Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products

Author(s): Hebatallah Husseini Atteia*

Volume 25, Issue 14, 2024

Published on: 04 January, 2024

Page: [1791 - 1806] Pages: 16

DOI: 10.2174/0113892010282155231222071903

Price: $65

Abstract

Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.

Graphical Abstract

[1]
McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press. Adv. Nutr., 2016, 7(2), 418-419.
[http://dx.doi.org/10.3945/an.116.012211] [PMID: 26980827]
[2]
World Health Organization Cancer, 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer [cited 2020 Sep 8.
[3]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[4]
Division of Cancer Prevention and Control C for DC and P. Information for Health Care Providers | Preventing Infections in Cancer Patients CDC, Available from: https://www.cdc.gov/cancer/ preventinfection s/providers.htm [cited 2020 Sep 8.
[5]
Hale, K.E. Chapter 95: toxicities of chemotherapy Hall, J.B. ; Schmidt, G.A. ; Kress , J. P. In: Principles of Critical Care, 4th ed; McGraw-Hill Education/Medical: New York City, 2015.
[6]
Shanholtz, C. Acute life-threatening toxicity of cancer treatment. Crit. Care Clin., 2001, 17(3), 483-502.
[http://dx.doi.org/10.1016/S0749-0704(05)70196-2] [PMID: 11529252]
[7]
Shapiro, C.L. Highlights of recent findings on quality-of-life management for patients with cancer and their survivors. JAMA Oncol., 2016, 2(11), 1401-1402.
[http://dx.doi.org/10.1001/jamaoncol.2016.3620] [PMID: 27608189]
[8]
Turcotte, L.M.; Liu, Q.; Yasui, Y.; Arnold, M.A.; Hammond, S.; Howell, R.M.; Smith, S.A.; Weathers, R.E.; Henderson, T.O.; Gibson, T.M.; Leisenring, W.; Armstrong, G.T.; Robison, L.L.; Neglia, J.P. Temporal trends in treatment and subsequent neoplasm risk Among 5-Year survivors of childhood cancer, 1970-2015. JAMA, 2017, 317(8), 814-824.
[http://dx.doi.org/10.1001/jama.2017.0693] [PMID: 28245323]
[9]
Horie, T.; Ono, K.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Kuwabara, Y.; Nakashima, Y.; Takanabe-Mori, R.; Nishi, E.; Hasegawa, K.; Kita, T.; Kimura, T. Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc. Res., 2010, 87(4), 656-664.
[http://dx.doi.org/10.1093/cvr/cvq148] [PMID: 20495188]
[10]
Fu, J.; Peng, C.; Wang, W.; Jin, H.; Tang, Q.; Wei, X. Let-7g is involved in doxorubicin induced myocardial injury. Environ. Toxicol. Pharmacol., 2012, 33(2), 312-317.
[http://dx.doi.org/10.1016/j.etap.2011.12.023] [PMID: 22301161]
[11]
Vacchi-Suzzi, C.; Bauer, Y.; Berridge, B.R.; Bongiovanni, S.; Gerrish, K.; Hamadeh, H.K.; Letzkus, M.; Lyon, J.; Moggs, J.; Paules, R.S.; Pognan, F.; Staedtler, F.; Vidgeon-Hart, M.P.; Grenet, O.; Couttet, P. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One, 2012, 7(7), e40395.
[http://dx.doi.org/10.1371/journal.pone.0040395] [PMID: 22859947]
[12]
Desai, V.G.; C Kwekel, J.; Vijay, V.; Moland, C.L.; Herman, E.H.; Lee, T.; Han, T.; Lewis, S.M.; Davis, K.J.; Muskhelishvili, L.; Kerr, S.; Fuscoe, J.C. Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicol. Appl. Pharmacol., 2014, 281(2), 221-229.
[http://dx.doi.org/10.1016/j.taap.2014.10.006] [PMID: 25448438]
[13]
Bhatt, K.; Zhou, L.; Mi, Q.S.; Huang, S.; She, J.X.; Dong, Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med., 2010, 16(9-10), 409-416.
[http://dx.doi.org/10.2119/molmed.2010.00002] [PMID: 20386864]
[14]
Joo, M.S.; Lee, C.G.; Koo, J.H.; Kim, S.G. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis., 2013, 4(10), e899.
[http://dx.doi.org/10.1038/cddis.2013.427] [PMID: 24176857]
[15]
Kanki, M.; Moriguchi, A.; Sasaki, D.; Mitori, H.; Yamada, A.; Unami, A.; Miyamae, Y. Identification of urinary miRNA biomarkers for detecting cisplatin-induced proximal tubular injury in rats. Toxicology, 2014, 324, 158-168.
[http://dx.doi.org/10.1016/j.tox.2014.05.004] [PMID: 24863737]
[16]
Pavkovic, M.; Riefke, B.; Ellinger-Ziegelbauer, H. Urinary microRNA profiling for identification of biomarkers after cisplatin-induced kidney injury. Toxicology, 2014, 324, 147-157.
[http://dx.doi.org/10.1016/j.tox.2014.05.005] [PMID: 24880025]
[17]
Pellegrini, K.L.; Han, T.; Bijol, V.; Saikumar, J.; Craciun, F.L.; Chen, W.W.; Fuscoe, J.C.; Vaidya, V.S. MicroRNA-155 deficient mice experience heightened kidney toxicity when dosed with cisplatin. Toxicol. Sci., 2014, 141(2), 484-492.
[http://dx.doi.org/10.1093/toxsci/kfu143] [PMID: 25015656]
[18]
Mohr, A.; Mott, J. Overview of microRNA biology. Semin. Liver Dis., 2015, 35(1), 003-011.
[http://dx.doi.org/10.1055/s-0034-1397344] [PMID: 25632930]
[19]
Yu, H.W.; Cho, W.C. The role of microRNAs in toxicology. Arch. Toxicol., 2015, 89(3), 319-325.
[http://dx.doi.org/10.1007/s00204-014-1440-2] [PMID: 25586887]
[20]
Bushel, P.R.; Caiment, F.; Wu, H.; O’Lone, R.; Day, F.; Calley, J.; Smith, A.; Li, J. RATEmiRs: The rat atlas of tissue-specific and enriched miRNAs database. BMC Genomics, 2018, 19(1), 825.
[http://dx.doi.org/10.1186/s12864-018-5220-x] [PMID: 30453895]
[21]
Marrone, A.K.; Beland, F.A.; Pogribny, I.P. Noncoding RNA response to xenobiotic exposure: An indicator of toxicity and carcinogenicity. Expert Opin. Drug Metab. Toxicol., 2014, 10(10), 1409-1422.
[http://dx.doi.org/10.1517/17425255.2014.954312] [PMID: 25171492]
[22]
Vrijens, K.; Bollati, V.; Nawrot, T.S. MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ. Health Perspect., 2015, 123(5), 399-411.
[http://dx.doi.org/10.1289/ehp.1408459] [PMID: 25616258]
[23]
Lee, C.T.; Risom, T.; Strauss, W.M. Evolutionary conservation of microRNA regulatory circuits: An examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol., 2007, 26(4), 209-218.
[http://dx.doi.org/10.1089/dna.2006.0545] [PMID: 17465887]
[24]
Hornby, R.J.; Lewis, P.; Dear, J.; Goldring, C.; Park, B.K. MicroRNAs as potential circulating biomarkers of drug-induced liver injury: Key current and future issues for translation to humans. Expert Rev. Clin. Pharmacol., 2014, 7(3), 349-362.
[http://dx.doi.org/10.1586/17512433.2014.904201] [PMID: 24694030]
[25]
Sohel, M.H. Extracellular/circulating MicroRNAs: Release mechanisms, functions and challenges. Achiev Life Sci, 2016, 10(2), 175-186.
[http://dx.doi.org/10.1016/j.als.2016.11.007]
[26]
Harrill, A.H.; McCullough, S.D.; Wood, C.E.; Kahle, J.J.; Chorley, B.N. MicroRNA biomarkers of toxicity in biological matrices. Toxicol. Sci., 2016, 152(2), 264-272.
[http://dx.doi.org/10.1093/toxsci/kfw090] [PMID: 27462126]
[27]
Bailey, W.J.; Glaab, W.E. Accessible miRNAs as novel toxicity biomarkers. Int. J. Toxicol., 2018, 37(2), 116-120.
[http://dx.doi.org/10.1177/1091581817752405] [PMID: 29357765]
[28]
Wang, K.; Zhang, S.; Marzolf, B.; Troisch, P.; Brightman, A.; Hu, Z.; Hood, L.E.; Galas, D.J. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4402-4407.
[http://dx.doi.org/10.1073/pnas.0813371106] [PMID: 19246379]
[29]
Akai, S.; Oda, S.; Yokoi, T. Establishment of a novel mouse model for pioglitazone-induced skeletal muscle injury. Toxicology, 2017, 382, 1-9.
[http://dx.doi.org/10.1016/j.tox.2017.03.001] [PMID: 28263783]
[30]
Watanabe, K.; Oda, S.; Matsubara, A.; Akai, S.; Yokoi, T. Establishment and characterization of a mouse model of rhabdomyolysis by coadministration of statin and fibrate. Toxicol. Lett., 2019, 307, 49-58.
[http://dx.doi.org/10.1016/j.toxlet.2019.03.001] [PMID: 30853469]
[31]
Nishimura, Y.; Kondo, C.; Morikawa, Y.; Tonomura, Y.; Torii, M.; Yamate, J.; Uehara, T. Plasma miR‐208 as a useful biomarker for drug‐induced cardiotoxicity in rats. J. Appl. Toxicol., 2015, 35(2), 173-180.
[http://dx.doi.org/10.1002/jat.3044] [PMID: 25092230]
[32]
Kakiuchi, D.; Taketa, Y.; Ohta, E.; Fujikawa, Y.; Nakano-Ito, K.; Asakura, S.; Hosokawa, S. Combination of circulating microRNAs as indicators of specific targets of retinal toxicity in rats. Toxicology, 2019, 411, 163-171.
[http://dx.doi.org/10.1016/j.tox.2018.10.008] [PMID: 30336191]
[33]
Calvano, J.; Edwards, G.; Hixson, C.; Burr, H.; Mangipudy, R.; Tirmenstein, M. Serum microRNAs-217 and −375 as biomarkers of acute pancreatic injury in rats. Toxicology, 2016, 368-369, 1-9.
[http://dx.doi.org/10.1016/j.tox.2016.08.009] [PMID: 27521901]
[34]
Wang, J.; Huang, W.; Thibault, S.; Brown, T.P.; Bobrowski, W.; Gukasyan, H.J.; Evering, W.; Hu, W.; John-Baptiste, A.; Vitsky, A. Evaluation of miR-216a and miR-217 as potential biomarkers of acute exocrine pancreatic toxicity in rats. Toxicol. Pathol., 2017, 45(2), 321e34.
[http://dx.doi.org/10.1177/0192623316678090]
[35]
Erdos, Z.; Barnum, J.E.; Wang, E.; DeMaula, C.; Dey, P.M.; Forest, T.; Bailey, W.J.; Glaab, W.E. Evaluation of the relative performance of pancreas-specific microRNAs in rat plasma as biomarkers of pancreas injury. Toxicol. Sci., 2020, 173(1), 5-18.
[http://dx.doi.org/10.1093/toxsci/kfz184] [PMID: 31504967]
[36]
Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol., 2018, 9, 1253.
[http://dx.doi.org/10.3389/fphar.2018.01253] [PMID: 30459615]
[37]
Ismael, G.F.V.; Rosa, D.D.; Mano, M.S.; Awada, A. Novel cytotoxic drugs: Old challenges, new solutions. Cancer Treat. Rev., 2008, 34(1), 81-91.
[http://dx.doi.org/10.1016/j.ctrv.2007.08.001] [PMID: 17905518]
[38]
Malarkey, D.E.; Johnson, K.; Ryan, L.; Boorman, G.; Maronpot, R.R. New insights into functional aspects of liver morphology. Toxicol. Pathol., 2005, 33(1), 27-34.
[http://dx.doi.org/10.1080/01926230590881826] [PMID: 15805053]
[39]
Gu, X.; Manautou, J.E. Molecular mechanisms underlying chemical liver injury. Expert Rev. Mol. Med., 2012, 14, e4.
[http://dx.doi.org/10.1017/S1462399411002110] [PMID: 22306029]
[40]
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[41]
Walker, P.A.; Ryder, S.; Lavado, A.; Dilworth, C.; Riley, R.J. The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Arch. Toxicol., 2020, 94(8), 2559-2585.
[http://dx.doi.org/10.1007/s00204-020-02763-w] [PMID: 32372214]
[42]
Grigorian, A.; O’Brien, C.B. Hepatotoxicity secondary to chemotherapy. J. Clin. Transl. Hepatol., 2014, 2(2), 95-102.
[PMID: 26357620]
[43]
Calistri, L.; Rastrelli, V.; Nardi, C.; Maraghelli, D.; Vidali, S.; Pietragalla, M.; Colagrande, S. Imaging of the chemotherapy-induced hepatic damage: Yellow liver, blue liver, and pseudocirrhosis. World J. Gastroenterol., 2021, 27(46), 7866-7893.
[http://dx.doi.org/10.3748/wjg.v27.i46.7866] [PMID: 35046618]
[44]
Thatishetty, A.V.; Agresti, N.; O’Brien, C.B. Chemotherapy-induced hepatotoxicity. Clin. Liver Dis., 2013, 17(4), 671-686. ix-x.
[http://dx.doi.org/10.1016/j.cld.2013.07.010] [PMID: 24099024]
[45]
Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci., 2002, 65(2), 166-176.
[http://dx.doi.org/10.1093/toxsci/65.2.166] [PMID: 11812920]
[46]
McWhirter, D.; Kitteringham, N.; Jones, R.P.; Malik, H.; Park, K.; Palmer, D. Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: A review of mechanisms and outcomes. Crit. Rev. Oncol. Hematol., 2013, 88(2), 404-415.
[http://dx.doi.org/10.1016/j.critrevonc.2013.05.011] [PMID: 23786843]
[47]
Hsu, S.; Ghoshal, K. MicroRNAs in liver health and disease. Curr. Pathobiol. Rep., 2013, 1(1), 53-62.
[http://dx.doi.org/10.1007/s40139-012-0005-4] [PMID: 23565350]
[48]
Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897.
[http://dx.doi.org/10.1172/JCI63455] [PMID: 22820290]
[49]
Hsu, S.; Wang, B.; Kota, J.; Yu, J.; Costinean, S.; Kutay, H.; Yu, L.; Bai, S.; La Perle, K.; Chivukula, R.R.; Mao, H.; Wei, M.; Clark, K.R.; Mendell, J.R.; Caligiuri, M.A.; Jacob, S.T.; Mendell, J.T.; Ghoshal, K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest., 2012, 122(8), 2871-2883.
[http://dx.doi.org/10.1172/JCI63539] [PMID: 22820288]
[50]
Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98.
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[51]
Fernández-Hernando, C.; Ramírez, C.M.; Goedeke, L.; Suárez, Y. MicroRNAs in metabolic disease. Arterioscler. Thromb. Vasc. Biol., 2013, 33(2), 178-185.
[http://dx.doi.org/10.1161/ATVBAHA.112.300144] [PMID: 23325474]
[52]
Castoldi, M.; Vujic Spasic, M.; Altamura, S.; Elmén, J.; Lindow, M.; Kiss, J.; Stolte, J.; Sparla, R.; D’Alessandro, L.A.; Klingmüller, U.; Fleming, R.E.; Longerich, T.; Gröne, H.J.; Benes, V.; Kauppinen, S.; Hentze, M.W.; Muckenthaler, M.U. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J. Clin. Invest., 2011, 121(4), 1386-1396.
[http://dx.doi.org/10.1172/JCI44883] [PMID: 21364282]
[53]
Gatfield, D.; Le Martelot, G.; Vejnar, C.E.; Gerlach, D.; Schaad, O.; Fleury-Olela, F.; Ruskeepää, A.L.; Oresic, M.; Esau, C.C.; Zdobnov, E.M.; Schibler, U. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev., 2009, 23(11), 1313-1326.
[http://dx.doi.org/10.1101/gad.1781009] [PMID: 19487572]
[54]
Sherif, I.O.; Al-Shaalan, N.H. Hepatoprotective effect of Ginkgo biloba extract against methotrexate-induced hepatotoxicity via targeting STAT3/miRNA-21 axis. Drug Chem. Toxicol., 2022, 45(4), 1723-1731.
[http://dx.doi.org/10.1080/01480545.2020.1862859] [PMID: 33349067]
[55]
Kalantari, H.; Asadmasjedi, N.; Abyaz, M.; Mahdavinia, M.; Mohammadtaghvaei, N. Protective effect of inulin on methotrexate-induced liver toxicity in mice. Biomed. Pharmacother., 2019, 110, 943-950.
[56]
Li, Y.; Gao, M.; Yin, L.H.; Xu, L.N.; Qi, Y.; Sun, P.; Peng, J.Y. Dioscin ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress. Free Radic. Biol. Med., 2021, 169, 99-109.
[57]
Abd El-Haleim, E.A.; Sallam, N.A. Vitamin D modulates hepatic microRNAs and mitigates tamoxifen-induced steatohepatitis in female rats. Fundam. Clin. Pharmacol., 2022, 36(2), 338-349.
[http://dx.doi.org/10.1111/fcp.12720] [PMID: 34312906]
[58]
El Shaffei, I.; Abdel-Latif, G.A.; Farag, D.B.; Schaalan, M.; Salama, R.M. Ameliorative effect of betanin on experimental cisplatin-induced liver injury: The novel impact of miRNA‐34a onthe SIRT1/PGC‐1α signaling pathway. J. Biochem. Mol. Toxicol., 2021, 35(6), 1-14.
[59]
Khedr, L.H.; Rahmo, R.M.; Farag, D.B.; Schaalan, M.F.; El Magdoub, H.M. Crocin attenuates cisplatin-induced hepatotoxicity via TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β activity: Involvement of miRNA-9 and miRNA-29. Food Chem. Toxicol., 2020, 140, 111307.
[60]
Zhang, Y.; Wang, D.; Shen, D.; Luo, Y.; Che, Y.Q. Identification of exosomal miRNAs associated with the anthracycline-induced liver injury in postoperative breast cancer patients by small RNA sequencing. PeerJ, 2020, 8, e9021.
[http://dx.doi.org/10.7717/peerj.9021] [PMID: 32355577]
[61]
Zhao, X.; Jin, Y.; Li, L.; Xu, L.; Tang, Z.; Qi, Y.; Yin, L.; Peng, J. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacol. Res., 2019, 146, 104276.
[http://dx.doi.org/10.1016/j.phrs.2019.104276] [PMID: 31112750]
[62]
Björnsson, E. Hepatotoxicity by drugs: The most common implicated agents. Int. J. Mol. Sci., 2016, 17(2), 224.
[http://dx.doi.org/10.3390/ijms17020224] [PMID: 26861310]
[63]
Kumari, S.; Kumari, S.; Sharma, A.K.; Kaur, I. Methotrexate induced hepatotoxicity and its management. Int. J. Sci. Res., 2016, 5, 1477-1481.
[64]
Tag, H.M. Hepatoprotective effect of mulberry (Morus nigra) leaves extract against methotrexate induced hepatotoxicity in male albino rat. BMC Complement. Altern. Med., 2015, 15(1), 252.
[http://dx.doi.org/10.1186/s12906-015-0744-y] [PMID: 26209437]
[65]
Kelleni, M.T.; Ibrahim, S.A.; Abdelrahman, A.M. Effect of captopril and telmisartan on methotrexate-induced hepatotoxicity in rats: Impact of oxidative stress, inflammation and apoptosis. Toxicol. Mech. Methods, 2016, 26(5), 371-377.
[http://dx.doi.org/10.1080/15376516.2016.1191576] [PMID: 27269004]
[66]
Khafaga, A.F.; El-Sayed, Y.S. Spirulina ameliorates methotrexate hepatotoxicity via antioxidant, immune stimulation, and proinflammatory cytokines and apoptotic proteins modulation. Life Sci., 2018, 196, 9-17.
[http://dx.doi.org/10.1016/j.lfs.2018.01.010] [PMID: 29339102]
[67]
Fouad, A.A.; Hafez, H.M.; Hamouda, A.A.H. Hydrogen sulphide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum. Exp. Toxicol., 2020, 39(1), 77-85.
[http://dx.doi.org/10.1177/0960327119877437] [PMID: 31542963]
[68]
Hafez, M.M.; Al-Harbi, N.O.; Al-Hoshani, A.R.; Al-hosaini, K.A.; Al Shrari, S.D.; Al Rejaie, S.S.; Sayed-Ahmed, M.M.; Al-Shabanah, O.A. Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl4-induced hepatotoxicity in rats. Biol. Res., 2015, 48(1), 30.
[http://dx.doi.org/10.1186/s40659-015-0022-y] [PMID: 26062544]
[69]
Calo, N.; Ramadori, P.; Sobolewski, C.; Romero, Y.; Maeder, C.; Fournier, M.; Rantakari, P.; Zhang, F.P.; Poutanen, M.; Dufour, J.F.; Humar, B.; Nef, S.; Foti, M. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut, 2016, 65(11), 1871-1881.
[http://dx.doi.org/10.1136/gutjnl-2015-310822] [PMID: 27222533]
[70]
Loyer, X.; Paradis, V.; Hénique, C.; Vion, A.C.; Colnot, N.; Guerin, C.L.; Devue, C.; On, S.; Scetbun, J.; Romain, M.; Paul, J.L.; Rothenberg, M.E.; Marcellin, P.; Durand, F.; Bedossa, P.; Prip-Buus, C.; Baugé, E.; Staels, B.; Boulanger, C.M.; Tedgui, A.; Rautou, P.E. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut, 2016, 65(11), 1882-1894.
[http://dx.doi.org/10.1136/gutjnl-2014-308883] [PMID: 26338827]
[71]
Dippold, R.P.; Vadigepalli, R.; Gonye, G.E.; Hoek, J.B. Chronic ethanol feeding enhances miR-21 induction during liver regeneration while inhibiting proliferation in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(6), G733-G743.
[http://dx.doi.org/10.1152/ajpgi.00019.2012] [PMID: 22790595]
[72]
Zhao, J.; Tang, N.; Wu, K.; Dai, W.; Ye, C.; Shi, J.; Zhang, J.; Ning, B.; Zeng, X.; Lin, Y. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One, 2014, 9(10), e108005.
[http://dx.doi.org/10.1371/journal.pone.0108005] [PMID: 25303175]
[73]
Wang, F.; Liu, W.; Jin, Y.; Wang, F.; Ma, J. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers. Environ. Toxicol., 2015, 30(6), 712-723. [a]
[http://dx.doi.org/10.1002/tox.21949] [PMID: 24420840]
[74]
Afonso, M.B.; Rodrigues, P.M.; Simão, A.L.; Gaspar, M.M.; Carvalho, T.; Borralho, P.; Bañales, J.M.; Castro, R.E.; Rodrigues, C.M.P. miRNA-21 ablation protects against liver injury and necroptosis in cholestasis. Cell Death Differ., 2018, 25(5), 857-872.
[http://dx.doi.org/10.1038/s41418-017-0019-x] [PMID: 29229992]
[75]
Zhu, C.; Zhang, M.; Hu, J.; Li, H.; Liu, S.; Li, T.; Wu, L.; Han, B. Prognostic effect of IL-6/JAK2/STAT3 signal-induced microRNA-21-5p expression on short term recurrence of hepatocellular carcinoma after hepatectomy. Int. J. Clin. Exp. Pathol., 2018, 11(8), 4169-4178.
[PMID: 31949811]
[76]
Lin, C.J.F.; Gong, H.Y.; Tseng, H.C.; Wang, W.L.; Wu, J.L. miR- 122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem. Biophys. Res. Commun., 2008, 375(3), 315-320.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.154] [PMID: 18692484]
[77]
Lima, R.T.; Busacca, S.; Almeida, G.M.; Gaudino, G.; Fennell, D.A.; Vasconcelos, M.H. MicroRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer, 2011, 47(2), 163-174.
[http://dx.doi.org/10.1016/j.ejca.2010.11.005] [PMID: 21145728]
[78]
Zhang, Y.; Jia, Y.; Zheng, R.; Guo, Y.; Wang, Y.; Guo, H.; Fei, M.; Sun, S. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin. Chem., 2010, 56(12), 1830-1838.
[http://dx.doi.org/10.1373/clinchem.2010.147850] [PMID: 20930130]
[79]
Starkey Lewis, P.J.; Dear, J.; Platt, V.; Simpson, K.J.; Craig, D.G.N.; Antoine, D.J.; French, N.S.; Dhaun, N.; Webb, D.J.; Costello, E.M.; Neoptolemos, J.P.; Moggs, J.; Goldring, C.E.; Park, B.K. Circulating microRNAs as potential markers of human druginduced liver injury. Hepatology, 2011, 54(5), 1767-1776.
[http://dx.doi.org/10.1002/hep.24538] [PMID: 22045675]
[80]
Yuan, M.; Zhang, L.; You, F.; Zhou, J.; Ma, Y.; Yang, F.; Tao, L. MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol. Cell. Biochem., 2017, 431(1-2), 123-131.
[http://dx.doi.org/10.1007/s11010-017-2982-4] [PMID: 28281187]
[81]
Hui, Y.; Yin, Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling. Life Sci., 2018, 207, 212-218.
[http://dx.doi.org/10.1016/j.lfs.2018.06.005] [PMID: 29883722]
[82]
Wu, J.; He, Y.; Luo, Y.; Zhang, L.; Lin, H.; Liu, X.; Liu, B.; Liang, C.; Zhou, Y.; Zhou, J. MiR‐145‐5p inhibits proliferation and inflammatory responses of RMC through regulating AKT/GSK pathway by targeting CXCL16. J. Cell. Physiol., 2018, 233(4), 3648-3659.
[http://dx.doi.org/10.1002/jcp.26228] [PMID: 29030988]
[83]
Addo, R.; Haas, M.; Goodall, S. The cost-effectiveness of adjuvant tamoxifen treatment of hormone receptor–positive early breast cancer among premenopausal and perimenopausal Ghanaian women. Value Health Reg. Issues, 2021, 25, 196-205.
[http://dx.doi.org/10.1016/j.vhri.2021.05.005] [PMID: 34428695]
[84]
Condorelli, R.; Vaz-Luis, I. Managing side effects in adjuvant endocrine therapy for breast cancer. Expert Rev. Anticancer Ther., 2018, 18(11), 1101-1112.
[http://dx.doi.org/10.1080/14737140.2018.1520096] [PMID: 30188738]
[85]
Lee, B.; Jung, E.A.; Yoo, J.J.; Kim, S.G.; Lee, C.B.; Kim, Y.S.; Jeong, S.W.; Jang, J.Y.; Lee, S.H.; Kim, H.S.; Jun, B.G.; Kim, Y.D.; Cheon, G.J.; Kim, Y.D.; Cheon, G.J. Prevalence, incidence and risk factors of tamoxifen‐related non-alcoholic fatty liver disease: A systematic review and meta‐analysis. Liver Int., 2020, 40(6), 1344-1355.
[http://dx.doi.org/10.1111/liv.14434] [PMID: 32170895]
[86]
Cole, L.K.; Jacobs, R.L.; Vance, D.E. Tamoxifen induces triacylglycerol accumulation in the mouse liver by activation of fatty acid synthesis. Hepatology, 2010, 52(4), 1258-1265.
[http://dx.doi.org/10.1002/hep.23813] [PMID: 20658461]
[87]
Zhao, F.; Xie, P.; Jiang, J.; Zhang, L.; An, W.; Zhan, Y. The effect and mechanism of tamoxifen-induced hepatocyte steatosis in vitro. Int. J. Mol. Sci., 2014, 15(3), 4019-4030.
[http://dx.doi.org/10.3390/ijms15034019] [PMID: 24603540]
[88]
Birzniece, V.; Barrett, P.H.R.; Ho, K.K.Y. Tamoxifen reduces hepatic VLDL production and GH secretion in women: A possible mechanism for steatosis development. Eur. J. Endocrinol., 2017, 177(2), 137-143.
[http://dx.doi.org/10.1530/EJE-17-0151] [PMID: 28500244]
[89]
Ribeiro, M.P.C.; Santos, A.E.; Custódio, J.B.A. Mitochondria: The gateway for tamoxifen-induced liver injury. Toxicology, 2014, 323, 10-18.
[http://dx.doi.org/10.1016/j.tox.2014.05.009] [PMID: 24881593]
[90]
Hochreuter, M.Y.; Dall, M.; Treebak, J.T.; Barrès, R. MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol. Metab., 2022, 65, 101581.
[http://dx.doi.org/10.1016/j.molmet.2022.101581] [PMID: 36028120]
[91]
Miyaaki, H.; Ichikawa, T.; Kamo, Y.; Taura, N.; Honda, T.; Shibata, H.; Milazzo, M.; Fornari, F.; Gramantieri, L.; Bolondi, L.; Nakao, K. Significance of serum and hepatic micro RNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int., 2014, 34(7), e302-e307.
[http://dx.doi.org/10.1111/liv.12429] [PMID: 24313922]
[92]
Yamada, H.; Ohashi, K.; Suzuki, K.; Munetsuna, E.; Ando, Y.; Yamazaki, M.; Ishikawa, H.; Ichino, N.; Teradaira, R.; Hashimoto, S. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin. Chim. Acta, 2015, 446, 267-271.
[http://dx.doi.org/10.1016/j.cca.2015.05.002] [PMID: 25958847]
[93]
Rottiers, V.; Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 239-250.
[http://dx.doi.org/10.1038/nrm3313] [PMID: 22436747]
[94]
Rayner, K.J.; Esau, C.C.; Hussain, F.N.; McDaniel, A.L.; Marshall, S.M.; van Gils, J.M.; Ray, J.M.; Sheedy, T.D.; Goedeke, F.J.; Liu, L.; Khatsenko, X.; Kaimal, O.G.; Lees, V.; Fernandez-Hernando, C.J.; Fisher, C.; Temel, E.A.; Moore, K.J. Inhibition of miR-33a/b in non-human primates raises plasma HDL and reduces VLDL triglycerides. Nature, 2012, 478, 404-407.
[http://dx.doi.org/10.1038/nature10486] [PMID: 22012398]
[95]
Jin, X.; Ye, Y.F.; Chen, S.H.; Yu, C.H.; Liu, J.; Li, Y.M. MicroRNA expression pattern in different stages of nonalcoholic fatty liver disease. Dig. Liver Dis., 2009, 41(4), 289-297.
[http://dx.doi.org/10.1016/j.dld.2008.08.008] [PMID: 18922750]
[96]
López-Riera, M.; Conde, I.; Tolosa, L.; Zaragoza, Á.; Castell, J.V.; Gómez-Lechón, M.J.; Jover, R. New microRNA biomarkers for drug-induced steatosis and their potential to predict the contribution of drugs to non-alcoholic fatty liver disease. Front. Pharmacol., 2017, 8, 3.
[http://dx.doi.org/10.3389/fphar.2017.00003] [PMID: 28179883]
[97]
Nam, H.S.; Hwang, K.S.; Jeong, Y.M.; Ryu, J.I.; Choi, T.Y.; Bae, M.A.; Son, W.C.; You, K.H.; Son, H.Y.; Kim, C.H. Expression of miRNA-122 induced by liver toxicants in Zebrafish. BioMed Res. Int., 2016, 2016, 1-7.
[http://dx.doi.org/10.1155/2016/1473578] [PMID: 27563662]
[98]
Moore, K.J.; Rayner, K.J.; Suárez, Y.; Fernández-Hernando, C. The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu. Rev. Nutr., 2011, 31(1), 49-63.
[http://dx.doi.org/10.1146/annurev-nutr-081810-160756] [PMID: 21548778]
[99]
Dasari, S.; Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[100]
Shu, X.L.; Fan, C.B.; Long, B.; Zhou, X.; Wang, Y. The anticancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(21), 4459-4465.
[PMID: 27874954]
[101]
Omar, H.A.; Mohamed, W.R.; Arab, H.H.; Arafa, E.S.A. Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: targeting MAPKs and apoptosis. PLoS One, 2016, 11(3), e0151649.
[http://dx.doi.org/10.1371/journal.pone.0151649] [PMID: 27031695]
[102]
Shahid, F.; Farooqui, Z.; Khan, F. Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur. J. Pharmacol., 2018, 827, 49-57.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.009] [PMID: 29530589]
[103]
Yamakuchi, M. MicroRNA regulation of SIRT1. Front. Physiol., 2012, 3, 68.
[http://dx.doi.org/10.3389/fphys.2012.00068] [PMID: 22479251]
[104]
Akbari, G.; Mard, S.A.; Dianat, M.; Mansouri, E. The hepatoprotective and microRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats. Oxid. Med. Cell. Longev., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/1702967] [PMID: 28367266]
[105]
Cheng, X.; Ku, C.H.; Siow, R.C.M. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic. Biol. Med., 2013, 64, 4-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.025] [PMID: 23880293]
[106]
Seki, E.; De Minicis, S.; Österreicher, C.H.; Kluwe, J.; Osawa, Y.; Brenner, D.A.; Schwabe, R.F. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med., 2007, 13(11), 1324-1332.
[http://dx.doi.org/10.1038/nm1663] [PMID: 17952090]
[107]
El-Shitany, N.A.; Eid, B. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-κβ/TLR-4 pathway. Environ. Toxicol., 2017, 32(7), 1952-1963.
[http://dx.doi.org/10.1002/tox.22418] [PMID: 28371137]
[108]
Guo, J.; Friedman, S.L. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair, 2010, 3(1), 21.
[http://dx.doi.org/10.1186/1755-1536-3-21] [PMID: 20964825]
[109]
Nakamoto, N.; Kanai, T. Role of toll-like receptors in immune activation and tolerance in the liver. Front. Immunol., 2014, 5, 221.
[http://dx.doi.org/10.3389/fimmu.2014.00221] [PMID: 24904576]
[110]
Yang, L.; Seki, E. Toll-like receptors in liver fibrosis: Cellular crosstalk and mechanisms. Front. Physiol., 2012, 3, 138.
[http://dx.doi.org/10.3389/fphys.2012.00138] [PMID: 22661952]
[111]
Liu, C.; Chen, X.; Yang, L.; Kisseleva, T.; Brenner, D.A.; Seki, E. Transcriptional repression of the transforming growth factor β (TGF-β) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J. Biol. Chem., 2014, 289(10), 7082-7091.
[http://dx.doi.org/10.1074/jbc.M113.543769] [PMID: 24448807]
[112]
O’Neill, L.A.; Sheedy, F.J.; McCoy, C.E. MicroRNAs: the fine tuners of Toll-like receptor signalling. Nat. Rev. Immunol., 2011, 11(3), 163-175.
[http://dx.doi.org/10.1038/nri2957] [PMID: 21331081]
[113]
Bazzoni, F.; Rossato, M.; Fabbri, M.; Gaudiosi, D.; Mirolo, M.; Mori, L.; Tamassia, N.; Mantovani, A.; Cassatella, M.A.; Locati, M. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. USA, 2009, 106(13), 5282-5287.
[http://dx.doi.org/10.1073/pnas.0810909106] [PMID: 19289835]
[114]
Roderburg, C.; Urban, G.W.; Bettermann, K.; Vucur, M.; Zimmermann, H.; Schmidt, S.; Janssen, J.; Koppe, C.; Knolle, P.; Castoldi, M.; Tacke, F.; Trautwein, C.; Luedde, T. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology, 2011, 53(1), 209-218.
[http://dx.doi.org/10.1002/hep.23922] [PMID: 20890893]
[115]
Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[116]
Wu, J.; Xue, X.; Zhang, B.; Jiang, W.; Cao, H.; Wang, R.; Sun, D.; Guo, R. The protective effects of paeonol against epirubicininduced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chem. Biol. Interact., 2016, 244, 1-8.
[http://dx.doi.org/10.1016/j.cbi.2015.11.025] [PMID: 26646421]
[117]
Masyuk, A.I.; Masyuk, T.V.; LaRusso, N.F. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J. Hepatol., 2013, 59(3), 621-625.
[http://dx.doi.org/10.1016/j.jhep.2013.03.028] [PMID: 23557871]
[118]
Kagawa, T.; Shirai, Y.; Oda, S.; Yokoi, T. Identification of specific MicroRNA biomarkers in early stages of hepatocellular injury, cholestasis, and steatosis in rats. Toxicol. Sci., 2018, 166(1), 228-239.
[http://dx.doi.org/10.1093/toxsci/kfy200] [PMID: 30125006]
[119]
Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2012, 65(2), 157-170.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]
[120]
Zhou, S.; Palmeira, C.M.; Wallace, K.B. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol. Lett., 2001, 121(3), 151-157.
[http://dx.doi.org/10.1016/S0378-4274(01)00329-0] [PMID: 11369469]
[121]
Panis, C.; Herrera, A.C.S.A.; Victorino, V.J.; Campos, F.C.; Freitas, L.F.; De Rossi, T.; Simão, A.N.; Cecchini, A.L.; Cecchini, R. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res. Treat., 2012, 133(1), 89-97.
[http://dx.doi.org/10.1007/s10549-011-1693-x] [PMID: 21811816]
[122]
Wang, Z.; Wang, J.; Xie, R.; Liu, R.; Lu, Y. Mitochondria-derived reactive oxygen species play an important role in Doxorubicininduced platelet apoptosis. Int. J. Mol. Sci., 2015, 16(12), 11087-11100.
[http://dx.doi.org/10.3390/ijms160511087] [PMID: 25988386]
[123]
Gao, J-P.; Wu, R.; Wang, H.L.; Gao, Y.; Wu, Q.; Cui, X.H. Effects of fermented Cordyceps sinensis on oxidative stress in doxorubicin treated rats. Pharmacogn. Mag., 2015, 11(44), 724-731.
[http://dx.doi.org/10.4103/0973-1296.165562] [PMID: 26600716]
[124]
Damodar, G.; Smitha, T.; Gopinath, S.; Vijayakumar, S.; Rao, Y.A. An evaluation of hepatotoxicity in breast cancer patients receiving injection doxorubicin. Ann. Med. Health Sci. Res., 2014, 4(1), 74-79.
[http://dx.doi.org/10.4103/2141-9248.126619] [PMID: 24669335]
[125]
Wided, K.; Hassiba, R.; Mesbah, L. Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria. Pak. J. Pharm. Sci., 2014, 27(6), 1891-1897.
[PMID: 25362594]
[126]
Stanimirov, B.; Stankov, K.; Pavlovic, N.; Stojancevic, M.; Vukmirovic, S.; Mikov, M. The amelioration of doxorubicin-induced oxidative liver injury by ursodeoxycholic acid. Value Health, 2015, 18(3), A222.
[http://dx.doi.org/10.1016/j.jval.2015.03.1291]
[127]
Povero, D.; Panera, N.; Eguchi, A.; Johnson, C.D.; Papouchado, B.G.; de Araujo Horcel, L.; Pinatel, E.M.; Alisi, A.; Nobili, V.; Feldstein, A.E. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell. Mol. Gastroenterol. Hepatol., 2015, 1(6), 646-663.e4.
[http://dx.doi.org/10.1016/j.jcmgh.2015.07.007] [PMID: 26783552]
[128]
Chen, G.; Xu, C.; Zhang, J.; Li, Q.; Cui, H.; Li, X.; Chang, L.; Tang, R.; Xu, J.; Tian, X.; Huang, P.; Xu, J.; Jin, C.; Yang, Y. Inhibition of miR-128-3p by tongxinluo protects human cardiomyocytes from ischemia/reperfusion injury via upregulation of p70s6k1/p-p70s6k1. Front. Pharmacol., 2017, 8, 775.
[http://dx.doi.org/10.3389/fphar.2017.00775] [PMID: 29163161]
[129]
Sanjay, S.; Girish, C. Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury. Eur. J. Clin. Pharmacol., 2017, 73(4), 399-407.
[http://dx.doi.org/10.1007/s00228-016-2183-1] [PMID: 28028586]
[130]
Lin, H.; Ewing, L.E.; Koturbash, I.; Gurley, B.J.; Miousse, I.R. MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food Chem. Toxicol., 2017, 110, 229-239.
[http://dx.doi.org/10.1016/j.fct.2017.10.026] [PMID: 29042291]
[131]
Murakami, Y.; Toyoda, H.; Tanahashi, T.; Tanaka, J.; Kumada, T.; Yoshioka, Y.; Kosaka, N.; Ochiya, T.; Taguchi, Y. Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PLoS One, 2012, 7(10), e48366.
[http://dx.doi.org/10.1371/journal.pone.0048366] [PMID: 23152743]
[132]
Bala, S.; Marcos, M.; Szabo, G. Emerging role of microRNAs in liver diseases. World J. Gastroenterol., 2009, 15(45), 5633-5640.
[http://dx.doi.org/10.3748/wjg.15.5633] [PMID: 19960558]
[133]
Marquez, R.T.; Bandyopadhyay, S.; Wendlandt, E.B.; Keck, K.; Hoffer, B.A.; Icardi, M.S.; Christensen, R.N.; Schmidt, W.N.; McCaffrey, A.P. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab. Invest., 2010, 90(12), 1727-1736.
[http://dx.doi.org/10.1038/labinvest.2010.126] [PMID: 20625373]
[134]
Yang, X.; Salminen, W.F.; Shi, Q.; Greenhaw, J.; Gill, P.S.; Bhattacharyya, S.; Beger, R.D.; Mendrick, D.L.; Mattes, W.B.; James, L.P. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children. Toxicol. Appl. Pharmacol., 2015, 284(2), 180-187.
[http://dx.doi.org/10.1016/j.taap.2015.02.013] [PMID: 25708609]
[135]
Mosedale, M.; Eaddy, J.S.; Trask, O.J., Jr; Holman, N.S.; Wolf, K.K.; LeCluyse, E.; Ware, B.R.; Khetani, S.R.; Lu, J.; Brock, W.J.; Roth, S.E.; Watkins, P.B. miR-122 release in exosomes precedes overt tolvaptan-induced necrosis in a primary human hepatocyte micropatterned coculture model. Toxicol. Sci., 2018, 161(1), 149-158.
[http://dx.doi.org/10.1093/toxsci/kfx206] [PMID: 29029277]
[136]
Yucel, Y.; Oguz, E.; Kocarslan, S.; Tatli, F.; Gozeneli, O.; Seker, A.; Sezen, H.; Buyukaslan, H.; Aktumen, A.; Ozgonul, A.; Uzunkoy, A.; Aksoy, N. The effects of lycopene on methotrexate-induced liver injury in rats. Bratisl. Med. J., 2017, 118(4), 212-216.
[http://dx.doi.org/10.4149/BLL_2017_042] [PMID: 28471231]
[137]
Cao, Y.; Shi, H.; Sun, Z.; Wu, J.; Xia, Y.; Wang, Y.; Wu, Y.; Li, X.; Chen, W.; Wang, A.; Lu, Y. Protective effects of magnesium glycyrrhizinate on methotrexate-induced hepatotoxicity and intestinal toxicity may be by reducing COX-2. Front. Pharmacol., 2019, 10, 119.
[http://dx.doi.org/10.3389/fphar.2019.00119] [PMID: 30971913]
[138]
Bu, T.; Wang, C.; Meng, Q.; Huo, X.; Sun, H.; Sun, P.; Zheng, S.; Ma, X.; Liu, Z.; Liu, K. Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. Eur. J. Pharmacol., 2018, 834, 266-273.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.031] [PMID: 30031796]
[139]
Mahmoud, A.M.; Hozayen, W.G.; Ramadan, S.M. Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARγ, and suppressing oxidative stress and apoptosis in rats. Biomed. Pharmacother., 2017, 94, 280-291.
[http://dx.doi.org/10.1016/j.biopha.2017.07.101] [PMID: 28763751]
[140]
Mehrzadi, S.; Fatemi, I.; Esmaeilizadeh, M.; Ghaznavi, H.; Kalantar, H.; Goudarzi, M. Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomed. Pharmacother., 2018, 97, 233-239.
[http://dx.doi.org/10.1016/j.biopha.2017.10.113] [PMID: 29091871]
[141]
Li, Y.; Zhu, X.; Wang, K.; Zhu, L.; Murray, M.; Zhou, F. The potential of Ginkgo biloba in the treatment of human diseases and the relationship to Nrf2–mediated antioxidant protection. J. Pharm. Pharmacol., 2022, 74(12), 1689-1699.
[http://dx.doi.org/10.1093/jpp/rgac036] [PMID: 36173884]
[142]
Dubber, M-J.; Kanfer, I. High-performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms. J. Pharm. Pharm. Sci., 2004, 7(3), 303-309.
[PMID: 15576009]
[143]
Luo, Y.; Smith, J.V. Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol., 2004, 64(4), 465-472.
[http://dx.doi.org/10.1007/s00253-003-1527-9] [PMID: 14740187]
[144]
Wang, Y.; Wang, R.; Wang, Y.; Peng, R.; Wu, Y.; Yuan, Y. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling. Drug Des. Devel. Ther., 2015, 9, 6303-6317. [c]
[PMID: 26664050]
[145]
Tousson, E.; Atteya, Z.; El-Atrash, E.; Jeweely, O.I. Abrogation by Ginkgo byloba leaf extract on hepatic and renal toxicity induced by methotrexate in rats. J Cancer Res Treat, 2014, 2(3), 44-51.
[146]
Al Kury, L.T.; Dayyan, F.; Ali Shah, F.; Malik, Z.; Khalil, A.A.K.; Alattar, A.; Alshaman, R.; Ali, A.; Khan, Z. Ginkgo biloba extract protects against methotrexate-induced hepatotoxicity: A computational and pharmacological approach. Molecules, 2020, 25(11), 2540.
[http://dx.doi.org/10.3390/molecules25112540] [PMID: 32486047]
[147]
Abd El-Maksoud, E.M.; Lebda, M.A.; Hashem, A.E.; Taha, N.M.; Kamel, M.A. Ginkgo biloba mitigates silver nanoparticles-induced hepatotoxicity in Wistar rats via improvement of mitochondrial biogenesis and antioxidant status. Environ. Sci. Pollut. Res. Int., 2019, 26(25), 25844-25854.
[http://dx.doi.org/10.1007/s11356-019-05835-2] [PMID: 31267406]
[148]
Apolinário, A.C.; de Lima Damasceno, B.P.G.; de Macêdo Beltrão, N.E.; Pessoa, A.; Converti, A.; da Silva, J.A. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym., 2014, 101, 368-378.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.081] [PMID: 24299785]
[149]
Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol., 2013, 61, 1-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.06.044] [PMID: 23831534]
[150]
Sugatani, J.; Wada, T.; Osabe, M.; Yamakawa, K.; Yoshinari, K.; Miwa, M. Dietary inulin alleviates hepatic steatosis and xenobiotics-induced liver injury in rats fed a high-fat and high-sucrose diet: Association with the suppression of hepatic cytochrome P450 and hepatocyte nuclear factor 4α expression. Drug Metab. Dispos., 2006, 34(10), 1677-1687.
[http://dx.doi.org/10.1124/dmd.106.010645] [PMID: 16815962]
[151]
Pasqualetti, V.; Altomare, A.; Guarino, M.P.L.; Locato, V.; Cocca, S.; Cimini, S.; Palma, R.; Alloni, R.; De Gara, L.; Cicala, M. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLoS One, 2014, 9(5), e98031.
[http://dx.doi.org/10.1371/journal.pone.0098031] [PMID: 24837182]
[152]
Yao, H.; Tao, X.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Xu, Y.; Zheng, L.; Peng, J. Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway. Pharmacol. Res., 2018, 131, 51-60.
[http://dx.doi.org/10.1016/j.phrs.2018.03.017] [PMID: 29574225]
[153]
Tao, X.; Wan, X.; Xu, Y.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Lin, Y.; Peng, J. Dioscin attenuates hepatic ischemia-reperfusion injury in rats through inhibition of oxidative-nitrative stress, inflammation and apoptosis. Transplantation, 2014, 98(6), 604-611.
[http://dx.doi.org/10.1097/TP.0000000000000262] [PMID: 25083618]
[154]
Song, S.; Chu, L.; Liang, H.; Chen, J.; Liang, J.; Huang, Z.; Zhang, B.; Chen, X. Protective effects of dioscin against doxorubicin-induced hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal. Front. Pharmacol., 2019, 10, 1030.
[http://dx.doi.org/10.3389/fphar.2019.01030] [PMID: 31572199]
[155]
Khammissa, R.A.G.; Fourie, J.; Motswaledi, M.H.; Ballyram, R.; Lemmer, J.; Feller, L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. BioMed Res. Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/9276380] [PMID: 29951549]
[156]
Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys., 2012, 523(1), 123-133.
[http://dx.doi.org/10.1016/j.abb.2012.04.001] [PMID: 22503810]
[157]
Montecino, M.; Stein, G.; Stein, J.L.; Lian, J.B.; van Wijnen, A.J.; Carvallo, L.; Marcellini, S.; Cruzat, F.; Arriagada, G. Vitamin D control of gene expression: Temporal and spatial parameters for organization of the regulatory machinery. Crit. Rev. Eukaryot. Gene Expr., 2008, 18(2), 163-172.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v18.i2.50] [PMID: 18304030]
[158]
Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Handunnetthi, L.; Handel, A.E.; Disanto, G.; Orton, S.M.; Watson, C.T.; Morahan, J.M.; Giovannoni, G.; Ponting, C.P.; Ebers, G.C.; Knight, J.C. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res., 2010, 20(10), 1352-1360.
[http://dx.doi.org/10.1101/gr.107920.110] [PMID: 20736230]
[159]
Eliassen, A.H.; Warner, E.T.; Rosner, B.; Collins, L.C.; Beck, A.H.; Quintana, L.M.; Tamimi, R.M.; Hankinson, S.E. Plasma 25-Hydroxyvitamin D and risk of breast cancer in women followed over 20 years. Cancer Res., 2016, 76(18), 5423-5430.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0353] [PMID: 27530324]
[160]
Wang, X.; Li, W.; Zhang, Y.; Yang, Y.; Qin, G. Association between vitamin D and non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: Results from a meta-analysis. Int. J. Clin. Exp. Med., 2015, 8(10), 17221-17234. [d]
[PMID: 26770315]
[161]
de La Puente-Yagüe, M.; Cuadrado-Cenzual, M.A.; Ciudad-Cabañas, M.J.; Hernández-Cabria, M.; Collado-Yurrita, L.; Vitamin, D. And its role in breast cancer. Kaohsiung J. Med. Sci., 2018, 34(8), 423-427.
[http://dx.doi.org/10.1016/j.kjms.2018.03.004] [PMID: 30041759]
[162]
Wang, H.; Zhang, Q.; Chai, Y.; Liu, Y.; Li, F.; Wang, B.; Zhu, C.; Cui, J.; Qu, H.; Zhu, M. 1,25(OH)2D3 downregulates the Toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. J. Endocrinol. Invest., 2015, 38(10), 1083-1091. e
[http://dx.doi.org/10.1007/s40618-015-0287-6] [PMID: 25906757]
[163]
Yin, Y.; Yu, Z.; Xia, M.; Luo, X.; Lu, X.; Ling, W. Vitamin D attenuates high fat diet–induced hepatic steatosis in rats by modulating lipid metabolism. Eur. J. Clin. Invest., 2012, 42(11), 1189-1196.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02706.x] [PMID: 22958216]
[164]
Asano, L.; Watanabe, M.; Ryoden, Y.; Usuda, K.; Yamaguchi, T.; Khambu, B.; Takashima, M.; Sato, S.; Sakai, J.; Nagasawa, K.; Uesugi, M.; Vitamin, D. Vitamin D metabolite, 25-hydroxyvitamin D, regulates lipid metabolism by inducing degradation of SREBP/SCAP. Cell Chem. Biol., 2017, 24(2), 207-217.
[http://dx.doi.org/10.1016/j.chembiol.2016.12.017] [PMID: 28132894]
[165]
Li, R.; Guo, E.; Yang, J.; Li, A.; Yang, Y.; Liu, S.; Liu, A.; Jiang, X. 1,25(OH) 2 D 3 attenuates hepatic steatosis by inducing autophagy in mice. Obesity, 2017, 25(3), 561-571.
[http://dx.doi.org/10.1002/oby.21757] [PMID: 28145056]
[166]
Geier, A.; Eichinger, M.; Stirnimann, G.; Semela, D.; Tay, F.; Seifert, B.; Tschopp, O.; Bantel, H.; Jahn, D.; Marques Maggio, E.; Saleh, L.; Bischoff-Ferrari, H.A.; Müllhaupt, B.; Dufour, J.F. Treatment of non-alcoholic steatohepatitis patients with vitamin D: A double-blinded, randomized, placebo-controlled pilot study. Scand. J. Gastroenterol., 2018, 53(9), 1114-1120.
[http://dx.doi.org/10.1080/00365521.2018.1501091] [PMID: 30270688]
[167]
Hariri, M.; Zohdi, S. Effect of vitamin D on non-alcoholic fatty liver disease: A systematic review of randomized controlled clinical trials. Int. J. Prev. Med., 2019, 10(1), 14.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_499_17] [PMID: 30774848]
[168]
Jahn, D.; Dorbath, D.; Kircher, S.; Nier, A.; Bergheim, I.; Lenaerts, K.; Hermanns, H.M.; Geier, A. Beneficial effects of vitamin D treatment in an obese mouse model of non-alcoholic steatohepatitis. Nutrients, 2019, 11(1), 77.
[http://dx.doi.org/10.3390/nu11010077] [PMID: 30609782]
[169]
Ahmadian, E.; Khosroushahi, A.Y.; Eghbal, M.A.; Eftekhari, A. Betanin reduces organophosphate induced cytotoxicity in primary hepatocyte via an anti-oxidative and mitochondrial dependent pathway. Pestic. Biochem. Physiol., 2018, 144, 71-78.
[http://dx.doi.org/10.1016/j.pestbp.2017.11.009] [PMID: 29463411]
[170]
Krajka-Kuźniak, V.; Paluszczak, J.; Szaefer, H.; Baer-Dubowska, W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br. J. Nutr., 2013, 110(12), 2138-2149.
[http://dx.doi.org/10.1017/S0007114513001645] [PMID: 23769299]
[171]
Hosseinzadeh, H.; Nassiri-Asl, M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): A review. Phytother. Res., 2013, 27(4), 475-483.
[http://dx.doi.org/10.1002/ptr.4784] [PMID: 22815242]
[172]
Hassani, F.; Mehri, S.; Abnous, K.; Birner-Gruenberger, R.; Hosseinzadeh, H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem. Toxicol., 2017, 107(Pt A), 395-405.
[http://dx.doi.org/10.1016/j.fct.2017.07.007] [PMID: 28689058]
[173]
Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in cancer (review of literature). Int. J. Mol. Sci., 2022, 23(5), 2805.
[http://dx.doi.org/10.3390/ijms23052805] [PMID: 35269947]
[174]
Abolghasemi, M.; Tehrani, S.S.; Yousefi, T.; Karimian, A.; Mahmoodpoor, A.; Ghamari, A.; Jadidi-Niaragh, F.; Yousefi, M.; Kafil, H.S.; Bastami, M.; Edalati, M.; Eyvazi, S.; Naghizadeh, M.; Targhazeh, N.; Yousefi, B.; Safa, A.; Majidinia, M.; Rameshknia, V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J. Cell. Physiol., 2020, 235(6), 5008-5029.
[http://dx.doi.org/10.1002/jcp.29396] [PMID: 31724738]
[175]
Cui, Y.; Wang, J.; Liu, S.; Qu, D.; Jin, H.; Zhu, L.; Yang, J.; Zhang, J.; Li, Q.; Zhang, Y.; Yao, Y. miR‐216a promotes breast cancer cell apoptosis by targeting PKC α. Fundam. Clin. Pharmacol., 2019, 33(4), 397-404.
[http://dx.doi.org/10.1111/fcp.12481] [PMID: 31119784]
[176]
Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies. BioMed Res. Int., 2014, 2014, 1-17.
[http://dx.doi.org/10.1155/2014/804510] [PMID: 25254214]
[177]
Giangreco, A.A.; Nonn, L. The sum of many small changes: MicroRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J. Steroid Biochem. Mol. Biol., 2013, 136, 86-93.
[http://dx.doi.org/10.1016/j.jsbmb.2013.01.001] [PMID: 23333596]
[178]
Elbaz, E.M.; Ahmed, K.A.; Abdelmonem, M. Resveratrol mitigates diclofenac‐induced hepatorenal toxicity in rats via modulation of miR‐144/Nrf2/GSH axis. J. Biochem. Mol. Toxicol., 2022, 36(9), e23129.
[http://dx.doi.org/10.1002/jbt.23129] [PMID: 35673973]
[179]
El Gizawy, H.A.; El-Haddad, A.E.; Saadeldeen, A.M.; Boshra, S.A. Tentatively identified (UPLC/T-TOF–MS/MS) compounds in the extract of saussurea costus roots exhibit in vivo hepatoprotection via modulation of HNF-1α, Sirtuin-1, C/ebpα, miRNA-34a and miRNA-223. Molecules, 2022, 27(9), 2802.
[http://dx.doi.org/10.3390/molecules27092802] [PMID: 35566153]
[180]
Fu, R.; Zhou, J.; Wang, R.; Sun, R.; Feng, D.; Wang, Z.; Zhao, Y.; Lv, L.; Tian, X.; Yao, J. Protocatechuic acid-mediated miR-219a-5p activation inhibits the p66shc oxidant pathway to alleviate alcoholic liver injury. Oxid. Med. Cell. Longev., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/3527809] [PMID: 31428222]
[181]
Ekici Günay, N.; Muhtaroğlu, S.; Bedirli, A. Administration of Ginkgo biloba extract (EGb761) alone and in combination with FK506 promotes liver regeneration in a rat model of partial hepatectomy. Balkan Med. J., 2018, 35(2), 174-180.
[http://dx.doi.org/10.4274/balkanmedj.2016.1830] [PMID: 29553465]
[182]
Welsh, J. Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens. Biochem. Cell Biol., 1994, 72(11-12), 537-545.
[http://dx.doi.org/10.1139/o94-072] [PMID: 7654327]
[183]
Wigington, D.P.; Urben, C.M.; Strugnell, S.A.; Knutson, J.C. Combination study of 1,24(S)-dihydroxyvitamin D2 and chemotherapeutic agents on human breast and prostate cancer cell lines. Anticancer Res., 2004, 24(5A), 2905-2912.
[PMID: 15517895]
[184]
Zheng, W.; Duan, B.; Zhang, Q.; Ouyang, L.; Peng, W.; Qian, F.; Wang, Y.; Huang, S. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/β-catenin signaling. Biosci. Rep., 2018, 38(6), BSR20180595.
[http://dx.doi.org/10.1042/BSR20180595] [PMID: 30314996]
[185]
Oda, S.; Yokoi, T. Recent progress in the use of microRNAs as biomarkers for drug-induced toxicities in contrast to traditional biomarkers: A comparative review. Drug Metab. Pharmacokinet., 2021, 37, 100372.
[http://dx.doi.org/10.1016/j.dmpk.2020.11.007] [PMID: 33461055]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy