Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Bile Acid-conjugate as a Promising Anticancer Agent: Recent Progress

Author(s): Neha V. Rathod and Satyendra Mishra*

Volume 31, Issue 26, 2024

Published on: 02 January, 2024

Page: [4160 - 4179] Pages: 20

DOI: 10.2174/0109298673274040231121113410

Price: $65

Abstract

Bile acids have outstanding chemistry due to their amphiphilic nature and have received a lot of interest in the last few decades in the fields of biomedicine, pharmacology, and supramolecular applications. Bile acids are highly sought after by scientists looking for diverse and effective biological activity due to their chirality, rigidity, and hydroxyl group. The hydroxyl group makes it simple to alter the structure in a way that improves bioactivity and bioavailability. Bile acid-bioactive molecule conjugates are compounds in which a bile acid is linked to a bioactive molecule by a linker in order to increase the bioactivity of the bioactive molecule against the target cancer cells. This method has been used to improve the therapeutic efficacy of cytotoxic drugs while reducing their adverse side effects. These new bile acid conjugates are gaining attention because they overcome bioavailability and stability issues. The design, synthesis, and anticancer effectiveness of various bile acid conjugates are discussed together with recent advances in understanding in this review.

[1]
Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[2]
Bach, P.B.; Jett, J.R.; Pastorino, U.; Tockman, M.S.; Swensen, S.J.; Begg, C.B. Computed tomography screening and lung cancer outcomes. JAMA, 2007, 297(9), 953-961.
[http://dx.doi.org/10.1001/jama.297.9.953] [PMID: 17341709]
[3]
Gibbs, J.B. Mechanism-based target identification and drug discovery in cancer research Science (80-), 2000, 287, 1969-1973.
[http://dx.doi.org/10.1126/science.287.5460.1969]
[4]
Arve, L.; Voigt, T.; Waldmann, H. Charting biological and chemical space: PSSC and SCONP as guiding principles for the development of compound collections based on natural product scaffolds. QSAR Comb. Sci., 2006, 25(5-6), 449-456.
[http://dx.doi.org/10.1002/qsar.200540213]
[5]
Gali, R.; Banothu, J.; Porika, M.; Velpula, R.; Hnamte, S.; Bavantula, R.; Abbagani, S.; Busi, S. Indolylmethylene benzo[h]thiazolo[2,3-b]quinazolinones: Synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg. Med. Chem. Lett., 2014, 24(17), 4239-4242.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.030] [PMID: 25096298]
[6]
Sørlie, T. Molecular portraits of breast cancer: Tumour subtypes as distinct disease entities. Eur. J. Cancer, 2004, 40(18), 2667-2675.
[http://dx.doi.org/10.1016/j.ejca.2004.08.021] [PMID: 15571950]
[7]
Siegel, O.J.; Ward, R.; Brawley, E. Detection of occult tumor cells in peripheral blood from patients with small cell lung cancer by reverse transcriptase-polymerase chain reaction, A Cancer J. Cancer Clin., 2011, 61, 212-236.
[http://dx.doi.org/10.3322/caac.20121] [PMID: 21685461]
[8]
Chen, T.G.M.; Zeng, Q. G, G. Deisign thinking. Med. Res. Rev., 2008, 28, 954-974.
[http://dx.doi.org/10.1002/med.20131] [PMID: 18642351]
[9]
Martinez, J.D.; Stratagoules, E.D.; LaRue, J.M.; Powell, A.A.; Gause, P.R.; Craven, M.T.; Payne, C.M.; Powell, M.B.; Gerner, E.W.; Earnest, D.L. Different bile acids exhibit distinct biological effects: The tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr. Cancer, 1998, 31(2), 111-118.
[http://dx.doi.org/10.1080/01635589809514689] [PMID: 9770722]
[10]
Brady, B.H.; Brady, L.M.; W, David, D. Biochemical journal immediate publication. Biochem. J., 1996, 316, 765-769.
[http://dx.doi.org/10.1042/bj3160765] [PMID: 8670150]
[11]
Hunter, T. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell, 1995, 80(2), 225-236.
[http://dx.doi.org/10.1016/0092-8674(95)90405-0] [PMID: 7834742]
[12]
Bayewitch, M.L.; Nevo, I.; Avidor-Reiss, T.; Levy, R.; Simonds, W.F.; Vogel, Z. Alterations in detergent solubility of heterotrimeric G proteins after chronic activation of G(i/o)-coupled receptors: changes in detergent solubility are in correlation with onset of adenylyl cyclase superactivation. Mol. Pharmacol., 2000, 57(4), 820-825.
[http://dx.doi.org/10.1124/mol.57.4.820] [PMID: 10727531]
[13]
Faubion, W.A.; Guicciardi, M.E.; Miyoshi, H.; Bronk, S.F.; Roberts, P.J.; Svingen, P.A.; Kaufmann, S.H.; Gores, G.J. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J. Clin. Invest., 1999, 103(1), 137-145.
[http://dx.doi.org/10.1172/JCI4765] [PMID: 9884343]
[14]
Mahmoud, N.N.; Dannenberg, A.J.; Bilinski, R.T.; Mestre, J.R.; Chadburn, A.; Churchill, M.; Martucci, C.; Bertagnolli, M.M. Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis, 1999, 20(2), 299-303.
[http://dx.doi.org/10.1093/carcin/20.2.299] [PMID: 10069468]
[15]
Sodeman, T.; Bronk, S.F.; Roberts, P.J.; Miyoshi, H.; Gores, G.J. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 278(6), G992-G999.
[http://dx.doi.org/10.1152/ajpgi.2000.278.6.G992] [PMID: 10859230]
[16]
Hirano, F.; Tanaka, H.; Hirano, Y.; Hiramoto, M.; Handa, H.; Makino, I.; Scheidereit, C. Functional interference of sp1 and nf-κb through the same DNA binding site. Carcinogenesis, 1996, 17, 427-433.
[http://dx.doi.org/10.1093/carcin/17.3.427] [PMID: 8631127]
[17]
Glinghammar, B.; Holmberg, K.; Rafter, J. Effects of colonic lumenal components on AP-1-dependent gene transcription in cultured human colon carcinoma cells. Carcinogenesis, 1999, 20(6), 969-976.
[http://dx.doi.org/10.1093/carcin/20.6.969] [PMID: 10357775]
[18]
Song, S.; Byrd, J.C.; Koo, J.S.; Bresalier, R.S. Bile acids induce MUC2 overexpression in human colon carcinoma cells. Cancer, 2005, 103(8), 1606-1614.
[http://dx.doi.org/10.1002/cncr.21015] [PMID: 15754327]
[19]
Makishima, M.; Okamoto, A.Y.; Repa, J.J.; Tu, H.; Learned, R.M.; Luk, A.; Hull, M.V.; Lustig, K.D.; Mangelsdorf, D.J.; Shan, B. Identification of a nuclear receptor for bile acids. Science, 1999, 284(5418), 1362-1365.
[http://dx.doi.org/10.1126/science.284.5418.1362] [PMID: 10334992]
[20]
Peet, D.J.; Janowski, B.A.; Dawson, A.; Shen, T.; Perlmutter, D.H. 17. C, j. Sippel, 16. j. R. Crowther, ELISA. Theory Pract., 1999, 8284, 1365-1368.
[http://dx.doi.org/ 10.1126/science.284.5418.1365]
[21]
Wang, H.; Chen, J.; Hollister, K.; Sowers, L.C.; Forman, B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell, 1999, 3, 543-553.
[http://dx.doi.org/10.1016/S1097-2765(00)80348-2] [PMID: 10360171]
[22]
Song, C.S.; Echchgadda, I.; Baek, B.S.; Ahn, S.C.; Oh, T.; Roy, A.K.; Chatterjee, B. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J. Biol. Chem., 2001, 276(45), 42549-42556.
[http://dx.doi.org/10.1074/jbc.M107557200] [PMID: 11533040]
[23]
Zhang, F.; Subbaramaiah, K.; Altorki, N.; Dannenberg, A.J. Dihydroxy bile acids activate the transcription of cyclooxygenase-2. J. Biol. Chem., 1998, 273(4), 2424-2428.
[http://dx.doi.org/10.1074/jbc.273.4.2424] [PMID: 9442092]
[24]
Qiao, D.; Stratagouleas, E.D.; Martinez, J.D. Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis, 2001, 22(1), 35-41.
[http://dx.doi.org/10.1093/carcin/22.1.35] [PMID: 11159738]
[25]
Qiao, D.; Chen, W.; Stratagoules, E.D.; Martinez, J.D. Bile acid-induced activation of activator protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J. Biol. Chem., 2000, 275(20), 15090-15098.
[http://dx.doi.org/10.1074/jbc.M908890199] [PMID: 10748108]
[26]
Powolny, A.; Xu, J.; Loo, G. Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int. J. Biochem. Cell Biol., 2001, 33(2), 193-203.
[http://dx.doi.org/10.1016/S1357-2725(00)00080-7] [PMID: 11240376]
[27]
Qiao, L.; Studer, E.; Leach, K.; McKinstry, R.; Gupta, S.; Decker, R.; Kukreja, R.; Valerie, K.; Nagarkatti, P.; Deiry, W.E.; Molkentin, J.; Schmidt-Ullrich, R.; Fisher, P.B.; Grant, S.; Hylemon, P.B.; Dent, P. Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol. Biol. Cell, 2001, 12(9), 2629-2645.
[http://dx.doi.org/10.1091/mbc.12.9.2629] [PMID: 11553704]
[28]
Reinehr, R.; Becker, S.; Wettstein, M.; Häussinger, D. Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology, 2004, 127(5), 1540-1557.
[http://dx.doi.org/10.1053/j.gastro.2004.08.056] [PMID: 15521021]
[29]
Di Toro, R.; Campana, G.; Murari, G.; Spampinato, S. Effects of specific bile acids on c-fos messenger RNA levels in human colon carcinoma Caco-2 cells. Eur. J. Pharm. Sci., 2000, 11(4), 291-298.
[http://dx.doi.org/10.1016/S0928-0987(00)00111-1] [PMID: 11033072]
[30]
Rust, C.; Karnitz, L.M.; Paya, C.V.; Moscat, J.; Simari, R.D.; Gores, G.J. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J. Biol. Chem., 2000, 275(26), 20210-20216.
[http://dx.doi.org/10.1074/jbc.M909992199] [PMID: 10770953]
[31]
Yao, R.; Cooper, G.M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science (80-), 1995, 267, , 2003-2006.
[http://dx.doi.org/ 10.1126/science.7701324]
[32]
Misra, S.; Ujházy, P.; Gatmaitan, Z.; Varticovski, L.; Arias, I.M. The role of phosphoinositide 3-kinase in taurocholate-induced trafficking of ATP-dependent canalicular transporters in rat liver. J. Biol. Chem., 1998, 273(41), 26638-26644.
[http://dx.doi.org/10.1074/jbc.273.41.26638] [PMID: 9756904]
[33]
Earnest, D.L.; Holubec, H.; Wali, R.K.; Jolley, C.S.; Bissonette, M.; Bhattacharyya, A.K.; Roy, H.; Khare, S.; Brasitus, T.A. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res., 1994, 54(19), 5071-5074.
[PMID: 7923119]
[34]
Silva, R.F.M.; Rodrigues, C.M.P.; Brites, D. Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J. Hepatol., 2001, 34(3), 402-408.
[http://dx.doi.org/10.1016/S0168-8278(01)00015-0] [PMID: 11322201]
[35]
Heuman, D.M.; Mills, A.S.; McCall, J.; Hylemon, P.B.; Pandak, W.M.; Vlahcevic, Z.R. Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. Gastroenterology, 1991, 100(1), 203-211.
[http://dx.doi.org/10.1016/0016-5085(91)90602-H] [PMID: 1983822]
[36]
Heuman, D.M.; Bajaj, R. Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts. Gastroenterology, 1994, 106(5), 1333-1341.
[http://dx.doi.org/10.1016/0016-5085(94)90027-2] [PMID: 8174892]
[37]
Rodrigues, C.M.; Fan, G.; Ma, X.; Kren, B.T.; Steer, C.J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest., 1998, 101(12), 2790-2799.
[http://dx.doi.org/10.1172/JCI1325] [PMID: 9637713]
[38]
Ikegami, T.; Matsuzaki, Y.; Al Rashid, M.; Ceryak, S.; Zhang, Y.; Bouscarel, B. Enhancement of DNA topoisomerase I inhibitor–induced apoptosis by ursodeoxycholic acid. Mol. Cancer Ther., 2006, 5(1), 68-79.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0107] [PMID: 16432164]
[39]
Kuhajda, K.; Kandrac, J.; Kevresan, S.; Mikov, M.; Fawcett, J.P. Structure and origin of bile acids: An overview. Eur. J. Drug Metab. Pharmacokinet., 2006, 31(3), 135-143.
[http://dx.doi.org/10.1007/BF03190710] [PMID: 17136858]
[40]
Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J. Org. Chem., 2004, 2004(16), 3385-3399.
[http://dx.doi.org/10.1002/ejoc.200300699]
[41]
de Aguiar Vallim, T.Q.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab., 2013, 17(5), 657-669.
[http://dx.doi.org/10.1016/j.cmet.2013.03.013] [PMID: 23602448]
[42]
Monte, M.J.; Marin, J.J.G.; Antelo, A.; Vazquez-Tato, J. Bile acids: Chemistry, physiology, and pathophysiology. World J. Gastroenterol., 2009, 15(7), 804-816.
[http://dx.doi.org/10.3748/wjg.15.804] [PMID: 19230041]
[43]
Boyer, J.L. Bile formation and secretion. Compr. Physiol., 2013, 3(3), 1035-1078.
[http://dx.doi.org/10.1002/cphy.c120027] [PMID: 23897680]
[44]
Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch Inter Med, 1999, 159, 2647-2658. Available from: http://archinte.jamanetwork.com/
[45]
Nurunnabi, M.; Khatun, Z.; Revuri, V.; Nafiujjaman, M.; Cha, S.; Cho, S.; Moo Huh, K.; Lee, Y. Design and strategies for bile acid mediated therapy and imaging. RSC Advances, 2016, 6(78), 73986-74002.
[http://dx.doi.org/10.1039/C6RA10978K]
[46]
Enhsen, A.; Kramer, W.; Wess, G. Bile acids in drug discovery. Int. J. Immunopharmacol., 1998, 3, 409-418.
[http://dx.doi.org/10.1016/S1359-6446(96)10046-5]
[47]
Tamminen, J.; Kolehmainen, E. Bile acids as building blocks of supramolecular hosts. Molecules, 2001, 6(12), 21-46.
[http://dx.doi.org/10.3390/60100021]
[48]
Zhu, X.X.; Nichifor, M. Polymeric materials containing bile acids. Acc. Chem. Res., 2002, 35(7), 539-546.
[http://dx.doi.org/10.1021/ar0101180] [PMID: 12118993]
[49]
Fiorucci, S.; Distrutti, E. Chapter_ThePharmacologyOf BileAcids_REV.pdf, 2019, 256, 3-18. Available from:
[http://dx.doi.org/10.1007/164_2019_238]
[50]
Hegyi, P.; Maléth, J.; Walters, J.R.; Hofmann, A.F.; Keely, S.J. Guts and gall: Bile acids in regulation of intestinal epithelial function in health and disease. Physiol. Rev., 2018, 98(4), 1983-2023.
[http://dx.doi.org/10.1152/physrev.00054.2017] [PMID: 30067158]
[51]
Li, T.; Chiang, J.Y.L. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev., 2014, 66(4), 948-983.
[http://dx.doi.org/10.1124/pr.113.008201] [PMID: 25073467]
[52]
Fiorucci, S.; Baldoni, M.; Ricci, P.; Zampella, A.; Distrutti, E.; Biagioli, M. Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders. Curr. Opin. Pharmacol., 2020, 53, 45-54.
[http://dx.doi.org/10.1016/j.coph.2020.04.008] [PMID: 32480317]
[53]
Zhou, H.; Hylemon, P.B. Bile acids are nutrient signaling hormones. Steroids, 2014, 86, 62-68.
[http://dx.doi.org/10.1016/j.steroids.2014.04.016] [PMID: 24819989]
[54]
Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology, 2017, 152(7), 1679-1694.e3.
[http://dx.doi.org/10.1053/j.gastro.2017.01.055] [PMID: 28214524]
[55]
Vítek, L.; Haluzík, M. The role of bile acids in metabolic regulation. J. Endocrinol., 2016, 228(3), R85-R96.
[http://dx.doi.org/10.1530/JOE-15-0469] [PMID: 26733603]
[56]
Sánchez-García, A.; Sahebkar, A.; Simental-Mendía, M.; Simental-Mendía, L.E. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol. Res., 2018, 135, 144-149.
[http://dx.doi.org/10.1016/j.phrs.2018.08.008] [PMID: 30099154]
[57]
Davis, A.P.; Cholaphanes et al.; steroids as structural components in molecular engineering. Chem. Soc. Rev., 1993, 22(4), 243-253.
[http://dx.doi.org/10.1039/cs9932200243]
[58]
Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci., 2004, 87, 1666-1683.
[59]
Maldonado-Valderrama, J.; Wilde, P.; MacIerzanka, A.; MacKie, A. The role of bile salts in digestion. Adv. Colloid Interface Sci., 2011, 36-46.
[http://dx.doi.org/10.1016/j.cis.2010.12.002]
[60]
Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Intestinal absorption of bile acids in health and disease. Compr. Physiol., 2019, 10(1), 21-56.
[http://dx.doi.org/10.1002/cphy.c190007] [PMID: 31853951]
[61]
Sarkar, A.; Ye, A.; Singh, H. On the role of bile salts in the digestion of emulsified lipids ood Hydrocoll, 2016, 60, 77-84.
[http://dx.doi.org/ 10.1016/j.foodhyd.2016.03.018]
[62]
Sharma, R.; Long, A.; Gilmer, J.F. Advances in bile acid medicinal chemistry. Curr. Med. Chem., 2011, 18(26), 4029-4052.
[http://dx.doi.org/10.2174/092986711796957266] [PMID: 21824088]
[63]
Yamanashi, Y.; Tazuma, H. Takikawa, Bile acids in gastroenterology: Basic and clinical, bile acids gastroenterol; Basic Clin, 2017, pp. 1-209.
[http://dx.doi.org/10.1007/978-4-431-56062-3]
[64]
Mishra, R.; Mishra, S. Updates in bile acid-bioactive molecule conjugates and their applications. Steroids, 2020, 159, 108639.
[http://dx.doi.org/10.1016/j.steroids.2020.108639] [PMID: 32222373]
[65]
Singh, C.; Hassam, M.; Verma, V.P.; Singh, A.S.; Naikade, N.K.; Puri, S.K.; Maulik, P.R.; Kant, R. Bile acid-based 1,2,4-trioxanes: Synthesis and antimalarial assessment. J. Med. Chem., 2012, 55(23), 10662-10673.
[http://dx.doi.org/10.1021/jm301323k] [PMID: 23163291]
[66]
Tolle-Sander, S.; Lentz, K.A.; Maeda, D.Y.; Coop, A.; Polli, J.E. Increased acyclovir oral bioavailability via a bile acid conjugate. Mol. Pharm., 2004, 1(1), 40-48.
[http://dx.doi.org/10.1021/mp034010t] [PMID: 15832499]
[67]
Evangelakos, I.; Heeren, J.; Verkade, E.; Kuipers, F. Role of bile acids in inflammatory liver diseases. Semin. Immunopathol., 2021, 43(4), 577-590.
[http://dx.doi.org/10.1007/s00281-021-00869-6] [PMID: 34236487]
[68]
Antinarelli, L.M.R.; Carmo, A.M.L.; Pavan, F.R.; Leite, C.Q.F.; Da Silva, A.D.; Coimbra, E.S.; Salunke, D.B. Increase of leishmanicidal and tubercular activities using steroids linked to aminoquinoline. Org. Med. Chem. Lett., 2012, 2(1), 16.
[http://dx.doi.org/10.1186/2191-2858-2-16] [PMID: 22551300]
[69]
Santos, J.A.; Polonini, H.C.; Suzuki, É.Y.; Raposo, N.R.B.; da Silva, A.D. Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents. Steroids, 2015, 98, 114-121.
[http://dx.doi.org/10.1016/j.steroids.2015.03.009] [PMID: 25814069]
[70]
Agarwal, D.S.; Anantaraju, H.S.; Sriram, D.; Yogeeswari, P.; Nanjegowda, S.H.; Mallu, P.; Sakhuja, R. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents. Steroids, 2016, 107, 87-97.
[http://dx.doi.org/10.1016/j.steroids.2015.12.022] [PMID: 26748355]
[71]
Brossard, D.; El Kihel, L.; Clément, M.; Sebbahi, W.; Khalid, M.; Roussakis, C.; Rault, S. Synthesis of bile acid derivatives and in vitro cytotoxic activity with pro-apoptotic process on multiple myeloma (KMS-11), glioblastoma multiforme (GBM), and colonic carcinoma (HCT-116) human cell lines. Eur. J. Med. Chem., 2010, 45(7), 2912-2918.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.016] [PMID: 20381215]
[72]
Navacchia, M.; Marchesi, E.; Mari, L.; Chinaglia, N.; Gallerani, E.; Gavioli, R.; Capobianco, M.; Perrone, D. Rational design of nucleoside-bile acid conjugates incorporating a triazole moiety for anticancer evaluation and SAR exploration. Molecules, 2017, 22(10), 1710.
[http://dx.doi.org/10.3390/molecules22101710] [PMID: 29023408]
[73]
Agarwal, D.S.; Siva Krishna, V.; Sriram, D.; Yogeeswari, P.; Sakhuja, R. Clickable conjugates of bile acids and nucleosides: Synthesis, characterization, in vitro anticancer and antituberculosis studies. Steroids, 2018, 139, 35-44.
[http://dx.doi.org/10.1016/j.steroids.2018.09.006] [PMID: 30236620]
[74]
Yan Li; Zhen Zhang; Yong Ju; Chang-Qi Zhao. Design, synthesis and antitumor activity of dimeric bile acid-amino acid conjugates. Lett. Org. Chem., 2007, 4(6), 414-418.
[http://dx.doi.org/10.2174/157017807781467542]
[75]
Patel, S.; Challagundla, N.; Rajput, R.A.; Mishra, S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg. Chem., 2022, 127, 106036.
[http://dx.doi.org/10.1016/j.bioorg.2022.106036] [PMID: 35878450]
[76]
Sreekanth, V.; Bansal, S.; Motiani, R.K.; Kundu, S.; Muppu, S.K.; Majumdar, T.D.; Panjamurthy, K.; Sengupta, S.; Bajaj, A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug. Chem., 2013, 24(9), 1468-1484.
[http://dx.doi.org/10.1021/bc300664k] [PMID: 23909664]
[77]
Varshosaz, J.; Sadri, F.; Rostami, M.; Mirian, M.; Taymouri, S. Synthesis of pectin-deoxycholic acid conjugate for targeted delivery of anticancer drugs in hepatocellular carcinoma. Int. J. Biol. Macromol., 2019, 139, 665-677.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.225] [PMID: 31377298]
[78]
Agarwal, D.S.; Singh, R.P.; Lohitesh, K.; Jha, P.N.; Chowdhury, R.; Sakhuja, R. Synthesis and evaluation of bile acid amides of α-cyanostilbenes as anticancer agents. Mol. Divers., 2018, 22(2), 305-321.
[http://dx.doi.org/10.1007/s11030-017-9797-9] [PMID: 29238888]
[79]
Sievänen, E. Exploitation of bile acid transport systems in prodrug design. Molecules, 2007, 12(8), 1859-1889.
[http://dx.doi.org/10.3390/12081859] [PMID: 17960093]
[80]
von Geldern, T.W.; Tu, N.; Kym, P.R.; Link, J.T.; Jae, H.S.; Lai, C.; Apelqvist, T.; Rhonnstad, P.; Hagberg, L.; Koehler, K.; Grynfarb, M.; Goos-Nilsson, A.; Sandberg, J.; Österlund, M.; Barkhem, T.; Höglund, M.; Wang, J.; Fung, S.; Wilcox, D.; Nguyen, P.; Jakob, C.; Hutchins, C.; Färnegårdh, M.; Kauppi, B.; Öhman, L.; Jacobson, P.B. Liver-selective glucocorticoid antagonists: A novel treatment for type 2 diabetes. J. Med. Chem., 2004, 47(17), 4213-4230.
[http://dx.doi.org/10.1021/jm0400045] [PMID: 15293993]
[81]
Gabano, E.; Ravera, M.; Osella, D. The drug targeting and delivery approach applied to pt-antitumour complexes. A coordination point of view. Curr. Med. Chem., 2009, 16(34), 4544-4580.
[http://dx.doi.org/10.2174/092986709789760661] [PMID: 19903151]
[82]
Jurček, O.; Wimmer, Z.; Svobodová, H.; Bennettová, B.; Kolehmainen, E.; Drašar, P. Preparation and preliminary biological screening of cholic acid–juvenoid conjugates. Steroids, 2009, 74(9), 779-785.
[http://dx.doi.org/10.1016/j.steroids.2009.04.006] [PMID: 19394354]
[83]
Rohacova, J.; Marín, M.L.; Martinez-Romero, A.; Diaz, L.; O’Connor, J.E.; Gomez-Lechon, M.J.; Donato, M.T.; Castell, J.V.; Miranda, M.A. Fluorescent benzofurazan-cholic acid conjugates for in vitro assessment of bile acid uptake and its modulation by drugs. ChemMedChem, 2009, 4(3), 466-472.
[http://dx.doi.org/10.1002/cmdc.200800383] [PMID: 19173214]
[84]
Chen, D.; Wang, X.; Chen, L.; He, J.; Miao, Z.; Shen, J. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization. Acta Pharmacol. Sin., 2011, 32(5), 664-672.
[http://dx.doi.org/10.1038/aps.2011.7] [PMID: 21516131]
[85]
Popadyuk, I.I.; Markov, A.V.; Morozova, E.A.; Babich, V.O.; Salomatina, O.V.; Logashenko, E.B.; Zenkova, M.A.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis and evaluation of antitumor, anti-inflammatory and analgesic activity of novel deoxycholic acid derivatives bearing aryl- or hetarylsulfanyl moieties at the C-3 position. Steroids, 2017, 127, 1-12.
[http://dx.doi.org/10.1016/j.steroids.2017.08.016] [PMID: 28887170]
[86]
de Sena Pereira, V.S.; Silva de Oliveira, C.B.; Fumagalli, F.; da Silva Emery, F.; da Silva, N.B.; de Andrade-Neto, V.F. Cytotoxicity, hemolysis and in vivo acute toxicity of 2-hydroxy-3-anilino-1,4-naphthoquinone derivatives. Toxicol. Rep., 2016, 3, 756-762.
[http://dx.doi.org/10.1016/j.toxrep.2016.09.007] [PMID: 28959602]
[87]
Singh, M.; Bansal, S.; Kundu, S.; Bhargava, P.; Singh, A.; Motiani, R.K.; Shyam, R.; Sreekanth, V.; Sengupta, S.; Bajaj, A. Synthesis, structure–activity relationship, and mechanistic investigation of lithocholic acidamphiphiles for colon cancer therapy. MedChemComm, 2015, 6(1), 192-201.
[http://dx.doi.org/10.1039/C4MD00223G] [PMID: 25685308]
[88]
Kuhajda, K.N.; Cvjetićanin, S.M.; Djurendić, E.A.; Sakač, M.N.; Gaši, K.M.P.; Kojić, V.V.; Bogdanović, G.M. Sinteza i citotoksična aktivnost serije novih derivata žučnih kiselina. Hem. Ind., 2009, 63, 313-318.
[http://dx.doi.org/10.2298/HEMIND0904313K]
[89]
Ren, J.; Wang, Y.; Wang, J.; Lin, J.; Wei, K.; Huang, R. Synthesis and antitumor activity of N-sulfonyl-3,7-dioxo-5β-cholan-24-amides, ursodeoxycholic acid derivatives. Steroids, 2013, 78(1), 53-58.
[http://dx.doi.org/10.1016/j.steroids.2012.09.009] [PMID: 23127818]
[90]
Májer, F.; Sharma, R.; Mullins, C.; Keogh, L.; Phipps, S.; Duggan, S.; Kelleher, D.; Keely, S.; Long, A.; Radics, G.; Wang, J.; Gilmer, J.F. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid. Bioorg. Med. Chem., 2014, 22(1), 256-268.
[http://dx.doi.org/10.1016/j.bmc.2013.11.029] [PMID: 24332653]
[91]
Huang, Y.; Chen, S.; Cui, J.; Gan, C.; Liu, Z.; Wei, Y.; Song, H. Synthesis and cytotoxicity of A-homo-lactam derivatives of cholic acid and 7-deoxycholic acid. Steroids, 2011, 76(7), 690-694.
[http://dx.doi.org/10.1016/j.steroids.2011.03.009] [PMID: 21440565]
[92]
Kramer, W. Transporters, Trojan horses and therapeutics: Suitability of bile acid and peptide transporters for drug delivery. Biol. Chem., 2011, 392(1-2), 77-94.
[http://dx.doi.org/10.1515/bc.2011.017] [PMID: 21194371]
[93]
Stojančević, M.; Pavlović, N.; Goločorbin-Kon, S.; Mikov, M. Application of bile acids in drug formulation and delivery. Front. Life Sci., 2013, 7(3-4), 112-122.
[http://dx.doi.org/10.1080/21553769.2013.879925]
[94]
Garidel, P.; Hildebrand, A.; Knauf, K.; Blume, A. Membranolytic activity of bile salts: Influence of biological membrane properties and composition. Molecules, 2007, 12(10), 2292-2326.
[http://dx.doi.org/10.3390/12102292] [PMID: 17978759]
[95]
Moghimipour, E.; Ameri, A.; Handali, S. Absorption-enhancing effects of bile salts. Molecules, 2015, 20(8), 14451-14473.
[http://dx.doi.org/10.3390/molecules200814451] [PMID: 26266402]
[96]
Aburahma, M.H. Bile salts-containing vesicles: Promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv., 2014, 23(6), 1-21.
[http://dx.doi.org/10.3109/10717544.2014.976892] [PMID: 25390191]
[97]
Pinto Reis, C.; Silva, C.; Martinho, N.; Rosado, C. Drug carriers for oral delivery of peptides and proteins: Accomplishments and future perspectives. Ther. Deliv., 2013, 4(2), 251-265.
[http://dx.doi.org/10.4155/tde.12.143] [PMID: 23343163]
[98]
Elnaggar, Y. Multifaceted applications of bile salts in pharmacy: An emphasis on nanomedicine. Int. J. Nanomedicine, 2015, 10, 3955-3971.
[http://dx.doi.org/10.2147/IJN.S82558] [PMID: 26109855]
[99]
Wu, D.; Ji, S.; Wu, Y.; Ju, Y.; Zhao, Y. Design, synthesis, and antitumor activity of bile acid–polyamine–nucleoside conjugates. Bioorg. Med. Chem. Lett., 2007, 17(11), 2983-2986.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.067] [PMID: 17416522]
[100]
Letis, A.S.; Seo, E.J.; Nikolaropoulos, S.S.; Efferth, T.; Giannis, A.; Fousteris, M.A. Synthesis and cytotoxic activity of new artemisinin hybrid molecules against human leukemia cells. Bioorg. Med. Chem., 2017, 25(13), 3357-3367.
[http://dx.doi.org/10.1016/j.bmc.2017.04.021] [PMID: 28456567]
[101]
Marchesi, E.; Chinaglia, N.; Capobianco, M.L.; Marchetti, P.; Huang, T.E.; Weng, H.C.; Guh, J.H.; Hsu, L.C.; Perrone, D.; Navacchia, M.L. Dihydroartemisinin–bile acid hybridization as an effective approach to enhance dihydroartemisinin anticancer activity. ChemMedChem, 2019, 14(7), 779-787.
[http://dx.doi.org/10.1002/cmdc.201800756] [PMID: 30724466]
[102]
Huang, T.E.; Deng, Y.N.; Hsu, J.L.; Leu, W.J.; Marchesi, E.; Capobianco, M.L.; Marchetti, P.; Navacchia, M.L.; Guh, J.H.; Perrone, D.; Hsu, L.C. Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells. Front. Pharmacol., 2020, 11, 599067.
[http://dx.doi.org/10.3389/fphar.2020.599067] [PMID: 33343369]
[103]
Jurášek, M.; Džubák, P.; Sedlák, D.; Dvořáková, H.; Hajdúch, M.; Bartůněk, P.; Drašar, P. Preparation, preliminary screening of new types of steroid conjugates and their activities on steroid receptors. Steroids, 2013, 78(3), 356-361.
[http://dx.doi.org/10.1016/j.steroids.2012.11.016]
[104]
Brard, L.; Granai, C.O.; Swamy, N. Iron chelators deferoxamine and diethylenetriamine pentaacetic acid induce apoptosis in ovarian carcinoma. Gynecol. Oncol., 2006, 100(1), 116-127.
[http://dx.doi.org/10.1016/j.ygyno.2005.07.129] [PMID: 16203029]
[105]
Chong, H.S.; Song, H.A.; Ma, X.; Lim, S.; Sun, X.; Mhaske, S.B. Bile acid-based polyaminocarboxylate conjugates as targeted antitumor agents. Chem. Commun. , 2009, 21(21), 3011-3013.
[http://dx.doi.org/10.1039/b823000e] [PMID: 19462070]
[106]
Incerti, M.; Tognolini, M.; Russo, S.; Pala, D.; Giorgio, C.; Hassan-Mohamed, I.; Noberini, R.; Pasquale, E.B.; Vicini, P.; Piersanti, S.; Rivara, S.; Barocelli, E.; Mor, M.; Lodola, A. Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J. Med. Chem., 2013, 56(7), 2936-2947.
[http://dx.doi.org/10.1021/jm301890k] [PMID: 23489211]
[107]
Liu, Y.Q.; Li, W.Q.; Morris-Natschke, S.L.; Qian, K.; Yang, L.; Zhu, G.X.; Wu, X.B.; Chen, A.L.; Zhang, S.Y.; Nan, X.; Lee, K.H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev., 2015, 35(4), 753-789.
[http://dx.doi.org/10.1002/med.21342] [PMID: 25808858]
[108]
Xiao, L.; Zhou, Y.; Zhang, X.; Ding, Y.; Li, Q. Transporter-targeted bile acid-camptothecin conjugate for improved oral absorptio. Chem. Pharm. Bull. , 2019, 67(10), 1082-1087.
[http://dx.doi.org/10.1248/cpb.c19-00341]
[109]
Rais, R.; Fletcher, S.; Polli, J.E. Synthesis and in vitro evaluation of gabapentin prodrugs that target the human apical sodium-dependent bile acid transporter (hASBT). J. Pharm. Sci., 2011, 100(3), 1184-1195.
[http://dx.doi.org/10.1002/jps.22332] [PMID: 20848648]
[110]
Bennett, M.I.; Simpson, K.H. Gabapentin in the treatment of neuropathic pain. Palliat. Med., 2004, 18(1), 5-11.
[http://dx.doi.org/10.1191/0269216304pm845ra] [PMID: 14982201]
[111]
Publication, A. Collaborative Innovation Center of Yangtze River Region Green Pharmaceuticals, Zhejiang University of Technology; Hangzhou 310014. China, , 2019.
[http://dx.doi.org/10.1248/cpb.c19-00341]
[112]
Kullak-Ublick, G.A.; Glasa, J.; Böker, C.; Oswald, M.; Grützner, U.; Hagenbuch, B.; Stieger, B.; Meier, P.J.; Beuers, U.; Kramer, W.; Wess, G.; Paumgartner, G. Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology, 1997, 113(4), 1295-1305.
[http://dx.doi.org/10.1053/gast.1997.v113.pm9322525] [PMID: 9322525]
[113]
Roda, A.; Cerrè, C.; Manetta, A.C.; Cainelli, G.; Umani-Ronchi, A.; Panunzio, M. Synthesis and physicochemical, biological, and pharmacological properties of new bile acids amidated with cyclic amino acids. J. Med. Chem., 1996, 39(11), 2270-2276.
[http://dx.doi.org/10.1021/jm9508503] [PMID: 8667370]
[114]
Navacchia, M.L.; Fraix, A.; Chinaglia, N.; Gallerani, E.; Perrone, D.; Cardile, V.; Graziano, A.C.E.; Capobianco, M.L.; Sortino, S. NO photoreleaser-deoxyadenosine and - bile acid derivative bioconjugates as novel potential photochemotherapeutics 2016, 2-6.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00257]
[115]
Dalpiaz, A.; Paganetto, G.; Pavan, B.; Fogagnolo, M.; Medici, A.; Beggiato, S.; Perrone, D. Zidovudine and ursodeoxycholic acid conjugation: Design of a new prodrug potentially able to bypass the active efflux transport systems of the central nervous system. Mol. Pharm., 2012, 9(4), 957-968.
[http://dx.doi.org/10.1021/mp200565g] [PMID: 22356133]
[116]
Hryniewicka, A.; Łotowski, Z.; Seroka, B.; Witkowski, S.; Morzycki, J.W. Synthesis of a cisplatin derivative from lithocholic acid. Tetrahedron, 2018, 74(38), 5392-5398.
[http://dx.doi.org/10.1016/j.tet.2018.01.007]
[117]
Park, K.; Kim, Y.S.; Lee, G.Y.; Nam, J.O.; Lee, S.K.; Park, R.W.; Kim, S.Y.; Kim, I.S.; Byun, Y. Antiangiogenic effect of bile acid acylated heparin derivative. Pharm. Res., 2006, 24(1), 176-185.
[http://dx.doi.org/10.1007/s11095-006-9139-6] [PMID: 17109210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy