Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides

Author(s): Sachithanantham Annapoorani Sivaraman and Varatharajan Sabareesh*

Volume 25, Issue 4, 2024

Published on: 03 January, 2024

Page: [267 - 285] Pages: 19

DOI: 10.2174/0113892037287976231212104607

Price: $65

Abstract

Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α -glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, ‘peptides’ can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some in vitro assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.

Next »
Graphical Abstract

[1]
Green, B.D.; Flatt, P.R.; Bailey, C.J. Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diab. Vasc. Dis. Res., 2006, 3(3), 159-165.
[http://dx.doi.org/10.3132/dvdr.2006.024] [PMID: 17160910]
[2]
Dahlén, A.D.; Dashi, G.; Maslov, I.; Attwood, M.M.; Jonsson, J.; Trukhan, V.; Schiöth, H.B. Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front. Pharmacol., 2022, 12, 807548.
[http://dx.doi.org/10.3389/fphar.2021.807548] [PMID: 35126141]
[3]
LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev., 2021, 42(1), 77-96.
[http://dx.doi.org/10.1210/endrev/bnaa023] [PMID: 32897388]
[4]
Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; Jurczak, M.J.; Camporez, J.P.; Lee, H.Y.; Cline, G.W.; Samuel, V.T.; Kibbey, R.G.; Shulman, G.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014, 510(7506), 542-546.
[http://dx.doi.org/10.1038/nature13270] [PMID: 24847880]
[5]
Triggle, C.R.; Mohammed, I.; Bshesh, K.; Marei, I.; Ye, K.; Ding, H.; MacDonald, R.; Hollenberg, M.D.; Hill, M.A. Metformin: Is it a drug for all reasons and diseases? Metabolism, 2022, 133, 155223.
[http://dx.doi.org/10.1016/j.metabol.2022.155223] [PMID: 35640743]
[6]
Bashary, R.; Vyas, M.; Nayak, S.K.; Suttee, A.; Verma, S.; Narang, R.; Khatik, G.L. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr. Diabetes Rev., 2020, 16(2), 117-136.
[http://dx.doi.org/10.2174/18756417OTg5lMTI0TcVY] [PMID: 31237215]
[7]
Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol., 2020, 145, 111738.
[http://dx.doi.org/10.1016/j.fct.2020.111738] [PMID: 32916220]
[8]
Deng, X.; Tavallaie, M.S.; Sun, R.; Wang, J.; Cai, Q.; Shen, J.; Lei, S.; Fu, L.; Jiang, F. Drug discovery approaches targeting the incretin pathway. Bioorg. Chem., 2020, 99, 103810.
[http://dx.doi.org/10.1016/j.bioorg.2020.103810] [PMID: 32325333]
[9]
Elya, B.; Handayani, R.; Sauriasari, R.; Azizahwati,; Hasyyati, U.S.; Permana, I.T.; Permatasar, Y.I. Antidiabetic activity and phytochemical screening of extracts from Indonesian plants by inhibition of alpha amylase, alpha glucosidase and dipeptidyl peptidase IV. Pak. J. Biol. Sci., 2015, 18(6), 279-284.
[http://dx.doi.org/10.3923/pjbs.2015.279.284]
[10]
Okechukwu, P.; Sharma, M.; Tan, W.H.; Chan, H.K.; Chirara, K.; Gaurav, A.; Al-Nema, M. In vitro anti-diabetic activity and in silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes. Pharmacia, 2020, 67(4), 363-371.
[http://dx.doi.org/10.3897/pharmacia.67.e58392]
[11]
Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med., 2016, 16(S1), 185.
[http://dx.doi.org/10.1186/s12906-016-1085-1]
[12]
Tysoe, C.; Williams, L.K.; Keyzers, R.; Nguyen, N.T.; Tarling, C.; Wicki, J.; Goddard-Borger, E.D.; Aguda, A.H.; Perry, S.; Foster, L.J.; Andersen, R.J.; Brayer, G.D.; Withers, S.G. Potent human α-amylase inhibition by the β-defensin-like protein helianthamide. ACS Cent. Sci., 2016, 2(3), 154-161.
[http://dx.doi.org/10.1021/acscentsci.5b00399] [PMID: 27066537]
[13]
Wang, C. Guo, L.; Hao, J.; Wang, L.; Zhu, W. α-Glucosidase inhibitors from the marine-derived fungus aspergillus flavipes HN4-13. J. Nat. Prod., 2016, 79(11), 2977-2981.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00766] [PMID: 27933892]
[14]
Cheng, Z.; Li, Y.; Liu, W.; Liu, L.; Liu, J.; Yuan, W.; Luo, Z.; Xu, W.; Li, Q. Butenolide derivatives with α-glucosidase inhibitions from the deep-sea-derived fungus Aspergillus terreus YPGA10. Mar. Drugs, 2019, 17(6), 332.
[http://dx.doi.org/10.3390/md17060332] [PMID: 31163670]
[15]
Tasnuva, S.T.; Qamar, U.A.; Ghafoor, K.; Sahena, F.; Jahurul, M.H.A.; Rukshana, A.H.; Juliana, M.J.; Al-Juhaimi, F.Y.; Jalifah, L.; Jalal, K.C.A.; Ali, M.E.; Zaidul, I.S.M. α-glucosidase inhibitors isolated from Mimosa pudica L. Nat. Prod. Res., 2019, 33(10), 1495-1499.
[http://dx.doi.org/10.1080/14786419.2017.1419224] [PMID: 29281898]
[16]
Kumar, V.; Prakash, O.; Kumar, S.; Narwal, S. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[17]
Sun, Y.; Liu, J.; Li, L.; Gong, C.; Wang, S.; Yang, F.; Hua, H.; Lin, H. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg. Med. Chem. Lett., 2018, 28(3), 315-318.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.049] [PMID: 29295795]
[18]
Trang, N.T.H.; Tang, D.Y.Y.; Chew, K.W.; Linh, N.T.; Hoang, L.T.; Cuong, N.T.; Yen, H.T.; Thao, N.T.; Trung, N.T.; Show, P.L.; Tuyen, D.T. Discovery of α-glucosidase inhibitors from marine microorganisms: Optimization of culture conditions and medium composition. Mol. Biotechnol., 2021, 63(11), 1004-1015.
[http://dx.doi.org/10.1007/s12033-021-00362-3] [PMID: 34185249]
[19]
Chaudhry, F.; Choudhry, S.; Huma, R.; Ashraf, M.; al-Rashida, M.; Munir, R.; Sohail, R.; Jahan, B.; Munawar, M.A.; Khan, M.A. Hetarylcoumarins: Synthesis and biological evaluation as potent α -glucosidase inhibitors. Bioorg. Chem., 2017, 73, 1-9.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.009] [PMID: 28521172]
[20]
Liu, Z.; Ma, S. Recent advances in synthetic α-glucosidase inhibitors. ChemMedChem, 2017, 12(11), 819-829.
[http://dx.doi.org/10.1002/cmdc.201700216] [PMID: 28498640]
[21]
Tafesse, T.B.; Bule, M.H.; Khoobi, M.; Faramarzi, M.A.; Abdollahi, M.; Amini, M. Coumarin-based scaffold as α-glucosidase inhibitory activity: Implication for the development of potent antidiabetic agents. Mini Rev. Med. Chem., 2020, 20(2), 134-151.
[http://dx.doi.org/10.2174/1389557519666190925162536] [PMID: 31553294]
[22]
Mollazadeh, M.; Mohammadi-Khanaposhtani, M.; Valizadeh, Y.; Zonouzi, A.; Faramarzi, M.A.; Kiani, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Mahdavi, M.; Hajimiri, M.H. Novel coumarin containing dithiocarbamate derivatives as potent α-glucosidase inhibitors for management of type 2 diabetes. Med. Chem., 2021, 17(3), 264-272.
[http://dx.doi.org/10.2174/1573406416666200826101205] [PMID: 32851964]
[23]
Barrett, M.L.; Udani, J.K. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control. Nutr. J., 2011, 10(1), 24.
[http://dx.doi.org/10.1186/1475-2891-10-24] [PMID: 21414227]
[24]
Teng, H.; Chen, L. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3438-3448.
[http://dx.doi.org/10.1080/10408398.2015.1129309] [PMID: 26854322]
[25]
Ahmed, M.U.; Ibrahim, A.; Dahiru, N.J.; Mohammed, H.S. Alpha amylase inhibitory potential and mode of inhibition of oils from Allium sativum (Garlic) and Allium cepa (Onion). Clin. Med. Insights Endocrinol. Diabetes, 2020, 13.
[http://dx.doi.org/10.1177/1179551420963106] [PMID: 33088187]
[26]
Sangilimuthu, A.Y.; Sivaraman, T.; Chandrasekaran, R.; Sundaram, K.M.; Ekambaram, G. Screening chemical inhibitors for alpha-amylase from leaves extracts of Murraya koenigii (Linn.) and Aegle marmelos L. J. Complement. Integr. Med., 2021, 18(1), 51-57.
[http://dx.doi.org/10.1515/jcim-2019-0345] [PMID: 32745070]
[27]
Bhatnagar, A.; Saini, R.; Dagar, P.; Mishra, A. Molecular modelling and in vitro studies of Daruharidra as a potent alpha-amylase inhibitor. J. Biomol. Struct. Dyn., 2023, 41(9), 3872-3883.
[http://dx.doi.org/10.1080/07391102.2022.2058093] [PMID: 35412420]
[28]
Tamboli, E.; Bhatnagar, A.; Mishra, A. Alpha-amylase inhibitors from mycelium of an oyster mushroom. Prep. Biochem. Biotechnol., 2018, 48(8), 693-699.
[http://dx.doi.org/10.1080/10826068.2018.1487849] [PMID: 30015540]
[29]
Sharma, P.; Joshi, T.; Joshi, T.; Chandra, S.; Tamta, S. Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. J. Biomol. Struct. Dyn., 2021, 39(17), 6524-6538.
[http://dx.doi.org/10.1080/07391102.2020.1801507] [PMID: 32748738]
[30]
Ali, M.; Khan, M.; Zaman, K.; Wadood, A.; Iqbal, M.; Alam, A.; Shah, S.; Yousaf, M.; Rafique, R.; Khan, K.M. Chalcones: As potent α-amylase enzyme inhibitors; synthesis, in vitro, and in silico studies. Med. Chem., 2021, 17(8), 903-912.
[http://dx.doi.org/10.2174/1573406416666200611103039] [PMID: 32525781]
[31]
Pohl, N. Acyclic peptide inhibitors of amylases. Chem. Biol., 2005, 12(12), 1257-1258.
[http://dx.doi.org/10.1016/j.chembiol.2005.11.009] [PMID: 16356842]
[32]
Roskar, I.; Molek, P.; Vodnik, M.; Stempelj, M.; Strukelj, B.; Lunder, M. Peptide modulators of alpha-glucosidase. J. Diabetes Investig., 2015, 6(6), 625-631.
[http://dx.doi.org/10.1111/jdi.12358] [PMID: 26543535]
[33]
Admassu, H.; Gasmalla, M.A.A.; Yang, R.; Zhao, W. Identification of bioactive peptides with α-amylase inhibitory potential from enzymatic protein hydrolysates of red seaweed (Porphyra spp). J. Agric. Food Chem., 2018, 66(19), 4872-4882.
[http://dx.doi.org/10.1021/acs.jafc.8b00960] [PMID: 29667406]
[34]
Evaristus, N.A.; Wan Abdullah, W.N.; Gan, C.Y. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes. Peptides, 2018, 102, 61-67.
[http://dx.doi.org/10.1016/j.peptides.2018.03.001] [PMID: 29510154]
[35]
Awosika, T.O.; Aluko, R.E. Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. Int. J. Food Sci. Technol., 2019, 54(6), 2021-2034.
[http://dx.doi.org/10.1111/ijfs.14087]
[36]
Zhou, H.; Safdar, B.; Li, H.; Yang, L.; Ying, Z.; Liu, X. Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate. Food Chem., 2023, 403, 134434.
[http://dx.doi.org/10.1016/j.foodchem.2022.134434] [PMID: 36358076]
[37]
Li, H.; Zhou, H.; Zhang, J.; Fu, X.; Ying, Z.; Liu, X. Proteinaceous α-amylase inhibitors: Purification, detection methods, types and mechanisms. Int. J. Food Prop., 2021, 24(1), 277-290.
[http://dx.doi.org/10.1080/10942912.2021.1876087]
[38]
Liu, L.; Chen, J.; Li, X. Novel peptides with α-glucosidase inhibitory activity from Changii Radix hydrolysates. Process Biochem., 2021, 111(Part 1), 200-206.
[http://dx.doi.org/10.1016/j.procbio.2021.08.019]
[39]
Liu, W.; Li, H.; Wen, Y.; Liu, Y.; Wang, J.; Sun, B. Molecular mechanism for the α-glucosidase inhibitory effect of wheat germ peptides. J. Agric. Food Chem., 2021, 69(50), 15231-15239.
[http://dx.doi.org/10.1021/acs.jafc.1c06098] [PMID: 34874169]
[40]
Zhao, Q.; Wei, G.; Li, K.; Duan, S.; Ye, R.; Huang, A. Identification and molecular docking of novel α-glucosidase inhibitory peptides from hydrolysates of Binglangjiang buffalo casein. Lebensm. Wiss. Technol., 2022, 156, 113062.
[http://dx.doi.org/10.1016/j.lwt.2021.113062]
[41]
Baba, W.N.; Mudgil, P.; Kamal, H.; Kilari, B.P.; Gan, C.Y.; Maqsood, S. Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins. J. Dairy Sci., 2021, 104(2), 1364-1377.
[http://dx.doi.org/10.3168/jds.2020-19271] [PMID: 33309363]
[42]
Al-masri, I.M.; Mohammad, M.K.; Tahaa, M.O. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1061-1066.
[http://dx.doi.org/10.1080/14756360802610761] [PMID: 19640223]
[43]
Guasch, L.; Ojeda, M.J.; González-Abuín, N.; Sala, E.; Cereto-Massagué, A.; Mulero, M.; Valls, C.; Pinent, M.; Ardévol, A.; Garcia-Vallvé, S.; Pujadas, G. Identification of novel human dipeptidyl peptidase-IV inhibitors of natural origin (part I): Virtual screening and activity assays. PLoS One, 2012, 7(9), e44971.
[http://dx.doi.org/10.1371/journal.pone.0044971] [PMID: 22984596]
[44]
Kaelin, D.E.; Smenton, A.L.; Eiermann, G.J.; He, H.; Leiting, B.; Lyons, K.A.; Patel, R.A.; Patel, S.B.; Petrov, A.; Scapin, G.; Wu, J.K.; Thornberry, N.A.; Weber, A.E.; Duffy, J.L. 4-Arylcyclohexylalanine analogs as potent, selective, and orally active inhibitors of dipeptidyl peptidase IV. Bioorg. Med. Chem. Lett., 2007, 17(21), 5806-5811.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.049] [PMID: 17851076]
[45]
Edmondson, S.D.; Mastracchio, A.; Cox, J.M.; Eiermann, G.J.; He, H.; Lyons, K.A.; Patel, R.A.; Patel, S.B.; Petrov, A.; Scapin, G.; Wu, J.K.; Xu, S.; Zhu, B.; Thornberry, N.A.; Roy, R.S.; Weber, A.E. Aminopiperidine-fused imidazoles as dipeptidyl peptidase-IV inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(15), 4097-4101.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.011] [PMID: 19539471]
[46]
Seshadri, K.G.; Kirubha, M.H.B. Gliptins: A new class of oral antidiabetic agents. Indian J. Pharm. Sci., 2009, 71(6), 608-614.
[http://dx.doi.org/10.4103/0250-474X.59541] [PMID: 20376212]
[47]
Hopsu-Havu, V.K.; Glenner, G.G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide. Histochem. Cell Biol., 1966, 7(3), 197-201.
[http://dx.doi.org/10.1007/BF00577838] [PMID: 5959122]
[48]
Mentlein, R.; Gallwitz, B.; Schmidt, W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem., 1993, 214(3), 829-835.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17986.x] [PMID: 8100523]
[49]
Capuano, A.; Sportiello, L.; Maiorino, M.I.; Rossi, F.; Giugliano, D.; Esposito, K. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy--focus on alogliptin. Drug Des. Devel. Ther., 2013, 7, 989-1001.
[PMID: 24068868]
[50]
Drucker, D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care, 2003, 26(10), 2929-2940.
[http://dx.doi.org/10.2337/diacare.26.10.2929] [PMID: 14514604]
[51]
Vilsbøll, T.; Holst, J.J. Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia, 2004, 47(3), 357-366.
[http://dx.doi.org/10.1007/s00125-004-1342-6] [PMID: 14968296]
[52]
Mentlein, R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul. Pept., 1999, 85(1), 9-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00089-0] [PMID: 10588446]
[53]
Knudsen, L.B.; Pridal, L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur. J. Pharmacol., 1996, 318(2-3), 429-435.
[http://dx.doi.org/10.1016/S0014-2999(96)00795-9] [PMID: 9016935]
[54]
Juillerat-Jeanneret, L. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? J. Med. Chem., 2014, 57(6), 2197-2212.
[http://dx.doi.org/10.1021/jm400658e] [PMID: 24099035]
[55]
Weber, A.E. Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. J. Med. Chem., 2004, 47(17), 4135-4141.
[http://dx.doi.org/10.1021/jm030628v] [PMID: 15293982]
[56]
Lambeir, A.M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci., 2003, 40(3), 209-294.
[http://dx.doi.org/10.1080/713609354] [PMID: 12892317]
[57]
Lamers, D.; Famulla, S.; Wronkowitz, N.; Hartwig, S.; Lehr, S.; Ouwens, D.M.; Eckardt, K.; Kaufman, J.M.; Ryden, M.; Müller, S.; Hanisch, F.G.; Ruige, J.; Arner, P.; Sell, H.; Eckel, J. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes, 2011, 60(7), 1917-1925.
[http://dx.doi.org/10.2337/db10-1707] [PMID: 21593202]
[58]
Morrison, M.E.; Vijayasaradhi, S.; Engelstein, D.; Albino, A.P.; Houghton, A.N. A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J. Exp. Med., 1993, 177(4), 1135-1143.
[http://dx.doi.org/10.1084/jem.177.4.1135] [PMID: 8096237]
[59]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[60]
Cordero, O.J.; Salgado, F.J.; Nogueira, M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol. Immunother., 2009, 58(11), 1723-1747.
[http://dx.doi.org/10.1007/s00262-009-0728-1] [PMID: 19557413]
[61]
Ahrén, B. Dipeptidyl peptidase-4 inhibitors: Clinical data and clinical implications. Diabetes Care, 2007, 30(6), 1344-1350.
[http://dx.doi.org/10.2337/dc07-0233] [PMID: 17337494]
[62]
Fleischer, B. CD26: A surface protease involved in T-cell activation. Immunol. Today, 1994, 15(4), 180-184.
[http://dx.doi.org/10.1016/0167-5699(94)90316-6] [PMID: 7911022]
[63]
Lessard, J.; Pelletier, M.; Biertho, L.; Biron, S.; Marceau, S.; Hould, F.S.; Lebel, S.; Moustarah, F.; Lescelleur, O.; Marceau, P.; Tchernof, A. Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: Fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS One, 2015, 10(3), e0122065.
[http://dx.doi.org/10.1371/journal.pone.0122065] [PMID: 25816202]
[64]
Mest, H.J.; Mentlein, R. Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia, 2005, 48(4), 616-620.
[http://dx.doi.org/10.1007/s00125-005-1707-5] [PMID: 15770466]
[65]
Meester, I.D.; Durinx, C.; Bal, G.; Proost, P.; Struyf, S.; Goossens, F.; Augustyns, K.; Scharpé, S. Natural substrates of dipeptidyl peptidase IV. Cellular peptidases in immune functions and diseases.In: Advances in Experimental Medicine and Biology; Springer: Boston, MA, 2002.
[http://dx.doi.org/10.1007/0-306-46826-3_7]
[66]
Olsen, C.; Wagtmann, N. Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. Gene, 2002, 299(1-2), 185-193.
[http://dx.doi.org/10.1016/S0378-1119(02)01059-4] [PMID: 12459266]
[67]
Röhrborn, D.; Wronkowitz, N.; Eckel, J. DPP4 in diabetes. Front. Immunol., 2015, 6, 386.
[http://dx.doi.org/10.3389/fimmu.2015.00386] [PMID: 26284071]
[68]
Lin, Y.S.; Han, C.H.; Lin, S.Y.; Hou, W.C. Synthesized peptides from yam dioscorin hydrolysis in silico exhibit dipeptidyl peptidase-IV inhibitory activities and oral glucose tolerance improvements in normal mice. J. Agric. Food Chem., 2016, 64(33), 6451-6458.
[http://dx.doi.org/10.1021/acs.jafc.6b02403] [PMID: 27499387]
[69]
Nongonierma, A.B.; FitzGerald, R.J. Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides, 2013, 39, 157-163.
[http://dx.doi.org/10.1016/j.peptides.2012.11.016] [PMID: 23219487]
[70]
Lacroix, I.M.E.; Li-Chan, E.C.Y. Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int. Dairy J., 2012, 25(2), 97-102.
[http://dx.doi.org/10.1016/j.idairyj.2012.01.003]
[71]
Li-Chan, E.C.Y.; Hunag, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agric. Food Chem., 2012, 60(4), 973-978.
[http://dx.doi.org/10.1021/jf204720q] [PMID: 22225496]
[72]
Nongonierma, A.B.; Le Maux, S.; Dubrulle, C.; Barre, C.; FitzGerald, R.J. Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. J. Cereal Sci., 2015, 65, 112-118.
[http://dx.doi.org/10.1016/j.jcs.2015.07.004]
[73]
Oseguera-Toledo, M.E.; Gonzalez de Mejia, E.; Amaya-Llano, S.L. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int., 2015, 76(Pt 3), 839-851.
[http://dx.doi.org/10.1016/j.foodres.2015.07.046] [PMID: 28455070]
[74]
Nongonierma, A.B.; FitzGerald, R.J. Investigation of the potential of hemp, pea, rice and soy protein hydrolysates as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Dig., 2015, 6(1-3), 19-29.
[http://dx.doi.org/10.1007/s13228-015-0039-2]
[75]
Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, S.; Montero-Morán, G.M.; Díaz-Gois, A. González de, M.E.; Barba de la Rosa, A.P. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem., 2013, 136(2), 758-764.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.032] [PMID: 23122124]
[76]
Harnedy, P.A.; FitzGerald, R.J. In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. J. Appl. Phycol., 2013, 25(6), 1793-1803.
[http://dx.doi.org/10.1007/s10811-013-0017-4]
[77]
Thoma, R.; Löffler, B.; Stihle, M.; Huber, W.; Ruf, A.; Hennig, M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure, 2003, 11(8), 947-959.
[http://dx.doi.org/10.1016/S0969-2126(03)00160-6] [PMID: 12906826]
[78]
Hiramatsu, H.; Yamamoto, A.; Kyono, K.; Higashiyama, Y.; Fukushima, C.; Shima, H.; Sugiyama, S.; Inaka, K.; Shimizu, R. The crystal structure of human dipeptidyl peptidase IV (DPPIV) complex with diprotin A. Biol. Chem., 2004, 385(6), 561-564.
[http://dx.doi.org/10.1515/BC.2004.068] [PMID: 15255191]
[79]
Bednarczyk, J.L.; Carroll, S.M.; Marin, C.; McIntyre, B.W. Triggering of the proteinase dipeptidyl peptidase IV (CD26) amplifies human T lymphocyte proliferation. J. Cell. Biochem., 1991, 46(3), 206-218.
[http://dx.doi.org/10.1002/jcb.240460304] [PMID: 1723066]
[80]
Ajami, K.; Abbott, C.A.; Obradovic, M.; Gysbers, V.; Kähne, T.; McCaughan, G.W.; Gorrell, M.D. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry, 2003, 42(3), 694-701.
[http://dx.doi.org/10.1021/bi026846s] [PMID: 12534281]
[81]
Rasmussen, H.B.; Branner, S.; Wiberg, F.C.; Wagtmann, N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol., 2003, 10(1), 19-25.
[http://dx.doi.org/10.1038/nsb882] [PMID: 12483204]
[82]
Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun., 2013, 434(2), 191-196.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.010] [PMID: 23501107]
[83]
Abbott, C.A.; McCaughan, G.W.; Gorrell, M.D. Two highly conserved glutamic acid residues in the predicted β propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett., 1999, 458(3), 278-284.
[http://dx.doi.org/10.1016/S0014-5793(99)01166-7] [PMID: 10570924]
[84]
Zhang, X.; Wang, R.; Cheng, C.; Zhang, Y.; Ma, Y.; Lu, W. Identification of two novel dipeptidyl peptidase-IV inhibitory peptides from sheep whey protein and inhibition mechanism revealed by molecular docking. Food Biosci., 2022, 48, 101733.
[http://dx.doi.org/10.1016/j.fbio.2022.101733]
[85]
Luo, F.; Fu, Y.; Ma, L.; Dai, H.; Wang, H.; Chen, H.; Zhu, H.; Yu, Y.; Hou, Y.; Zhang, Y. Exploration of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from silkworm pupae (Bombyx mori) proteins based on in silico and in vitro assessments. J. Agric. Food Chem., 2022, 70(12), 3862-3871.
[http://dx.doi.org/10.1021/acs.jafc.1c08225] [PMID: 35230117]
[86]
Gu, H.; Gao, J.; Shen, Q.; Gao, D.; Wang, Q.; Tangyu, M.; Mao, X. Dipeptidyl peptidase-IV inhibitory activity of millet protein peptides and the related mechanisms revealed by molecular docking. Lebensm. Wiss. Technol., 2021, 138, 110587.
[http://dx.doi.org/10.1016/j.lwt.2020.110587]
[87]
Tan, J.; Yang, J.; Zhou, X.; Hamdy, A.M.; Zhang, X.; Suo, H.; Zhang, Y.; Li, N.; Song, J. Tenebrio molitor proteins-derived DPP-4 inhibitory peptides: Preparation, identification, and molecular binding mechanism. Foods, 2022, 11(22), 3626.
[http://dx.doi.org/10.3390/foods11223626] [PMID: 36429217]
[88]
Zhao, W.; Zhang, D.; Yu, Z.; Ding, L.; Liu, J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J. Funct. Foods, 2020, 64, 103649.
[http://dx.doi.org/10.1016/j.jff.2019.103649]
[89]
Mohd Salim, M.A.S.; Gan, C.Y. Dual-function peptides derived from egg white ovalbumin: Bioinformatics identification with validation using in vitro assay. J. Funct. Foods, 2020, 64, 103618.
[http://dx.doi.org/10.1016/j.jff.2019.103618]
[90]
Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I.; Allergen, F.P. Allergenicity prediction by descriptor fingerprints. Bioinformatics, 2014, 30(6), 846-851.
[http://dx.doi.org/10.1093/bioinformatics/btt619] [PMID: 24167156]
[91]
Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci., 2019, 20(23), 5978.
[http://dx.doi.org/10.3390/ijms20235978] [PMID: 31783634]
[92]
Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr., 2020, 8(12), 6320-6337.
[http://dx.doi.org/10.1002/fsn3.1987] [PMID: 33312519]
[93]
You, H.; Wu, T.; Wang, W.; Li, Y.; Liu, X.; Ding, L. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein. Food Res. Int., 2022, 156, 111176.
[http://dx.doi.org/10.1016/j.foodres.2022.111176] [PMID: 35651037]
[94]
You, H.; Zhang, Y.; Wu, T.; Li, J.; Wang, L.; Yu, Z.; Liu, J.; Liu, X.; Ding, L. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. Lebensm. Wiss. Technol., 2022, 160, 113255.
[http://dx.doi.org/10.1016/j.lwt.2022.113255]
[95]
Xu, F.; Yao, Y.; Xu, X.; Wang, M.; Pan, M.; Ji, S.; Wu, J.; Jiang, D.; Ju, X.; Wang, L. Identification and quantification of DPP-IV-inhibitory peptides from hydrolyzed-rapeseed-protein-derived napin with analysis of the interactions between key residues and protein domains. J. Agric. Food Chem., 2019, 67(13), 3679-3690.
[http://dx.doi.org/10.1021/acs.jafc.9b01069] [PMID: 30854852]
[96]
Mojica, L.; Luna-Vital, D.A.; González de Mejía, E. Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. J. Sci. Food Agric., 2017, 97(8), 2401-2410.
[http://dx.doi.org/10.1002/jsfa.8053] [PMID: 27664971]
[97]
Hatanaka, T.; Inoue, Y.; Arima, J.; Kumagai, Y.; Usuki, H.; Kawakami, K.; Kimura, M.; Mukaihara, T. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem., 2012, 134(2), 797-802.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.183] [PMID: 23107693]
[98]
Wang, W.; Liu, X.; Li, Y.; You, H.; Yu, Z.; Wang, L.; Liu, X.; Ding, L. Identification and characterization of dipeptidyl peptidase-iv inhibitory peptides from oat proteins. Foods, 2022, 11(10), 1406.
[http://dx.doi.org/10.3390/foods11101406] [PMID: 35626976]
[99]
Wang, F.; Yu, G.; Zhang, Y.; Zhang, B.; Fan, J. Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum Vulgare trifurcatum (L.) Trofim) proteins. J. Agric. Food Chem., 2015, 63(43), 9543-9549.
[http://dx.doi.org/10.1021/acs.jafc.5b04016] [PMID: 26468909]
[100]
Zan, R.; Wu, Q.; Chen, Y.; Wu, G.; Zhang, H.; Zhu, L. Identification of novel dipeptidyl peptidase-iv inhibitory peptides in chickpea protein hydrolysates. J. Agric. Food Chem., 2023, 71(21), 8211-8219.
[http://dx.doi.org/10.1021/acs.jafc.3c00603] [PMID: 37191584]
[101]
Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: in vitro biochemical screening and in silico molecular modeling study. J. Agric. Food Chem., 2016, 64(51), 9601-9606.
[http://dx.doi.org/10.1021/acs.jafc.6b04041] [PMID: 27983830]
[102]
Wang, F.; Zhang, Y.; Yu, T.; He, J.; Cui, J.; Wang, J.; Cheng, X.; Fan, J. Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in CaCo2 cells. J. Funct. Foods, 2018, 42, 12-20.
[http://dx.doi.org/10.1016/j.jff.2017.12.061]
[103]
Sato, K.; Miyasaka, S.; Tsuji, A.; Tachi, H. Isolation and characterization of peptides with dipeptidyl peptidase IV (DPPIV) inhibitory activity from natto using DPPIV from Aspergillus oryzae. Food Chem., 2018, 261, 51-56.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.029] [PMID: 29739605]
[104]
Lin, Y.S.; Han, C.H.; Lin, S.Y.; Hou, W.C. Synthesized peptides from yam dioscorin hydrolysis in silico exhibit dipeptidyl peptidase- IV inhibitory activities and oral glucose tolerance improvements in normal mice. J. Agric. Food Chem, 2016, 64(33), 6451-6458.
[http://dx.doi.org/10.1021/acs.jafc.6b02403] [PMID: 27499387]
[105]
Chandrasekaran, S.; Luna-Vital, D.; de Mejia, E.G. Identification and comparison of peptides from chickpea protein hydrolysates using either bromelain or gastrointestinal enzymes and their relationship with markers of type 2 diabetes and bitterness. Nutrients, 2020, 12(12), 3843.
[http://dx.doi.org/10.3390/nu12123843] [PMID: 33339265]
[106]
Umezawa, H.; Aoyagi, T.; Ogawa, K.; Naganawa, H.; Hamada, M.; Takeuchi, T. Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. J. Antibiot., 1984, 37(4), 422-425.
[http://dx.doi.org/10.7164/antibiotics.37.422] [PMID: 6427168]
[107]
Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem., 2015, 172, 400-406.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.083] [PMID: 25442570]
[108]
Nongonierma, A.B.; Cadamuro, C.; Le Gouic, A.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a camel whey protein enriched hydrolysate preparation. Food Chem., 2019, 279, 70-79.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.142] [PMID: 30611514]
[109]
Zhang, Y.; Chen, R.; Ma, H.; Chen, S. Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LC-MS/MS. J. Agric. Food Chem., 2015, 63(40), 8819-8828.
[http://dx.doi.org/10.1021/acs.jafc.5b03062] [PMID: 26323964]
[110]
Lacroix, I.M.E.; Li-Chan, E.C.Y. Isolation and characterization of peptides with dipeptidyl peptidase-IV inhibitory activity from pepsin-treated bovine whey proteins. Peptides, 2014, 54, 39-48.
[http://dx.doi.org/10.1016/j.peptides.2014.01.002] [PMID: 24440459]
[111]
Jia, C.; Hussain, N.; Joy Ujiroghene, O.; Pang, X.; Zhang, S.; Lu, J.; Liu, L.; Lv, J. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins. Food Chem., 2020, 318, 126333.
[http://dx.doi.org/10.1016/j.foodchem.2020.126333] [PMID: 32151919]
[112]
Silveira, S.T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem., 2013, 141(2), 1072-1077.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.056] [PMID: 23790888]
[113]
Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J., 2012, 22(1), 24-30.
[http://dx.doi.org/10.1016/j.idairyj.2011.08.002]
[114]
Nongonierma, A.B.; FitzGerald, R.J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. J. Funct. Foods, 2013, 5(4), 1909-1917.
[http://dx.doi.org/10.1016/j.jff.2013.09.012]
[115]
Song, J.J.; Wang, Q.; Du, M.; Ji, X.M.; Mao, X.Y. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates. J. Dairy Sci., 2017, 100(9), 6885-6894.
[http://dx.doi.org/10.3168/jds.2016-11828] [PMID: 28711271]
[116]
Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; Fitz-Gerald, R.J. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem., 2018, 244, 340-348.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.033] [PMID: 29120791]
[117]
Zhang, Y.; Chen, R.; Zuo, F.; Ma, H.; Zhang, Y.; Chen, S. Comparison of dipeptidyl peptidase IV-inhibitory activity of peptides from bovine and caprine milk casein by in silico and in vitro analyses. Int. Dairy J., 2016, 53, 37-44.
[http://dx.doi.org/10.1016/j.idairyj.2015.10.001]
[118]
Ashok, A.; Brijesha, N.; Aparna, H.S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. Eur. J. Med. Chem., 2019, 180, 99-110.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.009] [PMID: 31301567]
[119]
Jin, R.; Teng, X.; Shang, J.; Wang, D.; Liu, N. Identification of novel DPP-IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Res. Int., 2020, 133, 109161.
[http://dx.doi.org/10.1016/j.foodres.2020.109161] [PMID: 32466942]
[120]
Jin, Y.; Yan, J.; Yu, Y.; Qi, Y. Screening and identification of DPP-IV inhibitory peptides from deer skin hydrolysates by an integrated approach of LC-MS/MS and in silico analysis. J. Funct. Foods, 2015, 18, 344-357.
[http://dx.doi.org/10.1016/j.jff.2015.07.015]
[121]
Nong, N.T.P.; Chen, Y.K.; Shih, W.L.; Hsu, J.L. Characterization of novel dipeptidyl peptidase-iv inhibitory peptides from soft-shelled turtle yolk hydrolysate using orthogonal bioassay-guided fractionations coupled with in vitro and in silico study. Pharmaceuticals, 2020, 13(10), 308.
[http://dx.doi.org/10.3390/ph13100308] [PMID: 33066488]
[122]
Hong, H.; Zheng, Y.; Song, S.; Zhang, Y.; Zhang, C.; Liu, J.; Luo, Y. Identification and characterization of DPP-IV inhibitory peptides from silver carp swim bladder hydrolysates. Food Biosci., 2020, 38, 100748.
[http://dx.doi.org/10.1016/j.fbio.2020.100748]
[123]
Martini, S.; Conte, A.; Tagliazucchi, D. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion. J. Proteomics, 2019, 208, 103500.
[http://dx.doi.org/10.1016/j.jprot.2019.103500] [PMID: 31454557]
[124]
Yu, Z.; Yin, Y.; Zhao, W.; Yu, Y.; Liu, B.; Liu, J.; Chen, F. Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chem., 2011, 129(4), 1376-1382.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.067]
[125]
Zambrowicz, A.; Pokora, M.; Setner, B.; Dąbrowska, A.; Szołtysik, M.; Babij, K.; Szewczuk, Z.; Trziszka, T.; Lubec, G.; Chrzanowska, J. Multifunctional peptides derived from an egg yolk protein hydrolysate: Isolation and characterization. Amino Acids, 2015, 47(2), 369-380.
[http://dx.doi.org/10.1007/s00726-014-1869-x] [PMID: 25408464]
[126]
Wang, T.Y.; Hsieh, C.H.; Hung, C.C.; Jao, C.L.; Chen, M.C.; Hsu, K.C. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm- and cold-water fish. J. Funct. Foods, 2015, 19, 330-340.
[http://dx.doi.org/10.1016/j.jff.2015.09.037]
[127]
Huang, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides, 2012, 35(1), 114-121.
[http://dx.doi.org/10.1016/j.peptides.2012.03.006] [PMID: 22450467]
[128]
Zhang, Y.; Chen, R.; Chen, X.; Zeng, Z.; Ma, H.; Chen, S. Dipeptidyl peptidase IV-inhibitory peptides derived from silver carp (Hypophthalmichthys molitrix Val.) proteins. J. Agric. Food Chem., 2016, 64(4), 831-839.
[http://dx.doi.org/10.1021/acs.jafc.5b05429] [PMID: 26758401]
[129]
Zhang, C.; Zhang, Y.; Wang, Z.; Chen, S.; Luo, Y. Production and identification of antioxidant and angiotensin-converting enzyme inhibition and dipeptidyl peptidase IV inhibitory peptides from bighead carp (Hypophthalmichthys nobilis) muscle hydrolysate. J. Funct. Foods, 2017, 35, 224-235.
[http://dx.doi.org/10.1016/j.jff.2017.05.032]
[130]
Zhao, W.; Zhang, D.; Yu, Z.; Ding, L.; Liu, J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J. Funct. Foods, 2020, 64, 103649.
[131]
Gallego, M.; Aristoy, M.C.; Toldrá, F. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Sci., 2014, 96(2), 757-761.
[http://dx.doi.org/10.1016/j.meatsci.2013.09.014] [PMID: 24200567]
[132]
Neves, A.C.; Harnedy, P.A.; O’Keeffe, M.B.; Alashi, M.A.; Aluko, R.E.; FitzGerald, R.J. Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res. Int., 2017, 100(Pt 1), 112-120.
[http://dx.doi.org/10.1016/j.foodres.2017.06.065] [PMID: 28873669]
[133]
Nongonierma, A.B.; FitzGerald, R.J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food Funct., 2013, 4(12), 1843-1849.
[http://dx.doi.org/10.1039/c3fo60262a] [PMID: 24193022]
[134]
Lan, V.T.T.; Ito, K.; Ito, S.; Kawarasaki, Y. Trp-Arg-Xaa tripeptides act as uncompetitive-type inhibitors of human dipeptidyl peptidase IV. Peptides, 2014, 54, 166-170.
[http://dx.doi.org/10.1016/j.peptides.2014.01.027] [PMID: 24512990]
[135]
Li-Chan, E.C.; Hunag, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agricul. Food Chem., 2012, 60(4), 973-978.
[136]
Silveira, S.T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem., 2013, 141(2), 1072-1077.
[137]
Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Inter. Dairy J., 2012, 22(1), 24-30.
[138]
Tulipano, G.; Sibilia, V.; Caroli, A.M.; Cocchi, D. Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides, 2011, 32(4), 835-838.
[http://dx.doi.org/10.1016/j.peptides.2011.01.002] [PMID: 21256171]
[139]
Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol. Metab., 2021, 46, 101102.
[http://dx.doi.org/10.1016/j.molmet.2020.101102] [PMID: 33068776]
[140]
Tajima, N.; Kadowaki, T.; Okamoto, T.; Sato, A.; Okuyama, K.; Minamide, T.; Arjona, F.J.C. Sitagliptin added to voglibose monotherapy improves glycemic control in patients with type 2 diabetes. J. Diabetes Investig., 2013, 4(6), 595-604.
[http://dx.doi.org/10.1111/jdi.12116] [PMID: 24843714]
[141]
Horikawa, Y.; Enya, M.; Iizuka, K.; Chen, G.Y.; Kawachi, S.; Suwa, T.; Takeda, J. Synergistic effect of α-glucosidase inhibitors and dipeptidyl peptidase 4 inhibitor treatment. J. Diabetes Investig., 2011, 2(3), 200-203.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00081.x] [PMID: 24843484]
[142]
Charbonnel, B.; Karasik, A.; Liu, J.; Wu, M.; Meininger, G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care, 2006, 29(12), 2638-2643.
[http://dx.doi.org/10.2337/dc06-0706] [PMID: 17130197]
[143]
Yang, H.K.; Lee, S.H.; Shin, J.; Choi, Y.H.; Ahn, Y.B.; Lee, B.W.; Rhee, E.J.; Min, K.W.; Yoon, K.H. Acarbose add-on therapy in patients with type 2 diabetes mellitus with metformin and sitagliptin failure: A multicenter, randomized, double-blind, placebo-controlled study. Diabetes Metab. J., 2019, 43(3), 287-301.
[http://dx.doi.org/10.4093/dmj.2018.0054] [PMID: 30604599]
[144]
Huang, S.L.; Hung, C.C.; Jao, C.L.; Tung, Y.S.; Hsu, K.C. Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats. J. Funct. Foods, 2014, 11, 235-242.
[http://dx.doi.org/10.1016/j.jff.2014.09.010]
[145]
Aart, V.A.; Catharina, M.J.; Zeeland-Wolbers, V.; Maria, L.A.; Gilst, V.; Hendrikus, W. Egg protein hydrolysates. WO Patent 2009/128713 2009.
[146]
Uchida, M.; Ohshiba, Y.; Mogami, O. Novel dipeptidyl peptidase-4-inhibiting peptide derived from β-lactoglobulin. J. Pharmacol. Sci., 2011, 117(1), 63-66.
[http://dx.doi.org/10.1254/jphs.11089SC] [PMID: 21836374]
[147]
Hira, T.; Mochida, T.; Miyashita, K.; Hara, H. GLP-1 secretion is enhanced directly in the ileum but indirectly in the duodenum by a newly identified potent stimulator, zein hydrolysate, in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 297(4), G663-G671.
[http://dx.doi.org/10.1152/ajpgi.90635.2008] [PMID: 19661152]
[148]
Mochida, T.; Hira, T.; Hara, H. The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-IV activity in rats. Endocrinology, 2010, 151(7), 3095-3104.
[http://dx.doi.org/10.1210/en.2009-1510] [PMID: 20410194]
[149]
Power, O.; Hallihan, A.; Jakeman, P. Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids, 2009, 37(2), 333-339.
[http://dx.doi.org/10.1007/s00726-008-0156-0] [PMID: 18679613]
[150]
Istrate, D.; Crisan, L. Natural compounds as DPP-4 inhibitors: 3D-similarity search, ADME toxicity, and molecular docking approaches. Symmetry, 2022, 14(9), 1842.
[http://dx.doi.org/10.3390/sym14091842]
[151]
Sajal, H.; Patil, S.M.; Raj, R.; Shbeer, A.M.; Ageel, M.; Ramu, R. Computer-aided screening of phytoconstituents from ocimum tenuiflorum against diabetes mellitus targeting DPP4 inhibition: A combination of molecular docking, molecular dynamics, and pharmacokinetics approaches. Molecules, 2022, 27(16), 5133.
[http://dx.doi.org/10.3390/molecules27165133] [PMID: 36014373]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy