Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Nitrogen-fused Heterocycles: Empowering Anticancer Drug Discovery

Author(s): Tanya Biswas, Ravi Kumar Mittal*, Vikram Sharma, Kanupriya and Isha Mishra

Volume 20, Issue 4, 2024

Published on: 08 January, 2024

Page: [369 - 384] Pages: 16

DOI: 10.2174/0115734064278334231211054053

Price: $65

Abstract

The worldwide impact of cancer is further compounded by the constraints of current anticancer medications, which frequently exhibit a lack of selectivity, raise safety apprehensions, result in significant adverse reactions, and encounter resistance mechanisms. The current situation highlights the pressing need to develop novel and more precise anticancer agents that prioritize safety and target specificity. Remarkably, more than 85% of drugs with physiological activity contain heterocyclic structures or at least one heteroatom. Nitrogen-containing heterocycles hold a significant position among these compounds, emerging as the most prevalent framework within the realm of heterocyclic chemistry. This article explores the medicinal chemistry behind these molecules, highlighting their potential as game-changing possibilities for anticancer medication development. The analysis highlights the inherent structural variety in nitrogen-containing heterocycles, revealing their potential to be customized for creating personalized anticancer medications. It also emphasizes the importance of computational techniques and studies on the relationships between structure and activity, providing a road map for rational medication design and optimization. Nitrogen- containing heterocycles are a promising new area of study in the fight against cancer, and this review summarises the state of the field so far. By utilizing their inherent characteristics and exploiting cooperative scientific investigations, these heterocyclic substances exhibit potential at the forefront of pioneering therapeutic approaches in combating the multifaceted obstacles posed by cancer.

Next »
Graphical Abstract

[1]
Dhiman, N.; Kaur, K.; Jaitak, V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem., 2020, 28(15), 115599.
[http://dx.doi.org/10.1016/j.bmc.2020.115599] [PMID: 32631569]
[2]
Abbot, V.; Sharma, P.; Dhiman, S.; Noolvi, M.N.; Patel, H.M.; Bhardwaj, V. Small hybrid heteroaromatics: Resourceful biological tools in cancer research. RSC Advances, 2017, 7(45), 28313-28349.
[http://dx.doi.org/10.1039/C6RA24662A]
[3]
Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. Imidazoles as potential anticancer agents. MedChemComm, 2017, 8(9), 1742-1773.
[http://dx.doi.org/10.1039/C7MD00067G] [PMID: 30108886]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Isoldi, M.; Visconti, M.; Castrucci, A. Anti-cancer drugs: Molecular mechanisms of action. Mini Rev. Med. Chem., 2005, 5(7), 685-695.
[http://dx.doi.org/10.2174/1389557054368781] [PMID: 16026315]
[6]
Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752.
[PMID: 28393696]
[7]
Magalhaes, L.G.; Ferreira, L.L.G.; Andricopulo, A.D. Recent advances and perspectives in cancer drug design. An. Acad. Bras. Cienc., 2018, 90(1 suppl 2)(Suppl. 2), 1233-1250.
[http://dx.doi.org/10.1590/0001-3765201820170823] [PMID: 29768576]
[8]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[9]
Vasir, J.K.; Labhasetwar, V. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat., 2005, 4(4), 363-374.
[http://dx.doi.org/10.1177/153303460500400405] [PMID: 16029056]
[10]
Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M.L.; Nawroth, R.; Sanchez-Garcia, I.; Sharma, D. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. InSeminars Cancer Biol., 2015, 35, 25-54.
[11]
Alvarez‐Builla, J.; Barluenga, J. Heterocyclic compounds: An introduction. Modern Hetero. Chem., 2011, 29, 1-9.
[http://dx.doi.org/10.1002/9783527637737.ch1]
[12]
Ferreira, P.M.T.; Maia, H.L.S.; Monteiro, L.S. Synthesis of 2,3,5-substituted pyrrole derivatives. Tetrahedron Lett., 2002, 43(25), 4491-4493.
[http://dx.doi.org/10.1016/S0040-4039(02)00810-9]
[13]
Kijewska, M.; Sharfalddin, A.A.; Jaremko, Ł.; Cal, M.; Setner, B.; Siczek, M.; Stefanowicz, P.; Hussien, M.A.; Emwas, A.H.; Jaremko, M. Lossen rearrangement of p-toluenesulfonates of N-oxyimides in basic condition, theoretical study, and molecular docking. Front Chem., 2021, 9, 662533.
[http://dx.doi.org/10.3389/fchem.2021.662533] [PMID: 33937199]
[14]
Amewu, R.K.; Sakyi, P.O.; Osei-Safo, D.; Addae-Mensah, I. Synthetic and naturally occurring heterocyclic anticancer compounds with multiple biological targets. Molecules, 2021, 26(23), 7134.
[http://dx.doi.org/10.3390/molecules26237134] [PMID: 34885716]
[15]
Mittal, R.K.; Aggarwal, M.; Khatana, K.; Purohit, P. Quinoline: Synthesis to application. Med. Chem., 2022, 19(1), 31-46.
[PMID: 35240965]
[16]
Mittal, R.K.; Purohit, P.; Aggarwal, M. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “Spike Protein” inhibitors. Biointerface Res. Appl. Chem., 2023, 13(2), 69.
[17]
Purohit, P.; Mittal, R.K.; Sharma, V. A synergistic broad-spectrum viral entry blocker: In-silico approach. Biointerface Res. Appl. Chem., 2023, 13(1), 7.
[18]
Mittal, R.K.; Purohit, P.; Sankaranarayanan, M.; Muzaffar-Ur-Rehman, M.; Taramelli, D.; Signorini, L.; Dolci, M.; Basilico, N. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate. Mol. Divers., 2023, 1-5.
[http://dx.doi.org/10.1007/s11030-023-10703-w] [PMID: 37480422]
[19]
Anthwal, T.; Paliwal, S.; Nain, S. Diverse biological activities of 1,3,4-Thiadiazole Scaffold. Chemistry, 2022, 4(4), 1654-1671.
[http://dx.doi.org/10.3390/chemistry4040107]
[20]
Janowska, S.; Paneth, A.; Wujec, M. Cytotoxic properties of 1, 3, 4-thiadiazole derivatives—A review. Molecules, 2020, 25(18), 4309.
[http://dx.doi.org/10.3390/molecules25184309] [PMID: 32962192]
[21]
Janowska, S.; Khylyuk, D.; Bielawska, A.; Szymanowska, A.; Gornowicz, A.; Bielawski, K.; Noworól, J.; Mandziuk, S.; Wujec, M. New 1, 3, 4-thiadiazole derivatives with anticancer activity. Molecules, 2022, 27(6), 1814.
[http://dx.doi.org/10.3390/molecules27061814] [PMID: 35335177]
[22]
Çevik, U.A.; Osmaniye, D.; Levent, S.; Sağlik, B.N.; Çavuşoğlu, B.K.; Karaduman, A.B.; Özkay, Y.; Kaplancikli, Z.A. Synthesis and biological evaluation of novel 1,3,4-thiadiazole derivatives as possible anticancer agents. Acta Pharm., 2020, 70(4), 499-513.
[http://dx.doi.org/10.2478/acph-2020-0034] [PMID: 32412436]
[23]
Saeed, B.M.S.; Al-Jadaan, S.A.N.; Abbas, B.A. Study on Anticancer Activity of 4, 4′-[1,4-phenylenebis(1,3,4-thiadiazole-5,2-diyl)] bis (azaneylylidene) bis (methaneylylidene) diphenolon Breast Cancer Cells. Arch. Razi Inst., 2021, 76(4), 821-827.
[PMID: 35096317]
[24]
Alminderej, F.M.; Elganzory, H.H.; El-Bayaa, M.N.; Awad, H.M.; El-Sayed, W.A. Synthesis and cytotoxic activity of new 1, 3, 4-thiadiazole thioglycosides and 1, 2, 3-triazolyl-1, 3, 4-thiadiazole N-glycosides. Molecules, 2019, 24(20), 3738.
[http://dx.doi.org/10.3390/molecules24203738] [PMID: 31623291]
[25]
El-Rayyes, A.; Soliman, A.M.; Saeed, A. Synthesis and anticancer evaluation of new thiazole and thiadiazole derivatives bearing acetanilide moiety. Russ. J. Gen. Chem., 2022, 92(10), 2132-2144.
[http://dx.doi.org/10.1134/S1070363222100267] [PMID: 36408422]
[26]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A. Arshia; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011–2016). Expert Opin. Ther. Pat., 2018, 28(4), 281-297.
[http://dx.doi.org/10.1080/13543776.2018.1432596] [PMID: 29368977]
[27]
Ahmed, M.F.; Khalifa, A.S.; Eed, E.M. Discovery of new quinazoline-based anticancer agents as VEGFR-2 inhibitors and apoptosis inducers. Russ. J. Bioorganic Chem., 2022, 48(4), 739-748.
[http://dx.doi.org/10.1134/S1068162022040033]
[28]
Abdelsalam, E.A.; Zaghary, W.A.; Amin, K.M.; Abou Taleb, N.A.; Mekawey, A.A.I.; Eldehna, W.M.; Abdel-Aziz, H.A.; Hammad, S.F. Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorg. Chem., 2019, 89, 102985.
[http://dx.doi.org/10.1016/j.bioorg.2019.102985] [PMID: 31121559]
[29]
ElZahabi, H.S.A.; Nafie, M.S.; Osman, D.; Elghazawy, N.H.; Soliman, D.H. EL-Helby, A.A.H.; Arafa, R.K. Design, synthesis and evaluation of new quinazolin-4-one derivatives as apoptotic enhancers and autophagy inhibitors with potent antitumor activity. Eur. J. Med. Chem., 2021, 222, 113609.
[http://dx.doi.org/10.1016/j.ejmech.2021.113609] [PMID: 34119830]
[30]
Wang, Z.; Liu, L.; Dai, H.; Si, X.; Zhang, L.; Li, E.; Yang, Z.; Chao, G.; Zheng, J.; Ke, Y.; Lihong, S.; Zhang, Q.; Liu, H. Design, synthesis and biological evaluation of novel 2,4-disubstituted quinazoline derivatives targeting H1975 cells via EGFR-PI3K signaling pathway. Bioorg. Med. Chem., 2021, 43, 116265.
[http://dx.doi.org/10.1016/j.bmc.2021.116265] [PMID: 34192644]
[31]
Ewes, W.A.; Elmorsy, M.A.; El-Messery, S.M.; Nasr, M.N.A. Synthesis, biological evaluation and molecular modeling study of [1,2,4]-Triazolo[4,3-c]quinazolines: New class of EGFR-TK inhibitors. Bioorg. Med. Chem., 2020, 28(7), 115373.
[http://dx.doi.org/10.1016/j.bmc.2020.115373] [PMID: 32085964]
[32]
Hoan, D.Q.; Hoa, L.T.; Huan, T.T.; Dinh, N.H. Synthesis and Transformation of 4‐(1‐Chloro‐1‐nitroethyl)‐6,7‐dimethoxy‐2‐methylquinazoline: Spectral Characterization and Anti‐cancer Properties of some Novel Quinazoline Derivatives. J. Heterocycl. Chem., 2020, 57(4), 1720-1728.
[http://dx.doi.org/10.1002/jhet.3897]
[33]
Suzen, S. Recent studies and biological aspects of substantial indole derivatives with anti-cancer activity. Curr. Org. Chem., 2017, 21(20), 2068-2076.
[http://dx.doi.org/10.2174/1385272821666170809143233]
[34]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[35]
Smitha, S.; Pandeya, S.N.; Stables, J.P.; Ganapathy, S. Anticonvulsant and sedative-hypnotic activities of N-acetyl/methyl isatin derivatives. Sci. Pharm., 2008, 76(4), 621-636.
[http://dx.doi.org/10.3797/scipharm.0806-14]
[36]
Güzel, Ö.; Karalı, N.; Salman, A. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives. Bioorg. Med. Chem., 2008, 16(19), 8976-8987.
[http://dx.doi.org/10.1016/j.bmc.2008.08.050] [PMID: 18804379]
[37]
Patel, T.; Gaikwad, R.; Jain, K.; Ganesh, R.; Bobde, Y.; Ghosh, B.; Das, K.; Gayen, S. First Report on 3‐(3‐oxoaryl) indole derivatives as anticancer agents: Microwave assisted synthesis, In vitro Screening and Molecular Docking Studies. ChemistrySelect, 2019, 4(15), 4478-4482.
[http://dx.doi.org/10.1002/slct.201900088]
[38]
Rao, V.K.; Chhikara, B.S.; Shirazi, A.N.; Tiwari, R.; Parang, K.; Kumar, A. 3-Substitued indoles: One-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities. Bioorg. Med. Chem. Lett., 2011, 21(12), 3511-3514.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.010] [PMID: 21612925]
[39]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Landi, L.; Prata, C.; Sega, F.V.D.; Caliceti, C.; Shoemaker, R.H. Antitumor activity and COMPARE analysis of bis-indole derivatives. Bioorg. Med. Chem., 2010, 18(9), 3004-3011.
[http://dx.doi.org/10.1016/j.bmc.2010.03.063] [PMID: 20395150]
[40]
Sever, B.; Altıntop, M.D.; Özdemir, A.; Akalın Çiftçi, G.; Ellakwa, D.E.; Tateishi, H.; Radwan, M.O.; Ibrahim, M.A.A.; Otsuka, M.; Fujita, M.; Ciftci, H.I.; Ali, T.F.S. In vitro and in silico evaluation of anticancer activity of new indole-based 1, 3, 4-oxadiazoles as EGFR and COX-2 inhibitors. Molecules, 2020, 25(21), 5190.
[http://dx.doi.org/10.3390/molecules25215190] [PMID: 33171861]
[41]
Cascioferro, S.; Li Petri, G.; Parrino, B.; El Hassouni, B.; Carbone, D.; Arizza, V.; Perricone, U.; Padova, A.; Funel, N.; Peters, G.J.; Cirrincione, G.; Giovannetti, E.; Diana, P. 3-(6-Phenylimidazo[2, 1-b][1, 3, 4]thiadiazol-2-yl)-1 H-indole derivatives as new anticancer agents in the treatment of pancreatic ductal adenocarcinoma. Molecules, 2020, 25(2), 329.
[http://dx.doi.org/10.3390/molecules25020329] [PMID: 31947550]
[42]
Zhuang, S.H.; Lin, Y.C.; Chou, L.C.; Hsu, M.H.; Lin, H.Y.; Huang, C.H.; Lien, J.C.; Kuo, S.C.; Huang, L.J. Synthesis and anticancer activity of 2,4-disubstituted furo[3,2-b]indole derivatives. Eur. J. Med. Chem., 2013, 66, 466-479.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.012] [PMID: 23831809]
[43]
Vine, K.L.; Locke, J.M.; Ranson, M.; Pyne, S.G.; Bremner, J.B.; Bremner, J.B. In vitro cytotoxicity evaluation of some substituted isatin derivatives. Bioorg. Med. Chem., 2007, 15(2), 931-938.
[http://dx.doi.org/10.1016/j.bmc.2006.10.035] [PMID: 17088067]
[44]
Hawash, M.; Kahraman, D.C.; Olgac, A.; Ergun, S.G.; Hamel, E.; Cetin-Atalay, R.; Baytas, S.N. Design and synthesis of novel substituted indole-acrylamide derivatives and evaluation of their anti-cancer activity as potential tubulin-targeting agents. J. Mol. Struct., 2022, 1254, 132345.
[http://dx.doi.org/10.1016/j.molstruc.2022.132345]
[45]
Diaconu, D.; Antoci, V.; Mangalagiu, V.; Amariucai-Mantu, D.; Mangalagiu, I.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep., 2022, 12(1), 16988.
[http://dx.doi.org/10.1038/s41598-022-21435-6] [PMID: 36216981]
[46]
Pham, E.C.; Le Thi, T.V.; Ly Hong, H.H.; Vo Thi, B.N.; Vong, L.B.; Vu, T.T.; Vo, D.D.; Tran Nguyen, N.V.; Bao Le, K.N. Truong, T.N. N, 2,6-Trisubstituted 1 H -benzimidazole derivatives as a new scaffold of antimicrobial and anticancer agents: Design, synthesis, in vitro evaluation, and in silico studies. RSC Advances, 2022, 13(1), 399-420.
[http://dx.doi.org/10.1039/D2RA06667J] [PMID: 36605630]
[47]
Mochona, B.; Mazzio, E.; Gangapurum, M.; Mateeva, N.; Redda, K.K. Synthesis of some benzimidazole derivatives bearing 1, 3, 4-oxadiazole moiety as anticancer agents. Chem. Sci. Trans., 2015, 4(2), 534-540.
[PMID: 26451350]
[48]
Hsieh, C.Y.; Ko, P.W.; Chang, Y.J.; Kapoor, M.; Liang, Y.C.; Lin, H.H.; Horng, J.C.; Hsu, M.H.; Hsu, M.H. Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents. Molecules, 2019, 24(18), 3259.
[http://dx.doi.org/10.3390/molecules24183259] [PMID: 31500191]
[49]
Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101.
[http://dx.doi.org/10.1186/s13065-019-0625-4]
[50]
Beč, A.; Cindrić, M.; Persoons, L.; Banjanac, M.; Radovanović, V.; Daelemans, D.; Hranjec, M. Novel biologically active N-substituted benzimidazole derived schiff bases: Design, synthesis, and biological evaluation. Molecules, 2023, 28(9), 3720.
[http://dx.doi.org/10.3390/molecules28093720] [PMID: 37175129]
[51]
Lagoja, I.M. Pyrimidine as constituent of natural biologically active compounds. Chem. Biodivers., 2005, 2(1), 1-50.
[http://dx.doi.org/10.1002/cbdv.200490173] [PMID: 17191918]
[52]
Albratty, M.; Alhazmi, H.A. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. Arab. J. Chem., 2022, 15(6), 103846.
[http://dx.doi.org/10.1016/j.arabjc.2022.103846]
[53]
El-Metwally, S.A.; Abou-El-Regal, M.M.; Eissa, I.H.; Mehany, A.B.M.; Mahdy, H.A.; Elkady, H.; Elwan, A.; Elkaeed, E.B. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorg. Chem., 2021, 112, 104947.
[http://dx.doi.org/10.1016/j.bioorg.2021.104947] [PMID: 33964580]
[54]
Madia, V.N.; Nicolai, A.; Messore, A.; De Leo, A.; Ialongo, D.; Tudino, V.; Saccoliti, F.; De Vita, D.; Scipione, L.; Artico, M.; Taurone, S.; Taglieri, L.; Di Santo, R.; Scarpa, S.; Costi, R. Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents. Molecules, 2021, 26(3), 771.
[http://dx.doi.org/10.3390/molecules26030771] [PMID: 33540875]
[55]
Gupta, S.; Bartwal, G.; Singh, A.; Tanwar, J.; Khurana, J.M. Design, synthesis and biological evaluation of spiroisoquinoline-pyrimidine derivatives as anticancer agents against MCF-7 cancer cell lines. Results Chem., 2022, 4, 100386.
[http://dx.doi.org/10.1016/j.rechem.2022.100386]
[56]
Ahmed, M.H.; El-Hashash, M.A.; Marzouk, M.I.; El-Naggar, A.M. Synthesis and antitumor activity of some nitrogen heterocycles bearing pyrimidine moiety. J. Heterocycl. Chem., 2020, 57(9), 3412-3427.
[http://dx.doi.org/10.1002/jhet.4061]
[57]
Osmaniye, D.; Hıdır, A.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of new pyrimidine‐triazole derivatives and investigation of their anticancer activities. Chem. Biodivers., 2022, 19(8), e202200216.
[http://dx.doi.org/10.1002/cbdv.202200216] [PMID: 35699405]
[58]
Zhou, C.; Gan, L.; Zhang, Y.; Zhang, F.; Wang, G.; Jin, L.; Geng, R. Review on supermolecules as chemical drugs. Sci. China B Chem., 2009, 52(4), 415-458.
[http://dx.doi.org/10.1007/s11426-009-0103-2]
[59]
Kurumurthy, C.; Sambasiva, R.P.; Veera, S.B.; Santhosh, K.G.; Shanthan, R.P.; Narsaiah, B.; Velatooru, L.R.; Pamanji, R.; Venkateswara Rao, J. Synthesis of novel alkyltriazole tagged pyrido[2,3-d]pyrimidine derivatives and their anticancer activity. Eur. J. Med. Chem., 2011, 46(8), 3462-3468.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.011] [PMID: 21632155]
[60]
Al-blewi, F.; Shaikh, S.A.; Naqvi, A.; Aljohani, F.; Aouad, M.R.; Ihmaid, S.; Rezki, N. Design and synthesis of novel imidazole derivatives possessing triazole pharmacophore with potent anticancer activity, and in silico ADMET with GSK-3β molecular docking investigations. Int. J. Mol. Sci., 2021, 22(3), 1162.
[http://dx.doi.org/10.3390/ijms22031162] [PMID: 33503871]
[61]
Suryanarayana, K.; Robert, A.R.; Kerru, N.; Pooventhiran, T.; Thomas, R.; Maddila, S.; Jonnalagadda, S.B. Design, synthesis, anticancer activity and molecular docking analysis of novel dinitrophenylpyrazole bearing 1,2,3-triazoles. J. Mol. Struct., 2021, 1243, 130865.
[http://dx.doi.org/10.1016/j.molstruc.2021.130865]
[62]
Dadmal, T.L.; Appalanaidu, K.; Kumbhare, R.M.; Mondal, T.; Ramaiah, M.J.; Bhadra, M.P. Synthesis and biological evaluation of triazole and isoxazole-tagged benzothiazole/benzoxazole derivatives as potent cytotoxic agents. New J. Chem., 2018, 42(19), 15546-15551.
[http://dx.doi.org/10.1039/C8NJ01249K]
[63]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells. J. Mol. Struct., 2020, 1204, 127487.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[64]
Ou, S.H.I. Crizotinib: A novel and first-in-class multitargeted tyrosine kinase inhibitor for the treatment of anaplastic lymphoma kinase rearranged nonsmall cell lung cancer and beyond. Drug Des. Devel. Ther., 2011, 5, 471-485.
[http://dx.doi.org/10.2147/DDDT.S19045] [PMID: 22162641]
[65]
Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem., 2020, 97, 103470.
[http://dx.doi.org/10.1016/j.bioorg.2019.103470] [PMID: 32120072]
[66]
Alam, O.; Naim, M.J.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8(1), 2-17.
[http://dx.doi.org/10.4103/0975-7406.171694] [PMID: 26957862]
[67]
Omran, D.M.; Ghaly, M.A.; El-Messery, S.M.; Badria, F.A.; Abdel-Latif, E.; Shehata, I.A. Targeting hepatocellular carcinoma: Synthesis of new pyrazole-based derivatives, biological evaluation, DNA binding, and molecular modeling studies. Bioorg. Chem., 2019, 88, 102917.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.011] [PMID: 30981111]
[68]
Harras, M.F.; Sabour, R. Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma. Bioorg. Chem., 2018, 78, 149-157.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.014] [PMID: 29567429]
[69]
Benarjee, V.; Saritha, B.; Hari Gangadhar, K.; Sailaja, B.B.V. Synthesis of some new 1,4-benzoxazine-pyrazoles in water as EGFR targeting anticancer agents. J. Mol. Struct., 2022, 1265, 133188.
[http://dx.doi.org/10.1016/j.molstruc.2022.133188]
[70]
Bakhotmah, D.A.; Ali, T.E.; Assiri, M.A.; Yahia, I.S. Synthesis of some novel 2-{pyrano[2, 3-c]pyrazoles-4-ylidene} malononitrile fused with pyrazole, pyridine, pyrimidine, diazepine, chromone, pyrano[2, 3-c]pyrazole and pyrano[2, 3-d]pyrimidine systems as anticancer agents. Polycycl. Aromat. Compd., 2022, 42(5), 2136-2150.
[http://dx.doi.org/10.1080/10406638.2020.1827445]
[71]
Alsayari, A.; Asiri, Y.I.; Muhsinah, A.B.; Hassan, M.Z. Anticolon cancer properties of pyrazole derivatives acting through xanthine oxidase inhibition. J. Oncol., 2021, 2021, 1-5.
[http://dx.doi.org/10.1155/2021/5691982] [PMID: 34326873]
[72]
Jin, X.Y.; Chen, H.; Li, D.D.; Li, A.L.; Wang, W.Y.; Gu, W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 955-972.
[http://dx.doi.org/10.1080/14756366.2019.1605364] [PMID: 31072147]
[73]
Hagras, M.; El Deeb, M.A.; Elzahabi, H.S.A.; Elkaeed, E.B.; Mehany, A.B.M.; Eissa, I.H. Discovery of new quinolines as potent colchicine binding site inhibitors: Design, synthesis, docking studies, and anti-proliferative evaluation. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 640-658.
[http://dx.doi.org/10.1080/14756366.2021.1883598] [PMID: 33588683]
[74]
Mittal, R.K.; Purohit, P. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative agent. Anti-Cancer. Agents Med. Chem., 2020, 20(16), 1981-1991.
[http://dx.doi.org/10.2174/1871520620666200619175906]
[75]
Mittal, R.K.; Purohit, P. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent. Anti-Cancer. Agents Med. Chem., 2021, 21(13), 1708-1716.
[http://dx.doi.org/10.2174/1871520620999201124214112]
[76]
Purohit, P.; Mittal, R.K.; Khatana, K. Quinoline-3-Carboxylic Acids “DNA Minor Groove-Binding Agent. Anticancer. Agents Med. Chem., 2022, 22(2), 344-348.
[77]
Qin, R.; You, F.M.; Zhao, Q.; Xie, X.; Peng, C.; Zhan, G.; Han, B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: From molecular mechanisms to potential therapeutic targets. J. Hematol. Oncol., 2022, 15(1), 133.
[http://dx.doi.org/10.1186/s13045-022-01350-z] [PMID: 36104717]
[78]
Zhou, X.; Xu, Z.; Li, A.; Zhang, Z.; Xu, S. Double-sides sticking mechanism of vinblastine interacting with α, β-tubulin to get activity against cancer cells. J. Biomol. Struct. Dyn., 2019, 37(15), 4080-4091.
[PMID: 30451089]
[79]
Calviño, E.; Tejedor, M.C.; Sancho, P.; Herráez, A.; Diez, J.C. JNK and NFκB dependence of apoptosis induced by vinblastine in human acute promyelocytic leukaemia cells. Cell Biochem. Funct., 2015, 33(4), 211-219.
[http://dx.doi.org/10.1002/cbf.3105] [PMID: 25914345]
[80]
Zdioruk, M.; Want, A.; Mietelska-Porowska, A.; Laskowska-Kaszub, K.; Wojsiat, J.; Klejman, A.; Użarowska, E.; Koza, P.; Olejniczak, S.; Pikul, S.; Konopka, W.; Golab, J.; Wojda, U. A new inhibitor of tubulin polymerization kills multiple cancer cell types and reveals p21-mediated mechanism determining cell death after mitotic catastrophe. Cancers, 2020, 12(8), 2161.
[http://dx.doi.org/10.3390/cancers12082161] [PMID: 32759730]
[81]
Magalska, A.; Sliwinska, M.; Szczepanowska, J.; Salvioli, S.; Franceschi, C.; Sikora, E. Resistance to apoptosis of HCW‐2 cells can be overcome by curcumin‐ or vincristine‐induced mitotic catastrophe. Int. J. Cancer, 2006, 119(8), 1811-1818.
[http://dx.doi.org/10.1002/ijc.22055] [PMID: 16721786]
[82]
Ren, H.; Zhao, J.; Fan, D.; Wang, Z.; Zhao, T.; Li, Y.; Zhao, Y.; Adelson, D.; Hao, H. Alkaloids from nux vomica suppresses colon cancer cell growth through Wnt/β‐catenin signaling pathway. Phytother. Res., 2019, 33(5), 1570-1578.
[http://dx.doi.org/10.1002/ptr.6347] [PMID: 30907037]
[83]
Ramu, A.K.; Ali, D.; Alarifi, S.; Syed Abuthakir, M.H.; Ahmed Abdul, B.A. Reserpine inhibits DNA repair, cell proliferation, invasion and induces apoptosis in oral carcinogenesis via modulation of TGF-β signaling. Life Sci., 2021, 264, 118730.
[http://dx.doi.org/10.1016/j.lfs.2020.118730] [PMID: 33160994]
[84]
Ahmad Ganai, S. Panobinostat: the small molecule metalloenzyme inhibitor with marvelous anticancer activity. Curr. Top. Med. Chem., 2015, 16(4), 427-434.
[http://dx.doi.org/10.2174/1568026615666150813145800] [PMID: 26268342]
[85]
Rao, A.; Antonarakis, E.S. The growing role of rucaparib in contemporary treatment of metastatic prostate cancer: A review of efficacy and guidance for side effect management. Expert Rev. Anticancer Ther., 2022, 22(7), 671-679.
[http://dx.doi.org/10.1080/14737140.2022.2081154] [PMID: 35594523]
[86]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[87]
Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Khan, I.; Rahman, M.M.; Jeandet, P.; Gondal, T.A. Berberine as a potential anticancer agent: A comprehensive review. Molecules, 2021, 26(23), 7368.
[http://dx.doi.org/10.3390/molecules26237368] [PMID: 34885950]
[88]
Kelany, N.A.; El-Sayed, A.S.A.; Ibrahim, M.A. Aspergillus terreus camptothecin-sodium alginate/titanium dioxide nanoparticles as a novel nanocomposite with enhanced compatibility and anticancer efficiency in vivo. BMC Biotechnol., 2023, 23(1), 9.
[http://dx.doi.org/10.1186/s12896-023-00778-6] [PMID: 37005635]
[89]
Yu, J.; Zhang, L.; Peng, J.; Ward, R.; Hao, P.; Wang, J.; Zhang, N.; Yang, Y.; Guo, X.; Xiang, C.; An, S.; Xu, T.R. Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways. Biochem. Pharmacol., 2022, 195, 114864.
[http://dx.doi.org/10.1016/j.bcp.2021.114864] [PMID: 34861243]
[90]
Fang, Y.; Linardic, C.M.; Richardson, D.A.; Cai, W.; Behforouz, M.; Abraham, R.T. Characterization of the cytotoxic activities of novel analogues of the antitumor agent, lavendamycin. Mol. Cancer Ther., 2003, 2(6), 517-526.
[PMID: 12813130]
[91]
Zhang, R.; Wang, G.; Zhang, P.F.; Zhang, J.; Huang, Y.X.; Lu, Y.M.; Da, W.; Sun, Q.; Zhu, J.S. Sanguinarine inhibits growth and invasion of gastric cancer cells via regulation of the DUSP4/ERK pathway. J. Cell. Mol. Med., 2017, 21(6), 1117-1127.
[http://dx.doi.org/10.1111/jcmm.13043] [PMID: 27957827]
[92]
Cui, Y.; Wu, L.; Cao, R.; Xu, H.; Xia, J.; Wang, Z.P.; Ma, J. Antitumor functions and mechanisms of nitidine chloride in human cancers. J. Cancer, 2020, 11(5), 1250-1256.
[http://dx.doi.org/10.7150/jca.37890] [PMID: 31956371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy