dx.doi.org/10.4161/chan.20362] [PMID: 22688134]
[58]
Bertrand, C.; Duperron, L.; St-Louis, J. Umbilical and placental vessels: Modifications of their mechanical properties in preeclampsia. Am. J. Obstet. Gynecol., 1993, 168(5), 1537-1546.
[http://dx.doi.org/10.1016/S0002-9378(11)90795-9] [PMID: 8498440]
[59]
García-Huidobro, D.N.; García-Huidobro, T.M.; Huidobro-Toro, J.P.G. Vasomotion in human umbilical and placental veins: Role of gap junctions and intracellular calcium reservoirs in their synchronous propagation. Placenta, 2007, 28(4), 328-338.
[http://dx.doi.org/10.1016/j.placenta.2006.04.004] [PMID: 16797694]
[60]
Milesi, V.; Raingo, J.; Rebolledo, A.; Grassi de Gende, A.O. Potassium channels in human umbilical artery cells. J. Soc. Gynecol. Investig., 2003, 10(6), 339-346.
[http://dx.doi.org/10.1016/S1071-5576(03)00117-5] [PMID: 12969776]
[61]
Santos-Silva, A.J.; Cairrao, E.; Verde, I. Study of the mechanisms regulating human umbilical artery contractility. Health, 2010, 2(4), 321-331.
[http://dx.doi.org/10.4236/health.2010.24049]
[62]
Putney, J.W., Jr Capacitative calcium entry revisited. Cell Calcium, 1990, 11(10), 611-624.
[http://dx.doi.org/10.1016/0143-4160(90)90016-N] [PMID: 1965707]
[63]
Meldrum, E.; Parker, P.J.; Carozzi, A. The PtdIns-PLC superfamily and signal transduction. Biochim. Biophys. Acta Mol. Cell Res., 1991, 1092(1), 49-71.
[http://dx.doi.org/10.1016/0167-4889(91)90177-Y] [PMID: 1849017]
[64]
Jiang, H.; Stephens, N.L. Calcium and smooth muscle contraction. Mol. Cell. Biochem., 1994, 135(1), 1-9.
[http://dx.doi.org/10.1007/BF00925956] [PMID: 7816050]
[65]
Xie, H.; Triggle, C.R. Endothelium-independent relaxations to acetylcholine and A23187 in the human umbilical artery. J. Vasc. Res., 1994, 31(2), 92-105.
[http://dx.doi.org/10.1159/000159035] [PMID: 8117864]
[66]
Fei, J.Q.; Zhou, H.B.; Shen, Y.L.; Chen, X.Z.; Wang, L.L. A comparison study on the responses of umbilical arteries and thoracic aorts to the adrenergic receptor agonists. Cell Biol. Int., 2008, 32(3), S55.
[http://dx.doi.org/10.1016/j.cellbi.2008.01.234]
[67]
Massaro, F.C.; Brooks, P.R.; Wallace, H.M.; Nsengiyumva, V.; Narokai, L.; Russell, F.D. Effect of Australian propolis from stingless bees (Tetragonula carbonaria) on pre-contracted human and porcine isolated arteries. PLoS One, 2013, 8(11), e81297.
[http://dx.doi.org/10.1371/journal.pone.0081297] [PMID: 24260567]
[68]
Lorigo, M.; Mariana, M.; Feiteiro, J.; Cairrao, E. How is the human umbilical artery regulated? J. Obstet. Gynaecol. Res., 2018, 44(7), 1193-1201.
[http://dx.doi.org/10.1111/jog.13667] [PMID: 29727040]
[69]
Speroni, F.; Rebolledo, A.; Salemme, S.; Roldán-Palomo, R.; Rimorini, L.; Añón, M.C.; Spinillo, A.; Tanzi, F.; Milesi, V. Genistein effects on Ca2+ handling in human umbilical artery: Inhibition of sarcoplasmic reticulum Ca2+ release and of voltage-operated Ca2+ channels. J. Physiol. Biochem., 2009, 65(2), 113-124.
[http://dx.doi.org/10.1007/BF03179062] [PMID: 19886390]
[70]
Radenković, M.; Grbović, L.; Radunović, N.; Momčilov, P. Pharmacological evaluation of bradykinin effect on human umbilical artery in normal, hypertensive and diabetic pregnancy. Pharmacol. Rep., 2007, 59(1), 64-73.
[PMID: 17377208]
[71]
Martín, P.; Rebolledo, A.; Palomo, A.R.R.; Moncada, M.; Piccinini, L.; Milesi, V. Diversity of potassium channels in human umbilical artery smooth muscle cells: A review of their roles in human umbilical artery contraction. Reprod. Sci., 2014, 21(4), 432-441.
[http://dx.doi.org/10.1177/1933719113504468] [PMID: 24084522]
[72]
Lorigo, M.; Oliveira, N.; Cairrão, E. Clinical importance of the human umbilical artery potassium channels. Cells, 2020, 9(9), 1956.
[http://dx.doi.org/10.3390/cells9091956] [PMID: 32854241]
[73]
Nacka-Aleksić, M.; Pirković, A.; Vilotić, A.; Bojić-Trbojević, Ž.; Jovanović Krivokuća, M.; Giampieri, F.; Battino, M.; Dekanski, D. The role of dietary polyphenols in pregnancy and pregnancy-related disorders. Nutrients, 2022, 14(24), 5246.
[http://dx.doi.org/10.3390/nu14245246] [PMID: 36558404]
[74]
Chen, T.C.; da Fonseca, C.O.; Levin, D.; Schönthal, A.H. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers. Pharmaceutics, 2021, 13(12), 2167.
[http://dx.doi.org/10.3390/pharmaceutics13122167] [PMID: 34959448]
[75]
Baptista, M.; Lorigo, M.; Cairrao, E. Protein interaction network for identifying vascular response of metformin (oral antidiabetic). Bio. Med. Informatics, 2022, 2(2), 217-233.
[http://dx.doi.org/10.3390/biomedinformatics2020014]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy