Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Advancing Hybrid Nanocatalyst Research: A Python-based Visualization of Similarity Analysis for Interdisciplinary and Sustainable Development

Author(s): Fernando Gomes Souza*, Kaushik Pal, Fabíola Maranhão, Carlos Zanoni, Daniele Brandão, Michelle Colão, Gabriel Silva, Jeffrey Ampah and Karine Velasco

Volume 20, Issue 6, 2024

Published on: 29 December, 2023

Page: [830 - 856] Pages: 27

DOI: 10.2174/0115734137274085231214100609

Price: $65

Abstract

Background: This study presents a comprehensive analysis of hybrid nanocatalysts, which amalgamate attributes of both heterogeneous and homogeneous catalysts.

Aim: To achieve a holistic understanding of the topic, we embarked on a meticulous exploration across multiple databases.

Methods: The Web of Science repository yielded 239 pertinent documents, while the Scopus database offered a more exhaustive collection of 1,887 documents. Although Google Scholar suggested a staggering 25,000 articles, its unclear selection criteria raised questions about the precision and dependability of its data. Hence, our study primarily relied on the Scopus database to ensure an extensive sample and analytical rigor. Using the Python-boosted visualization of Similarities methodology, we illuminated interconnections among various terminologies, identifying burgeoning areas within hybrid nanocatalyst research.

Results: Our findings emphasized the ascending trajectory toward innovating materials with superior properties in hybrid nanocatalysis. This trajectory accentuated the pivotal role of interdisciplinary collaboration and sustainable methodologies. Advanced analytical techniques, notably X-ray diffraction, emerged as quintessential in delineating the nuanced relationship between hybrid nanocatalysts' structural and functional attributes. We also spotlighted Energy-Dispersive X-ray Spectroscopy's capability in fine-tuning hybrid nanocatalysts' properties, enhancing their catalytic efficacy and selectivity. An intriguing trend our study unearthed was the surge in interest toward integrating natural enzymes as potential catalysts within hybrid nanocatalysts, positioning them as beacons for sustainable and cost-efficient catalyst development.

Conclusion: By synthesizing these insights, this research underlines the significance of diverse characterization techniques and the ethos of interdisciplinary collaboration. The derived knowledge offers a repository for fellow researchers, guiding further inquiries, especially regarding integrating natural enzymes in hybrid nanocatalyst innovation.

Graphical Abstract

[1]
Mandari, V.; Devarai, S.K. Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. BioEnergy Res., 2021, 1-27.
[http://dx.doi.org/10.1007/s12155-021-10333-w]
[2]
Huang, J.; Li, X.; Xie, R-H.; Tan, X.; Xi, J.; Tian, F.; Liu, P.; Hansen, T.W.; Bai, Z-W. Defect anchoring of atomically dispersed Pd on nitrogen-doped holey carbon nanotube for catalytic hydrogenation of nitroarenes. Appl. Surf. Sci., 2023, 156344.
[3]
Sreekumar, M.; Annadurai, N.; Jayaram, S.; Sarojini, S. Industrial applications of hybrid nanocatalysts and their green synthesis. Top. Catal., 2022, 65(19-20), 1910-1922.
[http://dx.doi.org/10.1007/s11244-022-01712-4]
[4]
Ahsan, M.A.; He, T.; Noveron, J.C.; Reuter, K.; Puente-Santiago, A.R.; Luque, R. Low-dimensional heterostructures for advanced electrocatalysis: An experimental and computational perspective. Chem. Soc. Rev., 2022, 51(3), 812-828.
[http://dx.doi.org/10.1039/D1CS00498K] [PMID: 35022644]
[5]
Anusuya, N.; Pragathiswaran, C.; Mary, J.V. A potential catalyst - TiO2/ZnO based chitosan gel beads for the reduction of nitro-aromatic compounds aggregated sodium borohydride and their antimicrobial activity. J. Mol. Struct., 2021, 1236, 130197.
[http://dx.doi.org/10.1016/j.molstruc.2021.130197]
[6]
Long, J.; Shen, K.; Li, Y. Bifunctional N-doped Co@C catalysts for base-free transfer hydrogenations of nitriles: Controllable selectivity to primary amines vs imines. ACS Catal., 2017, 7(1), 275-284.
[http://dx.doi.org/10.1021/acscatal.6b02327]
[7]
Cao, W.; Zhang, W.; Guo, Z. Carbon-based zero valent iron catalyst for NOX removal at low temperatures: Performance and kinetic study. Environ. Sci. Pollut. Res. Int., 2022, 29(53), 80353-80365.
[http://dx.doi.org/10.1007/s11356-022-20961-0] [PMID: 35716304]
[8]
Septian, A.; Kumar, A.V.N.; Sivasankar, A.; Choi, J.; Hwang, I.; Shin, W.S. Colloidal activated carbon as a highly efficient bifunctional catalyst for phenol degradation. J. Hazard. Mater., 2021, 125474.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125474]
[9]
Ding, S-Y.; Xu, Y-L.; Ding, M-L.; Zhang, Y-K.; Li, L-H.; Li, H. Zhang, Q-X Controlled synthesis of a multi-block copolymer poly(l-lactic acid)-copoly(butylene succinate) with creatinine-based guanidine catalysts. Acta Polym Sin, 2019, 50, 816-825.
[10]
Yang, C.; Ma, Z-S.; Zhi, H-W.; Li, H.; Hu, Y-M. Dissolution and initial esterification kinetics of 2,5-furandicarboxylic acid in ethylene glycol without a catalyst J. Polym. Sci.,,
[11]
Cai, J.; Zhu, J.; Zuo, L.; Fu, Y.; Shen, J. Effect of surface acidity/basicity on the selective hydrogenation of maleic anhydride to succinic anhydride over supported nickel catalysts. Catal. Commun., 2018, 110, 93-96.
[http://dx.doi.org/10.1016/j.catcom.2018.02.016]
[12]
Pinto, M.C.C.; Castro, NL de S e.; Cipolatti, EP.; Fernandez-Lafuente, R.; Manoel, EA.; Freiree, DMG.; Pinto, JC. Effects of reaction operation policies on properties of core–shell polymer supports used for preparation of highly active biocatalysts. Macromol. React. Eng., 2019, 13(1), 1800055.
[13]
Maleki, M.; Tichter, T.; El-Nagar, GA.; Lauermann, I.; Roth, C. Hybrid electrospun nanofibers as electrocatalyst for vanadium redox flow batteries: Theory and experiment. ChemElectroChem,,
[14]
Zhang, X.; Lv, S.; Zhang, X.; Xiao, K.; Wu, X. Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature. J. Environ. Sci., 2021, 101, 1-15.
[http://dx.doi.org/10.1016/j.jes.2020.07.027] [PMID: 33334506]
[15]
Papadopoulos, L.; Zamboulis, A.; Kasmi, N.; Wahbi, M.; Nannou, C.; Lambropoulou, D.A.; Kostoglou, M.; Papageorgiou, G.Z.; Bikiaris, D.N. Investigation of the catalytic activity and reaction kinetic modeling of two antimony catalysts in the synthesis of poly(ethylene furanoate). Green Chem., 2021, 23(6), 2507-2524.
[http://dx.doi.org/10.1039/D0GC04254D]
[16]
Sam, M.S.; Tiong, P.; Lintang, H.O.; Lee, S.L.; Yuliati, L. Mesoporous carbon nitride as a metal-free catalyst for the removal of aniline. RSC Advances, 2015, 5(55), 44578-44586.
[http://dx.doi.org/10.1039/C5RA04829J]
[17]
Liu, X.; Cheng, S.; Long, J.; Zhang, W.; Liu, X.; Wei, D. MOFs-Derived Co@CN bi-functional catalysts for selective transfer hydrogenation of α,β-unsaturated aldehydes without use of base additives. Mater. Chem. Front., 2017, 1(10), 2005-2012.
[http://dx.doi.org/10.1039/C7QM00189D]
[18]
Maksoud, M.I.A.; El-Sayyad, G.S.; El-Khawaga, A.M.; Abd Elkodous, M.; Abokhadra, A.; Elsayed, M.A.; Gobara, M.; Soliman, L.I.; El-Bahnasawy, H.H.; Ashour, A.H. Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. J. Hazard. Mater., 2020, 399, 123000.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123000] [PMID: 32937703]
[19]
Bouyahya, A.; Balieu, S.; Beniazza, R.; Raihane, M.; El Kadib, A.; Le Cerf, D.; Thébault, P.; Gouhier, G.; Lahcini, M. Organotin-bridged ionic liquid as a solvent-free, leaching-resistive catalyst for ring opening polymerization of ε-caprolactone. New J. Chem., 2019, 43(15), 5872-5878.
[http://dx.doi.org/10.1039/C8NJ05985C]
[20]
Pinto, MCC.; Cipolatti, EP.; Manoel, EA.; Freire, DMG.; Pinto, JC. Production of new functionalized polymer nanoparticles and use for manufacture of novel nanobiocatalysts. Macromol Mater Eng, , 2000065..,,
[21]
Qing, Z.Y.; Limei, S.Y. Selective hydrogenation of maleic anhydride to succinic anhydride over nickel catalyst supported on carbon microspheres. China Pet. Process. Petrochem. Technol., 2021, 23, 75.
[22]
Chen, J.; Ren, Y.; Li, H.; Yang, W.; Wu, Q.; Zhao, Y.; Jiao, Q.; Lu, Y.; Shi, D. Structural regulation of magnetic polymer microsphere@Ionic liquids with an intermediate protective layer and application as core–shell–shell catalysts with high stability and activity. ACS Omega, 2020, 5(36), 23062-23069.
[23]
Tian, X.; Wang, K.; Shan, T.; Li, Z.; Wang, C.; Zong, D.; Jiao, D. Study of waste rubber catalytic pyrolysis in a rotary kiln reactor with spent fluid-catalytic-cracking catalysts. J. Anal. Appl. Pyrolysis, 2022, 167, 105686.
[http://dx.doi.org/10.1016/j.jaap.2022.105686]
[24]
Mansoori, Y. Surface decorated magnetite nanoparticles with birhodanine and MoO2Cl2(dmf)2 as a new magnetic catalyst for epoxidation of olefins JPST, 2019, 5(1), 47-60.
[25]
Wu, M.; Yao, X.; Jiang, J.; Ji, Y.; Gu, Y.; Deng, Q.; Ouyang, J. Synthesis of magnetic sulfonated carbon/Fe3O4/Palygorskite composites and application as a solid acid catalyst. Clays Clay Miner., 2022, 70(4), 514-526.
[http://dx.doi.org/10.1007/s42860-022-00199-0]
[26]
Xu, Y.; He, W.; Huang, W.; Jiang, W.; Li, H.; Zhang, Q. Synthesis of poly(butylene succinate) with a binary titanium catalyst. Lizi Jiaohuan Yu Xifu, 2018, 34, 1-8.
[27]
Wang, H.; Zhou, P.; Guo, R.; Wang, Y.; Zhan, H.; Yuan, Y. Synthesis of rectorite/Fe3O4/ZnO composites and their application for the removal of methylene blue dye. Catalysts, 2018, 8(3), 107.
[http://dx.doi.org/10.3390/catal8030107]
[28]
Yuan, J.; Zhang, Y.; Zhang, X.; Zhao, L.; Shen, H.; Zhang, S. Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment. J. Miner. Metall. Mater, 2023, 30, 177-191.
[29]
Park, M.J.; Kwon, S.J.; Park, H.S.; Yoo, S.J.; Jang, J.H.; Kim, H.J.; Nam, S.W.; Kim, J.Y. Urchin-shaped hollow iron-nitrogen-doped carbon microspheres as high-performance electrocatalysts for oxygen reduction. J. Electrochem. Soc., 2017, 164(4), F224-F228.
[http://dx.doi.org/10.1149/2.0291704jes]
[30]
Tang, B.; Wang, S.; Li, R.; Gou, X.; Long, J. Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction. J. Power Sources, 2019, 425, 76-86.
[http://dx.doi.org/10.1016/j.jpowsour.2019.04.007]
[31]
Hameed, A. 4 Applications of nanomaterials in aqueous-mediated heterogeneous catalysis. In: Aqueous Mediated Heterogeneous Catalysis; , 2022; p. 87.
[32]
Yang, R.; Bao, Z.; Sun, Y. Probing and leveraging the structural heterogeneity of nanomaterials for enhanced catalysis. ACS Nanosci. Au, 2023.
[33]
Chang, B.; Zhang, L.; Wu, S.; Sun, Z.; Cheng, Z. Engineering single-atom catalysts toward biomedical applications. Chem. Soc. Rev., 2022, 51(9), 3688-3734.
[http://dx.doi.org/10.1039/D1CS00421B] [PMID: 35420077]
[34]
Alahdal, F.A.M.; Qashqoosh, M.T.A.; Manea, Y.K.; Salem, M.A.S.; Khan, A.M.T.; Naqvi, S. Eco-friendly synthesis of zinc oxide nanoparticles as nanosensor, nanocatalyst and antioxidant agent using leaf extract of P. austroarabica. OpenNano, 2022, 8, 100067.
[http://dx.doi.org/10.1016/j.onano.2022.100067]
[35]
Boulkhessaim, S.; Gacem, A.; Khan, S.H.; Amari, A.; Yadav, V.K.; Harharah, H.N.; Elkhaleefa, A.M.; Yadav, K.K.; Rather, S.; Ahn, H.J.; Jeon, B.H. Emerging trends in the remediation of persistent organic pollutants using nanomaterials and related processes: A review. Nanomaterials, 2022, 12(13), 2148.
[http://dx.doi.org/10.3390/nano12132148] [PMID: 35807983]
[36]
Kouznetsov, V.V.; Hernández, J.G. Nanostructured silicate catalysts for environmentally benign Strecker-type reactions: status quo and quo vadis. RSC Advances, 2022, 12(32), 20807-20828.
[http://dx.doi.org/10.1039/D2RA03102G] [PMID: 35919186]
[37]
de Sá, M.H.; Moreira, C.S.; Pinto, A.M.F.R.; Oliveira, V.B. Recent advances in the development of nanocatalysts for direct methanol fuel cells. Energies, 2022, 15(17), 6335.
[http://dx.doi.org/10.3390/en15176335]
[38]
Pervaiz, E.; Ali, M.; Abbasi, M.A.; Noor, T.; Said, Z.; Alawadhi, H. Unfolding essence of nanoscience for improved water splitting hydrogen generation in the light of newly emergent nanocatalysts. Int. J. Hydrogen Energy, 2022, 47(63), 26915-26955.
[http://dx.doi.org/10.1016/j.ijhydene.2022.06.060]
[39]
Chadha, U.; Selvaraj, S.K.; Ashokan, H.; Hariharan, S.P.; Mathew Paul, V.; Venkatarangan, V.; Paramasivam, V. Complex nanomaterials in catalysis for chemically significant applications: From synthesis and hydrocarbon processing to renewable energy applications. Adv. Mater. Sci. Eng., 2022, 2022, 1-72.
[http://dx.doi.org/10.1155/2022/1552334]
[40]
Nath, N.; Chakroborty, S.; Panda, P.; Pal, K. High yield silica-based emerging nanoparticles activities for hybrid catalyst applications. Top. Catal., 2022, 65(19-20), 1706-1718.
[http://dx.doi.org/10.1007/s11244-022-01623-4]
[41]
Çalışkan, M.; Baran, T. Palladium nanoparticles embedded over chitosan/γMnO2 composite hybrid microspheres as heterogeneous nanocatalyst for effective reduction of nitroarenes and organic dyes in water. J. Organomet. Chem., 2022, 963, 122284.
[http://dx.doi.org/10.1016/j.jorganchem.2022.122284]
[42]
Gulati, S.; Vijayan, S.; Mansi; Kumar, S.; Harikumar, B.; Trivedi, M.; Varma, R.S. Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord. Chem. Rev., 2023, 474, 214853.
[http://dx.doi.org/10.1016/j.ccr.2022.214853]
[43]
Xu, Y.; Zhang, X.; Liu, Y.; Wang, R.; Yang, Y.; Chen, J. A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction. Environ. Sci. Pollut. Res. Int., 2022, 30(5), 11302-11320.
[http://dx.doi.org/10.1007/s11356-022-24728-5] [PMID: 36520289]
[44]
Geng, H.; Zhong, Q.Z.; Li, J.; Lin, Z.; Cui, J.; Caruso, F.; Hao, J. Metal ion-directed functional metal–phenolic materials. Chem. Rev., 2022, 122(13), 11432-11473.
[http://dx.doi.org/10.1021/acs.chemrev.1c01042] [PMID: 35537069]
[45]
Thapa, K.; Liu, W.; Wang, R. Nucleic acid-based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(1), e1765.
[http://dx.doi.org/10.1002/wnan.1765] [PMID: 34734485]
[46]
Ma, C.; Zheng, L.; Wang, G.; Guo, J.; Li, L.; He, Q.; Chen, Y.; Zhang, H. Phase engineering of metal-organic frameworks. Aggregate, 2022, 3(1), e145.
[http://dx.doi.org/10.1002/agt2.145]
[47]
Deng, R.; Guo, M.; Wang, C.; Zhang, Q. Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design; Nano Materials Science, 2022.
[48]
Zhou, B.; Gao, R.; Zou, J.J.; Yang, H. Surface design strategy of catalysts for water electrolysis. Small, 2022, 18(27), 2202336.
[http://dx.doi.org/10.1002/smll.202202336]
[49]
Wei, R.; Tang, N.; Jiang, L.; Yang, J.; Guo, J.; Yuan, X.; Liang, J.; Zhu, Y.; Wu, Z.; Li, H. Bimetallic nanoparticles meet polymeric carbon nitride: Fabrications, catalytic applications and perspectives. Coord. Chem. Rev., 2022, 462, 214500.
[http://dx.doi.org/10.1016/j.ccr.2022.214500]
[50]
Xiao, X.; Yang, L.; Sun, W.; Chen, Y.; Yu, H.; Li, K.; Jia, B.; Zhang, L.; Ma, T. Electrocatalytic water splitting: From harsh and mild conditions to natural seawater. Small, 2022, 18(11), 2105830.
[http://dx.doi.org/10.1002/smll.202105830]
[51]
Bodhankar, P.M.; Sarawade, P.B.; Kumar, P.; Vinu, A.; Kulkarni, A.P.; Lokhande, C.D.; Dhawale, D.S. Nanostructured metal phosphide based catalysts for electrochemical water splitting: A review. Small, 2022, 18(21), 2107572.
[http://dx.doi.org/10.1002/smll.202107572] [PMID: 35285140]
[52]
Luo, Y.; Zhang, Z.; Chhowalla, M.; Liu, B. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater., 2022, 34(16), 2108133.
[http://dx.doi.org/10.1002/adma.202108133]
[53]
Wondimu, T.H.; Bayeh, A.W.; Kabtamu, D.M.; Xu, Q.; Leung, P.; Shah, A.A. Recent progress on tungsten oxide-based materials for the hydrogen and oxygen evolution reactions. Int. J. Hydrogen Energy, 2022, 47(47), 20378-20397.
[http://dx.doi.org/10.1016/j.ijhydene.2022.04.226]
[54]
Zeng, Y.; Zhao, M.; Huang, Z.; Zhu, W.; Zheng, J.; Jiang, Q.; Wang, Z.; Liang, H. Surface reconstruction of water splitting electrocatalysts. Adv. Energy Mater., 2022, 12(33), 2201713.
[http://dx.doi.org/10.1002/aenm.202201713]
[55]
Raduwan, N.F.; Shaari, N.; Kamarudin, S.K.; Masdar, M.S.; Yunus, R.M. An overview of nanomaterials in fuel cells: Synthesis method and application. Int. J. Hydrogen Energy, 2022, 47(42), 18468-18495.
[http://dx.doi.org/10.1016/j.ijhydene.2022.03.035]
[56]
Ma, M.; Lu, X.; Guo, Y.; Wang, L.; Liang, X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. Trends Analyt. Chem., 2022, 157, 116741.
[http://dx.doi.org/10.1016/j.trac.2022.116741]
[57]
Jafarzadeh, H.; Karaman, C.; Güngör, A.; Karaman, O.; Show, P.L.; Sami, P.; Mehrizi, A.A. Hydrogen production via sodium borohydride hydrolysis catalyzed by cobalt ferrite anchored nitrogen-and sulfur co-doped graphene hybrid nanocatalyst: Artificial neural network modeling approach. Chem. Eng. Res. Des., 2022, 183, 557-566.
[http://dx.doi.org/10.1016/j.cherd.2022.05.038]
[58]
Xiao, H.; Low, Z.X.; Gore, D.B.; Kumar, R.; Asadnia, M.; Zhong, Z. Porous metal–organic framework-based filters: Synthesis methods and applications for environmental remediation. Chem. Eng. J., 2022, 430, 133160.
[http://dx.doi.org/10.1016/j.cej.2021.133160]
[59]
Tang, J.; Wu, Y.; Li, X.; Bu, L.; Chang, B. Single-atom iron catalysts for biomedical applications. Prog. Mater. Sci., 2022, 128, 100959.
[http://dx.doi.org/10.1016/j.pmatsci.2022.100959]
[60]
Zou, H.; Luo, Z.; Yang, X.; Xie, Q.; Zhou, Y. Toward emerging applications using core–shell nanostructured materials: A review. J. Mater. Sci., 2022, 57(24), 10912-10942.
[http://dx.doi.org/10.1007/s10853-022-07328-z]
[61]
Zhou, Y.; Shen, X.; Qian, T.; Yan, C.; Lu, J. A review on the rational design and fabrication of nanosized high-entropy materials. Nano Res., 2022, 1-32.
[62]
Taylor, A.K.; Prabhudev, S.; Botton, G.A.; Gates, B.D. Assessing the transformations of supported nanocatalysts used in the oxygen evolution reaction: A case study using NiFe2O4 nanoparticles supported on textured Ni electrodes. ACS Appl. Energy Mater., 2022, 5(11), 13222-13233.
[http://dx.doi.org/10.1021/acsaem.2c01548]
[63]
Li, H.; Li, Y.; Liu, J.; He, Q.; Wu, Y. Asymmetric colloidal motors: From dissymmetric nanoarchitectural fabrication to efficient propulsion strategy. Nanoscale, 2022, 14(20), 7444-7459.
[http://dx.doi.org/10.1039/D2NR00610C] [PMID: 35546337]
[64]
Hayat, A.; Al-Sehemi, A.G.; El-Nasser, K.S.; Taha, T.A.; Al-Ghamdi, A.A.; Amin, M.A.; Ali, T.; Bashir, T.; Palamanit, A.; Khan, J.; Nawawi, W.I. Graphitic carbon nitride (g–C3N4)–based semiconductor as a beneficial candidate in photocatalysis diversity. Int. J. Hydrogen Energy, 2022, 47(8), 5142-5191.
[http://dx.doi.org/10.1016/j.ijhydene.2021.11.133]
[65]
Yadav, A.A.; Hunge, Y.M.; Kang, S-W. Methods to synthesize nanostructured materials for electrocatalytic activities. In noble metal-free electrocatalysts: Fundamentals and recent advances in electrocatalysts for energy applications. In: American Chemical Society; ACS Symposium Series, 2022, 1431, pp. 31-51.
[66]
Gautam, A.; Sk, S.; Pal, U. Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Phys. Chem. Chem. Phys., 2022, 24(35), 20638-20673.
[http://dx.doi.org/10.1039/D2CP02089K] [PMID: 36047908]
[67]
Zabed, H.M.; Islam, J.; Chowdhury, F.I.; Zhao, M.; Awasthi, M.K.; Nizami, A.S.; Uddin, J.; Thomas, S.; Qi, X. Recent insights into heterometal-doped copper oxide nanostructure-based catalysts for renewable energy conversion and generation. Renew. Sustain. Energy Rev., 2022, 168, 112887.
[http://dx.doi.org/10.1016/j.rser.2022.112887]
[68]
Swain, N.; Saravanakumar, B.; Mohanty, S.; Ramadoss, A. Engineering of thermally converted 3D-NiO Co3O4/Ni//3D-ϒ-Fe4N C@Ni/SS porous electrodes for high-performance supercapatteries. Electrochim. Acta, 2022, 412, 140076.
[http://dx.doi.org/10.1016/j.electacta.2022.140076]
[69]
Chen, Y.; Li, S.; Lin, S.; Chen, M.; Tang, C.; Liu, X. Promising energy-storage applications by flotation of graphite ores: A review. Chem. Eng. J., 2023, 454, 139994.
[http://dx.doi.org/10.1016/j.cej.2022.139994]
[70]
Huang, W.X.; Li, Z.P.; Li, D.D.; Hu, Z.H.; Wu, C.; Lv, K.L.; Li, Q. Ti3C2 MXene: Recent progress in its fundamentals, synthesis, and applications. Rare Met., 2022, 41(10), 3268-3300.
[http://dx.doi.org/10.1007/s12598-022-02058-2]
[71]
Hu, J.; Zhao, R.; Li, H.; Xu, Z.; Dai, H.; Gao, H.; Yu, H.; Wang, Z.; Wang, Y.; Liu, Y.; Han, J.; Guo, R. Boosting visible light photocatalysis in an Au@TiO2 yolk-in-shell nanohybrid. Appl. Catal. B, 2022, 303, 120869.
[http://dx.doi.org/10.1016/j.apcatb.2021.120869]
[72]
Mukhopadhyay, S.M.; Nadagouda, M. Editorial for special issue “multifunctional nanomaterials and hybrid structures for sensors, actuators and smart technologies”. Nanomaterials, 2023, 13(4), 722.
[http://dx.doi.org/10.3390/nano13040722] [PMID: 36839090]
[73]
Mostafavi, E.; Iravani, S. MXene-graphene composites: A perspective on biomedical potentials. Nano-Micro Lett., 2022, 14(1), 130.
[http://dx.doi.org/10.1007/s40820-022-00880-y] [PMID: 35699817]
[74]
Hassan, I.U.; Naikoo, G.A.; Salim, H.; Awan, T.; Tabook, M.A.; Pedram, M.Z.; Mustaqeem, M.; Sohani, A.; Hoseinzadeh, S.; Saleh, T.A. Advances in photochemical splitting of seawater over semiconductor nano-catalysts for hydrogen production: A critical review. J. Ind. Eng. Chem., 2023, 121, 1-14.
[http://dx.doi.org/10.1016/j.jiec.2023.01.006]
[75]
Wang, X.; He, Y.; Han, X.; Zhao, J.; Li, L.; Zhang, J.; Zhong, C.; Deng, Y.; Hu, W. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res., 2022, 15(2), 1246-1253.
[http://dx.doi.org/10.1007/s12274-021-3632-4]
[76]
Xu, H.; Zhao, Y.; He, G.; Chen, H. Race on engineering noble metal single-atom electrocatalysts for water splitting. Int. J. Hydrogen Energy, 2022, 47(31), 14257-14279.
[http://dx.doi.org/10.1016/j.ijhydene.2022.02.152]
[77]
Ansari, A.A.; Malhotra, B.D. Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord. Chem. Rev., 2022, 452, 214282.
[http://dx.doi.org/10.1016/j.ccr.2021.214282]
[78]
Tian, Y.; Xu, G.; Cai, K.; Zhao, X.; Zhang, B.; Wang, L.; Wang, T. Emerging biotransduction strategies on soft interfaces for biosensing. Nanoscale, 2022, 15(1), 80-91.
[http://dx.doi.org/10.1039/D2NR05444B] [PMID: 36512329]
[79]
Li, J.J.; Yin, L.; Wang, Z.F.; Jing, Y.C.; Jiang, Z.L.; Ding, Y.; Wang, H.S. Enzyme-immobilized metal-organic frameworks: From preparation to application. Chem. Asian J., 2022, 17(21), e202200751.
[http://dx.doi.org/10.1002/asia.202200751] [PMID: 36029234]
[80]
Wang, Z.J.; Li, Q.; Tan, L.L.; Liu, C.G.; Shang, L. Metal–organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J. Anal. Test., 2022, 6(2), 163-177.
[http://dx.doi.org/10.1007/s41664-022-00224-0] [PMID: 35572781]
[81]
Daniel, M.; Mathew, G.; Anpo, M.; Neppolian, B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord. Chem. Rev., 2022, 468, 214627.
[http://dx.doi.org/10.1016/j.ccr.2022.214627]
[82]
Zhang, Z.; Ohta, S.; Shiba, S.; Niwa, O. Nanocarbon film electrodes for electro-analysis and electrochemical sensors. Curr. Opin. Electrochem., 2022, 35, 101045.
[http://dx.doi.org/10.1016/j.coelec.2022.101045]
[83]
Gao, Y.; Wang, Y.; Wang, Y.; Magaud, P.; Liu, Y.; Zeng, F.; Yang, J.; Baldas, L.; Song, Y. Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. Trends Analyt. Chem., 2023, 158, 116887.
[http://dx.doi.org/10.1016/j.trac.2022.116887]
[84]
Eswaran, M.; Dhanusuraman, R.; Chokkiah, B.; Tsai, P.C.; Wabaidur, S.M.; Alothman, Z.A.; Ponnusamy, V.K. Poly(diphenylamine) and its nanohybrids for chemicals and biomolecules analysis: A review. Curr. Anal. Chem., 2022, 18(5), 546-562.
[http://dx.doi.org/10.2174/1573411017999201215164018]
[85]
Mu, M.; Wen, S.; Hu, S.; Zhao, B.; Song, W. Putting surface-enhanced Raman spectroscopy to work for nanozyme research: Methods, materials and applications. Trends Analyt. Chem., 2022, 152, 116603.
[http://dx.doi.org/10.1016/j.trac.2022.116603]
[86]
Ma, T.; Zhang, J.; Zhang, L.; Zhang, Q.; Xu, X.; Xiong, Y.; Ying, Y.; Fu, Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv. Colloid Interface Sci., 2023, 311, 102828.
[http://dx.doi.org/10.1016/j.cis.2022.102828] [PMID: 36587470]
[87]
Hao, F.; Yan, Z.Y.; Yan, X-P. Recent advances in research on the effect of physicochemical properties on the cytotoxicity of metal–organic frameworks. Small Sci., 2022, 2(9), 2200044.
[http://dx.doi.org/10.1002/smsc.202200044]
[88]
Chen, F.; Tang, Q.; Ma, T.; Zhu, B.; Wang, L.; He, C.; Luo, X.; Cao, S.; Ma, L.; Cheng, C. Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat, 2022, 4(5), e12299.
[http://dx.doi.org/10.1002/inf2.12299]
[89]
Zhu, H.; Li, B.; Yu Chan, C.; Low Qian Ling, B.; Tor, J.; Yi Oh, X.; Jiang, W.; Ye, E.; Li, Z.; Jun Loh, X. Advances in single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv. Drug Deliv. Rev., 2023, 192, 114644.
[http://dx.doi.org/10.1016/j.addr.2022.114644] [PMID: 36493906]
[90]
Shafique, H.; de Vries, J.; Strauss, J.; Khorrami Jahromi, A.; Siavash Moakhar, R.; Mahshid, S. Advances in the translation of electrochemical hydrogel-based sensors. Adv. Healthc. Mater., 2023, 12(1), 2201501.
[http://dx.doi.org/10.1002/adhm.202201501] [PMID: 36300601]
[91]
Asrorov, A.M.; Muhitdinov, B.; Tu, B.; Mirzaakhmedov, S.; Wang, H.; Huang, Y. Advances on delivery of cytotoxic enzymes as anticancer agents. Molecules, 2022, 27(12), 3836.
[http://dx.doi.org/10.3390/molecules27123836] [PMID: 35744957]
[92]
Mansur, A.A.P.; Carvalho, S.M.; Oliveira, L.C.A.; Souza-Fagundes, E.M.; Lobato, Z.I.P.; Leite, M.F.; Mansur, H.S. Bioengineered carboxymethylcellulose–peptide hybrid nanozyme cascade for targeted intracellular biocatalytic–magnetothermal therapy of brain cancer cells. Pharmaceutics, 2022, 14(10), 2223.
[http://dx.doi.org/10.3390/pharmaceutics14102223] [PMID: 36297660]
[93]
ElSayed, R.M.R.; Hussein, D.E.; AbdElhamid, AS.; Bekhit, AA.; Teleb, M.; Elkhodairy, KA.; Khattab, SN.; Elzoghby, AO. Chapter 8 - Hybrid protein-inorganic nanoparticles for drug delivery in cancer therapy. In: Hybrid Nanomaterials for Drug Delivery; Kesharwani P, Jain NK; Woodhead Publishing, 2022; pp. 187-225.
[94]
Anjum, T.; Hussain, N.; Hafsa; Iqbal, H.M.N.; Jedrzak, A.; Jesionowski, T.; Bilal, M. Magnetic nanomaterials as drug delivery vehicles and therapeutic constructs to treat cancer. J. Drug Deliv. Sci. Technol., 2023, 80, 104103.
[http://dx.doi.org/10.1016/j.jddst.2022.104103]
[95]
Sharifuzzaman, M.; Zahed, M.A.; Reza, M.S.; Asaduzzaman, M.; Jeong, S.; Song, H.; Kim, D.K.; Zhang, S.; Park, J.Y. MXene/fluoropolymer-derived laser-carbonaceous all-fibrous nanohybrid patch for soft wearable bioelectronics. Adv. Funct. Mater., 2023, 33(21), 2208894.
[http://dx.doi.org/10.1002/adfm.202208894]
[96]
Silva, V.B.; Santos, Y.H.; Hellinger, R.; Mansour, S.; Delaune, A.; Legros, J.; Zinoviev, S.; Nogueira, E.S.; Orth, E.S. Organophosphorus chemical security from a peaceful perspective: Sustainable practices in its synthesis, decontamination and detection. Green Chem., 2022, 24(2), 585-613.
[http://dx.doi.org/10.1039/D1GC02705K]
[97]
Yang, B.; Li, C.; Wang, Z.; Dai, Q. Thermoplasmonics in solar energy conversion: Materials, nanostructured designs, and applications. Adv. Mater., 2022, 34(26), 2107351.
[http://dx.doi.org/10.1002/adma.202107351]
[98]
Yoo, J.M.; Shin, H.; Chung, D.Y.; Sung, Y.E. Carbon shell on active nanocatalyst for stable electrocatalysis. Acc. Chem. Res., 2022, 55(9), 1278-1289.
[http://dx.doi.org/10.1021/acs.accounts.1c00727] [PMID: 35436084]
[99]
Gebre, S.H. Recent developments of supported and magnetic nanocatalysts for organic transformations: An up-to-date review. Appl. Nanosci., 2023, 13(1), 15-63.
[http://dx.doi.org/10.1007/s13204-021-01888-3]
[100]
Pandit, N.A.; Ahmad, T. Tin oxide based hybrid nanostructures for efficient gas sensing. Molecules, 2022, 27(20), 7038.
[http://dx.doi.org/10.3390/molecules27207038] [PMID: 36296632]
[101]
Shokri, Z.; Seidi, F.; Saeb, M.R.; Jin, Y.; Li, C.; Xiao, H. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: A review. Mater. Today Chem., 2022, 24, 100780.
[http://dx.doi.org/10.1016/j.mtchem.2022.100780]
[102]
Bilal, M.; Rashid, E.; Zdarta, J.; Jesionowski, T. Graphene-based nanoarchitectures as ideal supporting materials to develop multifunctional nanobiocatalytic systems for strengthening the biotechnology industry. Chem. Eng. J., 2023, 452, 139509.
[http://dx.doi.org/10.1016/j.cej.2022.139509]
[103]
Mujahid, M.H.; Upadhyay, T.K.; Khan, F.; Pandey, P.; Park, M.N.; Sharangi, A.B.; Saeed, M.; Upadhye, V.J.; Kim, B. Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomed. Pharmacother., 2022, 155, 113791.
[http://dx.doi.org/10.1016/j.biopha.2022.113791] [PMID: 36271568]
[104]
Afshari, M.; Varma, R.S.; Saghanezhad, S.J. Catalytic applications of heteropoly acid-supported nanomaterials in synthetic transformations and environmental remediation. Comments Mod. Chem. A Comments Inorg. Chem., 2023, 43(2), 129-176.
[http://dx.doi.org/10.1080/02603594.2022.2109019]
[105]
Arnawtee, W.H.; Jaleh, B.; Nasrollahzadeh, M.; Bakhshali-Dehkordi, R.; Nasri, A.; Orooji, Y. Lignin valorization: Facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Separ. Purif. Tech., 2022, 290, 120793.
[http://dx.doi.org/10.1016/j.seppur.2022.120793]
[106]
El-Boubbou, K.; Lemine, O.M.; Jaque, D. Synthesis of novel hybrid mesoporous gold iron oxide nanoconstructs for enhanced catalytic reduction and remediation of toxic organic pollutants. RSC Advances, 2022, 12(55), 35989-36001.
[http://dx.doi.org/10.1039/D2RA05990H] [PMID: 36545116]
[107]
Kumaragurubaran, N.; Arul, P.; Huang, S.T.; Huang, C.H.; Fang, S.B.; Lin, Y-H. Nanocatalyst coupled with a latent-ratiometric electrochemical switch for label-free zero-tolerance rapid detection of live Salmonella in whole blood samples. Sens. Actuators B Chem., 2023, 381, 133428.
[http://dx.doi.org/10.1016/j.snb.2023.133428]
[108]
Li, H.; Yang, K.; Hai, L.; Wang, Z.; Luo, Y.; He, L.; Yi, W.; Li, J.; Xu, C.; Deng, L.; He, D. Photothermal-triggered release of alkyl radicals and cascade generation of hydroxyl radicals via a versatile hybrid nanocatalyst for hypoxia-irrelevant synergistic antibiofilm therapy. Chem. Eng. J., 2023, 455, 140903.
[http://dx.doi.org/10.1016/j.cej.2022.140903]
[109]
Singh, R.; Zeng, Q.; Cheng, S.; Kumar, S. Selective colorimetric detection of cancer cells based on iron/copper nanocatalyst peroxidase activity. IEEE Sens. J., 2022, 22(11), 10492-10499.
[http://dx.doi.org/10.1109/JSEN.2022.3168301]
[110]
Li, J.; Wang, S.; Chang, J.; Feng, L. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Advanced Powder Materials, 2022, 1(3), 100030.
[http://dx.doi.org/10.1016/j.apmate.2022.01.003]
[111]
Ding, R.; Zhang, S.; Chen, Y.; Rui, Z.; Hua, K.; Wu, Y.; Li, X.; Duan, X.; Wang, X.; Li, J.; Liu, J. Application of machine learning in optimizing proton exchange membrane fuel cells: A review. Energy and AI, 2022, 9, 100170.
[http://dx.doi.org/10.1016/j.egyai.2022.100170]
[112]
Kim, C.; Kim, J. Comparative evaluation of artificial neural networks for the performance prediction of Pt-based catalysts in water gas shift reaction. Int. J. Energy Res., 2022, 46(7), 9602-9620.
[http://dx.doi.org/10.1002/er.7829]
[113]
Saleh, T.A. Nanomaterials and hybrid nanocomposites for CO 2 capture and utilization: Environmental and energy sustainability. RSC Advances, 2022, 12(37), 23869-23888.
[http://dx.doi.org/10.1039/D2RA03242B] [PMID: 36093256]
[114]
Fu, X.; Wan, C.; Huang, Y.; Duan, X. Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media. Adv. Funct. Mater., 2022, 32(11), 2106401.
[http://dx.doi.org/10.1002/adfm.202106401]
[115]
Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv. Funct. Mater., 2022, 32(21), 2110036.
[http://dx.doi.org/10.1002/adfm.202110036]
[116]
Herran, M.; Sousa-Castillo, A.; Fan, C.; Lee, S.; Xie, W.; Döblinger, M.; Auguié, B.; Cortés, E. Tailoring plasmonic bimetallic nanocatalysts toward sunlight-driven H 2 production. Adv. Funct. Mater., 2022, 32(38), 2203418.
[http://dx.doi.org/10.1002/adfm.202203418]
[117]
Sun, Z.; Yin, H.; Liu, K.; Cheng, S.; Li, G.K.; Kawi, S.; Zhao, H.; Jia, G.; Yin, Z. Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction. SmartMat, 2022, 3(1), 68-83.
[http://dx.doi.org/10.1002/smm2.1107]
[118]
Jana, D.; Zhao, Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration, 2022, 2(2), 20210238.
[http://dx.doi.org/10.1002/EXP.20210238] [PMID: 37323881]
[119]
Nallajarla, A.K.; Shaik, S.A. Chapter 1 - New frontiers for heterogeneous catalysis: Surface modification of nanomaterials. In: Micro and Nano Technologies; Gawande, MB; Mustansar Hussain, C; Yamauchi, Y. Elsevier, 2022; pp. 1-27.
[120]
Jan, N.; Majeed, N.; Ahmad, M.; Ahmad Lone, W.; John, R. Nano-pollution: Why it should worry us. Chemosphere, 2022, 302, 134746.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134746] [PMID: 35489464]
[121]
Anboo, S.; Lau, S.Y.; Kansedo, J.; Yap, P.S.; Hadibarata, T.; Jeevanandam, J.; Kamaruddin, A.H. Recent advancements in enzyme-incorporated nanomaterials: Synthesis, mechanistic formation, and applications. Biotechnol. Bioeng., 2022, 119(10), 2609-2638.
[http://dx.doi.org/10.1002/bit.28185] [PMID: 35851660]
[122]
Abusweireh, R.S.; Rajamohan, N.; Vasseghian, Y. Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors. Fuel, 2022, 319, 123862.
[http://dx.doi.org/10.1016/j.fuel.2022.123862]
[123]
Mallakpour, S.; Azadi, E.; Dinari, M. Novel mesoporous cupric oxide-based biomaterial: An efficient nanocatalyst toward catalytic reduction of emerging contaminants in the wastewater. J. Clean. Prod., 2022, 378, 134527.
[http://dx.doi.org/10.1016/j.jclepro.2022.134527]
[124]
Hussain, S.M.; Jamshed, W.; Eid, M.R. Solar-HVAC thermal investigation utilizing (Cu-AA7075/C6H9NaO7) MHD-driven hybrid nanofluid rotating flow via second-order convergent technique: A novel engineering study. Arab. J. Sci. Eng., 2023, 48(3), 3301-3322.
[http://dx.doi.org/10.1007/s13369-022-07140-6]
[125]
Singhal, N.; Selvaraj, S.; Sivalingam, Y.; Venugopal, G. Study of photocatalytic degradation efficiency of rGO/ZnO nano-photocatalyst and their performance analysis using scanning Kelvin probe. J. Environ. Chem. Eng., 2022, 10(2), 107293.
[http://dx.doi.org/10.1016/j.jece.2022.107293]
[126]
Benisha, R.; Amalanathan, M.; Aravind, M.; Mary, M.S.M.; Ahmad, A.; Tabassum, S.; Al-Qahtani, W.H.; Ahmad, I. Catharanthus roseus leaf extract mediated Ag-MgO nanocatalyst for photocatalytic degradation of Congo red dye and their antibacterial activity. J. Mol. Struct., 2022, 1262, 133005.
[http://dx.doi.org/10.1016/j.molstruc.2022.133005]
[127]
Ahmad, I.; Manzoor, K.; Aalam, G.; Amir, M.; Ali, S.W. Ikram, S Facile synthesis of L-Tryptophan functionalized magnetic nanophotocatalyst supported by copper nanoparticles for selective reduction of organic pollutants and degradation of azo dyes. Catal. Lett., 2022, 153(9), 2604-2623.
[128]
Mokkarat, A.; Kruanetr, S.; Sakee, U. One-step continuous flow synthesis of aminopropyl silica-coated magnetite nanoparticles. J. Saudi Chem. Soc., 2022, 26(4), 101506.
[http://dx.doi.org/10.1016/j.jscs.2022.101506]
[129]
Oboudatian, H.S.; Safaei-Ghomi, J. Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation. Sci. Rep., 2022, 12(1), 2381.
[http://dx.doi.org/10.1038/s41598-022-05993-3] [PMID: 35149718]
[130]
Ghumro, S.S.; Lal, B.; Pirzada, T. Visible-light-driven carbon-doped TiO2-based nanocatalysts for enhanced activity toward microbes and removal of dye. ACS Omega, 2022, 7(5), 4333-4341.
[http://dx.doi.org/10.1021/acsomega.1c06112] [PMID: 35155926]
[131]
Sun, Y-L.; Deng, Y-L.; Chen, H-N.; Yang, X-T.; Lin, X-M.; Li, J-F. Design strategies and in situ infrared, raman, and x-ray absorption spectroscopy techniques insight into the electrocatalysts of hydrogen energy system. Small Struct., 2023, 4(6), 2200201.
[http://dx.doi.org/10.1002/sstr.202200201]
[132]
Liu, Y.; Wang, Q.; Zhang, J.; Ding, J.; Cheng, Y.; Wang, T.; Li, J.; Hu, F.; Yang, H.B.; Liu, B. Recent advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties. Adv. Energy Mater., 2022, 12(28), 2200928.
[http://dx.doi.org/10.1002/aenm.202200928]
[133]
Liang, H.; Yan, Z.; Zeng, G. Recent advances in in situ/operando surface/interface characterization techniques for the study of artificial photosynthesis. Inorganics, 2022, 11(1), 16.
[http://dx.doi.org/10.3390/inorganics11010016]
[134]
Shivaee-Gariz, R.; Vahdatifar, S.; Asgari, M.; Saboor, FH. Study of catalytic CO2 reduction reactions by in situ characterization techniques.In: Heterogeneous Nanocatalysis for Energy and Environmental Sustainability; John Wiley & Sons, Ltd, 2022, pp. 195-219.
[135]
Yang, F.; Xu, W. Synergistically enhanced single-atomic site catalysts for clean energy conversion. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(11), 5673-5698.
[http://dx.doi.org/10.1039/D1TA08561A]
[136]
Zarabi Golkhatmi, S.; Asghar, M.I.; Lund, P.D. A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools. Renew. Sustain. Energy Rev., 2022, 161, 112339.
[http://dx.doi.org/10.1016/j.rser.2022.112339]
[137]
Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Experimental and field applications of nanotechnology for enhanced oil recovery purposes: A review. Fuel, 2022, 324, 124669.
[http://dx.doi.org/10.1016/j.fuel.2022.124669]
[138]
Hassan, H.; Sharma, P.; Hasan, M.R.; Singh, S.; Thakur, D.; Narang, J. Gold nanomaterials – The golden approach from synthesis to applications. Mater. Sci. Energy Technol., 2022, 5, 375-390.
[http://dx.doi.org/10.1016/j.mset.2022.09.004]
[139]
Nabgan, W.; Tuan Abdullah, T.A.; Ikram, M.; Owgi, A.H.K.; Hatta, A.H.; Alhassan, M.; Aziz, F.F.A.; Jalil, A.A.; Van Tran, T.; Djellabi, R. Hydrogen and valuable liquid fuel production from the in-situ pyrolysis-catalytic steam reforming reactions of cellulose bio-polymer wastes dissolved in phenol over trimetallic Ni-La-Pd/TiCa nanocatalysts. J. Environ. Chem. Eng., 2023, 11(2), 109311.
[http://dx.doi.org/10.1016/j.jece.2023.109311]
[140]
Rajana, N.; Mounika, A.; Chary, P.S.; Bhavana, V.; Urati, A.; Khatri, D.; Singh, S.B.; Mehra, N.K. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J. Control. Release, 2022, 352, 1024-1047.
[http://dx.doi.org/10.1016/j.jconrel.2022.11.009] [PMID: 36379278]
[141]
Trache, D.; Klapötke, T.M.; Maiz, L.; Abd-Elghany, M.; DeLuca, L.T. Recent advances in new oxidizers for solid rocket propulsion. Green Chem., 2017, 19(20), 4711-4736.
[http://dx.doi.org/10.1039/C7GC01928A]
[142]
Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater., 2020, 10(11), 1903120.
[http://dx.doi.org/10.1002/aenm.201903120]
[143]
Shifrina, Z.B.; Matveeva, V.G.; Bronstein, L.M. Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites. Chem. Rev., 2020, 120(2), 1350-1396.
[http://dx.doi.org/10.1021/acs.chemrev.9b00137] [PMID: 31181907]
[144]
Lee, C-Y.; Hu, S-M.; Christy, J.; Chou, F-Y.; Ramli, T.C.; Chen, H-Y. Biointerface coatings with structural and biochemical properties modifications of biomaterials. Adv. Mater. Interfaces, 2023, 10(10), 2202286.
[145]
Jiang, J.; Oberdörster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res., 2009, 11(1), 77-89.
[http://dx.doi.org/10.1007/s11051-008-9446-4]
[146]
Zhang, W.; Taheri-Ledari, R.; Ganjali, F.; Afruzi, F.H.; Hajizadeh, Z.; Saeidirad, M.; Qazi, F.S.; Kashtiaray, A.; Sehat, S.S.; Hamblin, M.R.; Maleki, A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon, 2022, 8(6), e09577.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09577] [PMID: 35706949]
[147]
Radhakrishnan, S.; Lakshmy, S.; Santhosh, S.; Kalarikkal, N.; Chakraborty, B.; Rout, C.S. Recent developments and future perspective on electrochemical glucose sensors based on 2D materials. Biosensors, 2022, 12(7), 467.
[http://dx.doi.org/10.3390/bios12070467] [PMID: 35884271]
[148]
Zhang, J.; Mou, L.; Jiang, X. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci., 2020, 11(4), 923-936.
[http://dx.doi.org/10.1039/C9SC06497D] [PMID: 34084347]
[149]
Chiodi, E.; Marn, A.M.; Geib, M.T.; Ünlü, M.S. The role of surface chemistry in the efficacy of protein and DNA microarrays for label-free detection: An overview. Polymers, 2021, 13(7), 1026.
[http://dx.doi.org/10.3390/polym13071026] [PMID: 33810267]
[150]
Iravani, S.; Varma, R.S. MXene-based composites as nanozymes in biomedicine: A perspective. Nano-Micro Lett., 2022, 14(1), 213.
[http://dx.doi.org/10.1007/s40820-022-00958-7] [PMID: 36333561]
[151]
Rajan, R.; Pal, K.; Jayadev, D.; Jayan, J.S.; U, A.; Appukuttan, S.; de Souza, F.G.; Joseph, K.; Kumar, S.S. Polymeric nanoparticles in hybrid catalytic processing and drug delivery system. Top. Catal., 2022, 65(19-20), 1860-1884.
[http://dx.doi.org/10.1007/s11244-022-01697-0]
[152]
Chongdar, S.; Bhattacharjee, S.; Bhanja, P.; Bhaumik, A. Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications. Chem. Commun., 2022, 58(21), 3429-3460.
[http://dx.doi.org/10.1039/D1CC06340E] [PMID: 35234753]
[153]
Jing, W.; Shen, H.; Qin, R.; Wu, Q.; Liu, K.; Zheng, N. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: From atomically dispersed catalysts to atomically precise clusters. Chem. Rev., 2022.
[PMID: 36574336]
[154]
Wang, C-P.; Lin, Y-X.; Cui, L.; Zhu, J. 2D metal–organic frameworks as competent electrocatalysts for water splitting. Small, 2019, 19(15), 2207342.
[155]
Javed, N.; Noor, T.; Iqbal, N.; Naqvi, S.R. A review on development of metal–organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal–air batteries. RSC Advances, 2023, 13(2), 1137-1161.
[http://dx.doi.org/10.1039/D2RA06741B] [PMID: 36686941]
[156]
Singh, R.; Singh, G.; George, N.; Singh, G.; Gupta, S.; Singh, H.; Kaur, G.; Singh, J. Copper-based metal–organic frameworks (MOFs) as an emerging catalytic framework for click chemistry. Catalysts, 2023, 13(1), 130.
[http://dx.doi.org/10.3390/catal13010130]
[157]
Park, S.J.; Moon, Y.K.; Park, S.W.; Lee, S.M.; Kim, T.H.; Kim, S.Y.; Lee, J.H.; Jo, Y.M. Highly sensitive and selective real-time breath isoprene detection using the gas reforming reaction of mof-derived nanoreactors. ACS Appl. Mater. Interfaces, 2023, 15(5), 7102-7111.
[http://dx.doi.org/10.1021/acsami.2c20416] [PMID: 36700612]
[158]
Nivetha, R.; Jana, J.; Ravichandran, S.; Diem, H.N.; Van Phuc, T.; Chung, J.S.; Kang, S.G.; Choi, W.M.; Hur, S.H. Two-dimensional bimetallic Fe/M- (Ni, Zn, Co and Cu) metal organic framework as efficient and stable electrodes for overall water splitting and supercapacitor applications. J. Energy Storage, 2023, 61, 106702.
[http://dx.doi.org/10.1016/j.est.2023.106702]
[159]
Zhang, L.; Wang, H.; Qu, X. Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater., 2023, 2211147.
[160]
Sun, Y.; Xu, B.; Pan, X.; Wang, H.; Wu, Q.; Li, S.; Jiang, B.; Liu, H. Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication. Coord. Chem. Rev., 2023, 475, 214896.
[http://dx.doi.org/10.1016/j.ccr.2022.214896]
[161]
He, Q.; Zhang, L. Design of carbon dots as nanozymes to mediate redox biological processes. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(23), 5071-5082.
[http://dx.doi.org/10.1039/D2TB02259A] [PMID: 37219483]
[162]
Samajdar, S.; Bera, S.; Das, P.S.; Finch, H.; Dhanak, V.R.; Chakraborty, S.; Maiyalagan, T.; Annapurna, K.; Ghosh, S. Exploration of 1D-2D LaFeO3/RGO S-scheme heterojunction for photocatalytic water splitting. Int. J. Hydrogen Energy, 2023, 48(47), 17838-17851.
[http://dx.doi.org/10.1016/j.ijhydene.2023.01.271]
[163]
Ahmed, M.A.; Mohamed, A.A. Recent progress in semiconductor/graphene photocatalysts: Synthesis, photocatalytic applications, and challenges. RSC Advances, 2022, 13(1), 421-439.
[http://dx.doi.org/10.1039/D2RA07225D] [PMID: 36605650]
[164]
Nguyen, V.H.; Lee, T.; Nguyen, T.D. Solvothermal synthesis of bismuth-based halide perovskite nanostructures for photocatalytic degradation of organic pollutants under LED light irradiation. ACS Appl. Nano Mater., 2023, 6(5), 3435-3445.
[http://dx.doi.org/10.1021/acsanm.2c05218]
[165]
Goodman, E.D.; Zhou, C.; Cargnello, M. Design of organic/inorganic hybrid catalysts for energy and environmental applications. ACS Cent. Sci., 2020, 6(11), 1916-1937.
[http://dx.doi.org/10.1021/acscentsci.0c01046] [PMID: 33274270]
[166]
Gao, L.; Cui, X.; Sewell, C.D.; Li, J.; Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev., 2021, 50(15), 8428-8469.
[http://dx.doi.org/10.1039/D0CS00962H] [PMID: 34259239]
[167]
Zhao, J.; Zhang, J.J.; Li, Z.Y.; Bu, X-H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small, 2020, 16(51), 2003916.
[http://dx.doi.org/10.1002/smll.202003916]
[168]
Su, C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. J. Hazard. Mater., 2017, 322(Pt A), 48-84.
[http://dx.doi.org/10.1016/j.jhazmat.2016.06.060] [PMID: 27477792]
[169]
Lu, F.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev., 2020, 408, 213180.
[http://dx.doi.org/10.1016/j.ccr.2020.213180]
[170]
Truppi, A.; Petronella, F.; Placido, T.; Striccoli, M.; Agostiano, A.; Curri, M.; Comparelli, R. Visible-light-active TiO2-based hybrid nanocatalysts for environmental applications. Catalysts, 2017, 7(12), 100.
[http://dx.doi.org/10.3390/catal7040100]
[171]
Luo, J.; Zhang, S.; Sun, M.; Yang, L.; Luo, S.; Crittenden, J.C. A critical review on energy conversion and environmental remediation of photocatalysts with remodeling crystal lattice, surface, and interface. ACS Nano, 2019, 13(9), 9811-9840.
[http://dx.doi.org/10.1021/acsnano.9b03649] [PMID: 31365227]
[172]
Zhao, H.; Tian, F.; Wang, R.; Chen, R. A review on bismuth-related nanomaterials for photocatalysis. Rev. Adv. Sci. Eng., 2014, 3(1), 3-27.
[http://dx.doi.org/10.1166/rase.2014.1050]
[173]
Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; Entezari, M.H.; Dionysiou, D.D. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B, 2012, 125, 331-349.
[http://dx.doi.org/10.1016/j.apcatb.2012.05.036]
[174]
Kumar Maji, T.; Hasan, M.N.; Ghosh, S.; Wulferding, D.; Bhattacharya, C.; Lemmens, P.; Karmakar, D.; Kumar Pal, S. Development of a magnetic nanohybrid for multifunctional application: From immobile photocatalysis to efficient photoelectrochemical water splitting: A combined experimental and computational study. J. Photochem. Photobiol. Chem., 2020, 397, 112575.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112575]
[175]
Correia, R.; James, S.; Lee, S-W.; Morgan, S.P.; Korposh, S. Biomedical application of optical fibre sensors. J. Opt., 2018, 20(7), 073003.
[http://dx.doi.org/10.1088/2040-8986/aac68d]
[176]
Crapnell, R.D.; Garcia-Miranda Ferrari, A.; Dempsey, N.C.; Banks, C.E. Electroanalytical overview: Screen-printed electrochemical sensing platforms for the detection of vital cardiac, cancer and inflammatory biomarkers. Sens. Diagn., 2022, 1(3), 405-428.
[http://dx.doi.org/10.1039/D1SD00041A]
[177]
Lew, T.T.S.; Aung, K.M.M.; Ow, S.Y.; Amrun, S.N.; Sutarlie, L.; Ng, L.F.P.; Su, X. Epitope-functionalized gold nanoparticles for rapid and selective detection of SARS-CoV-2 IgG antibodies. ACS Nano, 2021, 15(7), 12286-12297.
[http://dx.doi.org/10.1021/acsnano.1c04091] [PMID: 34133128]
[178]
Bhati, V.S.; Kumar, M.; Banerjee, R. Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: A review. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(28), 8776-8808.
[http://dx.doi.org/10.1039/D1TC01857D]
[179]
Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Recent progress on the development of chemosensors for gases. Chem. Rev., 2015, 115(15), 7944-8000.
[http://dx.doi.org/10.1021/cr500567r] [PMID: 25651137]
[180]
Erdem, Ö.; Derin, E.; Sagdic, K.; Yilmaz, E.G.; Inci, F. Smart materials-integrated sensor technologies for COVID-19 diagnosis. Emergent Mater., 2021, 4(1), 169-185.
[http://dx.doi.org/10.1007/s42247-020-00150-w] [PMID: 33495747]
[181]
Babu, A.M.; Rajeev, R.; Thadathil, D.A.; Varghese, A.; Hegde, G. Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications. J. Nanostructure Chem., 2021, 1-43.
[http://dx.doi.org/10.1007/s40097-021-00459-w]
[182]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764.
[http://dx.doi.org/10.1039/C3CS60273G] [PMID: 24220322]
[183]
Kumar, S.; Bukkitgar, S.D.; Singh, S.; Pratibha; Singh, V.; Reddy, K.R.; Shetti, N.P.; Venkata Reddy, C.; Sadhu, V.; Naveen, S. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect, 2019, 4(18), 5322-5337.
[http://dx.doi.org/10.1002/slct.201803871]
[184]
Zhou, Y.; Fang, Y.; Ramasamy, R. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors, 2019, 19(2), 392.
[http://dx.doi.org/10.3390/s19020392] [PMID: 30669367]
[185]
Iha, R.K.; Wooley, K.L.; Nyström, A.M.; Burke, D.J.; Kade, M.J.; Hawker, C.J. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem. Rev., 2009, 109(11), 5620-5686.
[http://dx.doi.org/10.1021/cr900138t] [PMID: 19905010]
[186]
Weng, L.; Zhang, H.; Govorov, A.O.; Ouyang, M. Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun., 2014, 5(1), 4792.
[http://dx.doi.org/10.1038/ncomms5792] [PMID: 25178269]
[187]
Rao, A.; Roy, S.; Jain, V.; Pillai, P.P. Nanoparticle self-assembly: From design principles to complex matter to functional materials. ACS Appl. Mater. Interfaces, 2022, 15(21), 25248-25274.
[188]
Dey, S.; Zhao, J. Plasmonic effect on exciton and multiexciton emission of single quantum dots. J. Phys. Chem. Lett., 2016, 7(15), 2921-2929.
[http://dx.doi.org/10.1021/acs.jpclett.6b01164] [PMID: 27411778]
[189]
Liu, M.; Liu, Y.; Gu, B.; Wei, X.; Xu, G.; Wang, X.; Swihart, M.T.; Yong, K.T. Recent advances in copper sulphide-based nanoheterostructures. Chem. Soc. Rev., 2019, 48(19), 4950-4965.
[http://dx.doi.org/10.1039/C8CS00832A] [PMID: 31528883]
[190]
Ploetz, E.; Engelke, H.; Lächelt, U.; Wuttke, S. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv. Funct. Mater., 2020, 30(41), 1909062.
[http://dx.doi.org/10.1002/adfm.201909062]
[191]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[192]
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Stratakis, E.; Parak, W.J.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880.
[http://dx.doi.org/10.1021/acs.chemrev.8b00733] [PMID: 30920815]
[193]
Shikha, S.; Salafi, T.; Cheng, J.; Zhang, Y. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev., 2017, 46(22), 7054-7093.
[http://dx.doi.org/10.1039/C7CS00271H] [PMID: 29022018]
[194]
Catizzone, E.; Bonura, G.; Migliori, M.; Frusteri, F.; Giordano, G. CO2 recycling to dimethyl ether: State-of-the-art and perspectives. Molecules, 2017, 23(1), 31.
[http://dx.doi.org/10.3390/molecules23010031] [PMID: 29295541]
[195]
Chen, J.; Shen, K.; Li, Y. Greening the processes of metal–organic framework synthesis and their use in sustainable catalysis. ChemSusChem, 2017, 10(16), 3165-3187.
[http://dx.doi.org/10.1002/cssc.201700748] [PMID: 28589626]
[196]
Vilcocq, L.; Castilho, P.C.; Carvalheiro, F.; Duarte, L.C. Hydrolysis of oligosaccharides over solid acid catalysts: A review. ChemSusChem, 2014, 7(4), 1010-1019.
[http://dx.doi.org/10.1002/cssc.201300720] [PMID: 24616436]
[197]
Zahmakıran, M.; Özkar, S. Metal nanoparticles in liquid phase catalysis: From recent advances to future goals. Nanoscale, 2011, 3(9), 3462-3481.
[http://dx.doi.org/10.1039/c1nr10201j] [PMID: 21833406]
[198]
Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic frameworks/graphene-based materials: preparations and applications. Adv. Funct. Mater., 2018, 28(47), 1804950.
[http://dx.doi.org/10.1002/adfm.201804950]
[199]
Pascanu, V.; González Miera, G.; Inge, A.K.; Martín-Matute, B. Metal–organic frameworks as catalysts for organic synthesis: A critical perspective. J. Am. Chem. Soc., 2019, 141(18), 7223-7234.
[http://dx.doi.org/10.1021/jacs.9b00733] [PMID: 30974060]
[200]
Ma, L.; Jiang, F.; Fan, X.; Wang, L.; He, C.; Zhou, M.; Li, S.; Luo, H.; Cheng, C.; Qiu, L. Metal–organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater., 2020, 32(49), 2003065.
[http://dx.doi.org/10.1002/adma.202003065] [PMID: 33124725]
[201]
Zhi, Y.; Wang, Z.; Zhang, H.L.; Zhang, Q. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small, 2020, 16(24), 2001070.
[http://dx.doi.org/10.1002/smll.202001070] [PMID: 32419332]
[202]
Sterckx, H.; Morel, B.; Maes, B.U.W. Catalytic aerobic oxidation of C (sp3)- H bonds. Angew. Chem. Int. Ed., 2019, 58(24), 7946-7970.
[http://dx.doi.org/10.1002/anie.201804946] [PMID: 30052305]
[203]
Roy, J.J.; Rarotra, S.; Krikstolaityte, V.; Zhuoran, K.W.; Cindy, Y.D.I.; Tan, X.Y.; Carboni, M.; Meyer, D.; Yan, Q.; Srinivasan, M. Green recycling methods to treat lithium-ion batteries E-waste: A circular approach to sustainability. Adv. Mater., 2022, 34(25), 2103346.
[http://dx.doi.org/10.1002/adma.202103346]
[204]
Thangaraj, B.; Solomon, P.R. Immobilization of lipases–a review. Part I: Enzyme immobilization. ChemBioEng Rev., 2019, 6(5), 157-166.
[http://dx.doi.org/10.1002/cben.201900016]
[205]
Nascimento, D.M.; Nunes, Y.L.; Figueirêdo, M.C.B.; de Azeredo, H.M.C.; Aouada, F.A.; Feitosa, J.P.A.; Rosa, M.F.; Dufresne, A. Nanocellulose nanocomposite hydrogels: Technological and environmental issues. Green Chem., 2018, 20(11), 2428-2448.
[http://dx.doi.org/10.1039/C8GC00205C]
[206]
Koenig, S.G.; Bee, C.; Borovika, A.; Briddell, C.; Colberg, J.; Humphrey, G.R.; Kopach, M.E.; Martinez, I.; Nambiar, S.; Plummer, S.V.; Ribe, S.D.; Roschangar, F.; Scott, J.P.; Sneddon, H.F. A green chemistry continuum for a robust and sustainable active pharmaceutical ingredient supply chain. ACS Sustain. Chem.& Eng., 2019, 7(20), 16937-16951.
[http://dx.doi.org/10.1021/acssuschemeng.9b02842]
[207]
Tian, Y.; Zhang, F.; Wang, J.; Cao, L.; Han, Q. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives. Bioresour. Technol., 2021, 342, 125977.
[http://dx.doi.org/10.1016/j.biortech.2021.125977] [PMID: 34852443]
[208]
Ratre, P.; Nazeer, N.; Kumari, R.; Thareja, S.; Jain, B.; Tiwari, R.; Kamthan, A.; Srivastava, R.K.; Mishra, P.K. Carbon-based fluorescent nano-biosensors for the detection of cell-free circulating microRNAs. Biosensors, 2023, 13(2), 226.
[http://dx.doi.org/10.3390/bios13020226] [PMID: 36831992]
[209]
Cruz, G.; Acosta, J.; Del Arco, J.; Clemente-Suarez, V.J.; Deroncele, V.; Fernández-Lucas, J. Enzyme-mediated synthesis of Molnupiravir: Paving the way for the application of biocatalysis in pharmaceutical industry. ChemCatChem, 2022, 14(13), e202200140.
[http://dx.doi.org/10.1002/cctc.202200140]
[210]
Bressi, V.; Ferlazzo, A.; Iannazzo, D.; Espro, C. Graphene quantum dots by eco-friendly green synthesis for electrochemical sensing: Recent advances and future perspectives. Nanomaterials, 2021, 11(5), 1120.
[http://dx.doi.org/10.3390/nano11051120] [PMID: 33925972]
[211]
Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules, 2021, 26(4), 844.
[http://dx.doi.org/10.3390/molecules26040844] [PMID: 33562781]
[212]
Gedda, G.; Sankaranarayanan, S.A.; Putta, C.L.; Gudimella, K.K.; Rengan, A.K.; Girma, W.M. Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Sci. Rep., 2023, 13(1), 6371.
[http://dx.doi.org/10.1038/s41598-023-33652-8] [PMID: 37076562]
[213]
Morris, C.; Janssens, A.; Allard, A.; Thompson Coon, J.; Shilling, V.; Tomlinson, R.; Williams, J.; Fellowes, A.; Rogers, M.; Allen, K. Informing the NHS outcomes framework: Evaluating meaningful health outcomes for children with neurodisability using multiple methods including systematic review, qualitative research, Delphi survey and consensus meeting. 2014.
[214]
Manikandan, V.; Lee, N.Y. Reduced graphene oxide: Biofabrication and environmental applications. Chemosphere, 2023, 311(Pt 1), 136934.
[http://dx.doi.org/10.1016/j.chemosphere.2022.136934] [PMID: 36273614]
[215]
Sajid, M.; Farooq, U.; Bary, G.; Azim, M.M.; Zhao, X. Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: progress, challenges, and prospects. Green Chem., 2021, 23(23), 9198-9238.
[http://dx.doi.org/10.1039/D1GC02919C]
[216]
Aguillo, I.F. Is Google Scholar useful for bibliometrics? A webometric analysis. Scientometrics, 2012, 91(2), 343-351.
[http://dx.doi.org/10.1007/s11192-011-0582-8]
[217]
Documents published per year, Available from:https://osf.io/kbm6h/files/osfstorage/63f35d9d0393e701cd86aeae
[218]
Documents by knowledge area Available from: https://osf.io/kbm6h/files/osfstorage/63f35d9e0393e701ed86a4b5
[219]
[220]
Authors whose publications are simultaneously listed in queries α and β, Available from: https://osf.io/kbm6h/files/osfstorage/63f35da22c5c3201d4887982
[221]
Rezvani, M.A.; Afshari, P.; Aghmasheh, M. Deep catalytic oxidative desulfurization process catalyzed by TBA-PWFe@NiO@BNT composite material as an efficient and recyclable phase-transfer nanocatalyst. Mater. Chem. Phys., 2021, 267, 124662.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124662]
[222]
Rezvani, M.A.; Khandan, S.; Sabahi, N.; Saeidian, H. Deep oxidative desulfurization of gas oil based on sandwich-type polysilicotungstate supported β-cyclodextrin composite as an efficient heterogeneous catalyst. Chin. J. Chem. Eng., 2019, 27(10), 2418-2426.
[http://dx.doi.org/10.1016/j.cjche.2018.10.024]
[223]
Rezvani, M.A.; Shaterian, M.; Akbarzadeh, F.; Khandan, S. Deep oxidative desulfurization of gasoline induced by PMoCu@MgCu2O4-PVA composite as a high-performance heterogeneous nanocatalyst. Chem. Eng. J., 2018, 333, 537-544.
[http://dx.doi.org/10.1016/j.cej.2017.09.184]
[224]
Rezvani, M.A.; Khalafi, N. Deep oxidative desulfurization of real fuel and thiophenic model fuels using polyoxometalate-based catalytic nanohybrid material. Mater. Today Commun., 2020, 22, 100730.
[http://dx.doi.org/10.1016/j.mtcomm.2019.100730]
[225]
Rezvani, M.A.; Ardeshiri, H.H.; Aghasadeghi, Z. Extractive–oxidative desulfurization of real and model gasoline using (gly) 3 H[SiW12O40]⊂CoFe2O4 as a recoverable and efficient nanocatalyst. Energy Fuels, 2023, 37(3), 2245-2254.
[http://dx.doi.org/10.1021/acs.energyfuels.2c03265]
[226]
Rezvani, M.A.; Maleki, Z. Facile synthesis of inorganic–organic Fe2W18Fe4@NiO@CTS hybrid nanocatalyst induced efficient performance in oxidative desulfurization of real fuel. Appl. Organomet. Chem., 2019, 33.
[227]
Khalafi, N.; Rezvani, M.A.; Jafarian, V. Facile synthesis of new hybrid nanocomposite sandwich-type polyoxometalate@lead (II) oxide@polyvinyl alcohol as an efficient and reusable amphiphilic nanocatalyst for ODS of real fuel. Adv. Powder Technol., 2023, 34(1), 103877.
[http://dx.doi.org/10.1016/j.apt.2022.103877]
[228]
Rezvani, M.A.; Aghbolagh, Z.S.; Monfared, H.H. Green and efficient organic–inorganic hybrid nanocatalyst for oxidative desulfurization of gasoline. Appl. Organomet. Chem., 2018, 32(12), e4592.
[http://dx.doi.org/10.1002/aoc.4592]
[229]
Aghmasheh, M.; Rezvani, M.A.; Jafarian, V.; Aghasadeghi, Z. High oxidation desulfurization of fuels catalyzed by vanadium-substituted phosphomolybdate@Polyaniline@Chitosan as an inorganic-organic hybrid nanocatalyst. Inorg. Chem., 2023, 62(14), 5468-5478.
[http://dx.doi.org/10.1021/acs.inorgchem.2c04415] [PMID: 36992610]
[230]
Rezvani, M.A.; Hosseini, S.; Hassani Ardeshiri, H. Highly efficient catalytic oxidative desulfurization of gasoline using PMnW11 @PANI@CS as a new inorganic–organic hybrid nanocatalyst. Energy Fuels, 2022, 36(14), 7722-7732.
[http://dx.doi.org/10.1021/acs.energyfuels.2c00997]
[231]
Rezvani, M.A.; Ardeshiri, H.H.; Ghafuri, H.; Hosseini, S. Highly oxidative desulfurization of thiophenic model fuels and real gasoline by Keggin-type heteropolyanion immobilized on polyaniline and chitosan as an efficient organic–inorganic nanohybrid catalyst. J. Appl. Polym. Sci., 2023, 140(24), e53950.
[http://dx.doi.org/10.1002/app.53950]
[232]
Rezvani, M.A.; Shokri Aghbolagh, Z.; Hosseini Monfared, H.; Khandan, S. Mono Mn(II)-substituted phosphotungstate@modified graphene oxide as a high-performance nanocatalyst for oxidative demercaptanization of gasoline. J. Ind. Eng. Chem., 2017, 52, 42-50.
[http://dx.doi.org/10.1016/j.jiec.2017.03.021]
[233]
Rezvani, M.A.; Aghmasheh, M.; Hassani, A. Hassani Ardeshiri, H Synthesis and characterization of a new hybrid nanocomposite based on di-substituted heteropolyanion-quantum dots as a high-performance nanocatalyst for organic dye removal from wastewater. J. Coord. Chem., 2022, 75, 507-523.
[http://dx.doi.org/10.1080/00958972.2022.2054705]
[234]
Rezvani, M.A.; Mirsadri, S.A. Synthesis and characterization of new hybrid inorganic–organic polymer nanocomposite as efficient catalyst for oxidative desulfurization of real fuel. Appl. Organomet. Chem., 2020, 34(5), e5585.
[http://dx.doi.org/10.1002/aoc.5585]
[235]
Rezvani, M.A.; Shaterian, M.; Aghbolagh, Z.S.; Akbarzadeh, F. Synthesis and characterization of new inorganic-organic hybrid nanocomposite PMo11Cu@MgCu2O4@CS as an efficient heterogeneous nanocatalyst for ODS of real fuel. ChemistrySelect, 2019, 4(20), 6370-6376.
[http://dx.doi.org/10.1002/slct.201900202]
[236]
Rezvani, H.; Rezvani, M.A. Synthesis and characterization of new nanocomposite based on sandwich-type polyoxometalate and nanoceramic (Fe2W18Fe4@FeTiO3) as a nanocatalyst for germination of barley seeds. Inorganic and Nano-Metal Chemistry, 2020, 50(11), 1063-1069.
[http://dx.doi.org/10.1080/24701556.2020.1735421]
[237]
Rezvani, M.A.; Shaterian, M. Synthesis and characterization of new nanocomposite CTAB@POM@TiO2 as an efficient heterogeneous catalyst for oxidative desulfurization of gas oil. Inorg. Nano-Met. Chem, 2019, 49(1), 23-32.
[http://dx.doi.org/10.1080/24701556.2019.1577259]
[238]
Rezvani, M.A.; Rahmani, P. Synthesis and characterization of new nanosphere hybrid nanocomposite polyoxometalate@ceramic@ polyaniline as a heterogeneous catalyst for oxidative desulfurization of real fuel. Adv. Powder Technol., 2019, 30(12), 3214-3223.
[http://dx.doi.org/10.1016/j.apt.2019.09.030]
[239]
Rezvani, M.A.; Jafari, N. Synthesis and characterization of new substituted sandwich-type polyoxometalate-based inorganic–organic hybrid nanocomposites for catalytic oxidative desulfurization of real gasoline. Ind. Eng. Chem. Res., 2021, 60(20), 7599-7610.
[http://dx.doi.org/10.1021/acs.iecr.1c01167]
[240]
Rezvani, H.; Rezvani, M.A. Synthesis of a new hybrid nanocomposite based on vanadium (V) substituted Keggin-type polyoxometalate and polyvinyl alcohol ((TBA)4PMo10V2@PVA) as a nanocatalyst for germination of barley seeds. J. Coord. Chem., 2021, 74(17-20), 3048-3062.
[http://dx.doi.org/10.1080/00958972.2021.2016723]
[241]
Rezvani, M.A.; Khalafi, N. Synthesis of a new nanocomposite based on sandwich-type silicotungstate and polyvinyl alcohol with superior catalytic activity for deep desulfurization of real/thiophenic mode fuel. J. Coord. Chem., 2020, 73(24), 3395-3411.
[http://dx.doi.org/10.1080/00958972.2020.1855332]
[242]
Rezvani, M.A.; Hadi, M.; Rezvani, H. Synthesis of new nanocomposite based on ceramic and heteropolymolybdate using leaf extract of ALOE VERA as a high-performance nanocatalyst to desulfurization of real fuel. Appl. Organomet. Chem., 2021, 35(5), e6176.
[http://dx.doi.org/10.1002/aoc.6176]
[243]
Rezvani, M.A.; Hadi, M.; Mirsadri, S.A. Synthesis of new nanocomposite based on nanoceramic and mono substituted polyoxometalate, PMo11Cd@MnFe2O4, with superior catalytic activity for oxidative desulfurization of real fuel. Appl. Organomet. Chem., 2020, 34(10), e5882.
[http://dx.doi.org/10.1002/aoc.5882]
[244]
Rezvani, M.A.; Fereyduni, M. Synthesis of organic−inorganic hybrid nanocomposite polyoxometalate/metal oxide/cs polymer (PMnW 11 @TiO 2 @CS): Nanocatalyst for oxidative desulfurization of real fuel. ChemistrySelect, 2019, 4(39), 11467-11474.
[http://dx.doi.org/10.1002/slct.201902654]
[245]
Rezvani, M.A.; Aghmasheh, M. Synthesis of t-B.PWFe/NiO nanocomposite as an efficient and heterogeneous green nanocatalyst for catalytic oxidative-extractive desulfurization of gasoline. Environ. Prog. Sustain. Energy, 2021, 40.
[246]
Rezvani, M.A.; Imani, A. Ultra-deep oxidative desulfurization of real fuels by sandwich-type polyoxometalate immobilized on copper ferrite nanoparticles, Fe6W18O70⊂ CuFe2O4, as an efficient heterogeneous nanocatalyst. J. Environ. Chem. Eng., 2021, 9(1), 105009.
[http://dx.doi.org/10.1016/j.jece.2020.105009]
[247]
Parvaz, S.; Taheri-Ledari, R.; Esmaeili, M.S.; Rabbani, M.; Maleki, A. A brief survey on the advanced brain drug administration by nanoscale carriers: With a particular focus on AChE reactivators. Life Sci., 2020, 240, 117099.
[http://dx.doi.org/10.1016/j.lfs.2019.117099] [PMID: 31760098]
[248]
Taheri-Ledari, R.; Qazi, F.S.; Saeidirad, M.; Maleki, A. A diselenobis-functionalized magnetic catalyst based on iron oxide/silica nanoparticles suggested for amidation reactions. Sci. Rep., 2022, 12(1), 14865.
[http://dx.doi.org/10.1038/s41598-022-19030-w] [PMID: 36050366]
[249]
Maleki, A.; Hajizadeh, Z.; Sharifi, V.; Emdadi, Z. A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J. Clean. Prod., 2019, 215, 1233-1245.
[http://dx.doi.org/10.1016/j.jclepro.2019.01.084]
[250]
Jelodar, D.F.; Rouhi, M.; Taheri-Ledari, R.; Hajizadeh, Z.; Maleki, A. A magnetic X-band frequency microwave nanoabsorbent made of iron oxide/halloysite nanostructures combined with polystyrene. RSC Advances, 2023, 13(10), 6643-6655.
[http://dx.doi.org/10.1039/D2RA08339F] [PMID: 36860539]
[251]
Maleki, A.; Ghalavand, R.; Firouzi-Haji, R. A novel and eco-friendly o-phenylendiamine stabilized on silica-coated magnetic nanocatalyst for the synthesis of indenoquinoline derivatives under ultrasonicassisted solvent-free conditions. Iran J Catal, 2018, 8, 221-229.
[252]
Rahimi, J.; Bahrami, N.; Niksefat, M.; Kamalzare, M.; Maleki, A. A novel biodegradable magnetic bionanocomposite based on tannic acid as a biological molecule for selective oxidation of alcohols. Solid State Sci., 2020, 105, 106284.
[http://dx.doi.org/10.1016/j.solidstatesciences.2020.106284]
[253]
Maleki, A.; Azizi, M.; Emdadi, Z. A novel poly(ethyleneoxide)-based magnetic nanocomposite catalyst for highly efficient multicomponent synthesis of pyran derivatives. Green Chem. Lett. Rev., 2018, 11(4), 573-582.
[http://dx.doi.org/10.1080/17518253.2018.1547795]
[254]
Eivazzadeh-Keihan, R.; Zare-Bakheir, E.; Aliabadi, H.A.M.; Gorab, M.G.; Ghafuri, H.; Maleki, A.; Madanchi, H.; Mahdavi, M. A novel, bioactive and antibacterial scaffold based on functionalized graphene oxide with lignin, silk fibroin and ZnO nanoparticles. Sci. Rep., 2022, 12(1), 8770.
[http://dx.doi.org/10.1038/s41598-022-12283-5] [PMID: 35610263]
[255]
Taheri-Ledari, R.; Ganjali, F.; Zarei-Shokat, S.; Saeidirad, M.; Ansari, F.; Forouzandeh-Malati, M.; Hassanzadeh-Afruzi, F.; Hashemi, S.M.; Maleki, A. A review of metal-free organic halide perovskite: Future directions for the next generation of solar cells. Energy Fuels, 2022, 36(18), 10702-10720.
[http://dx.doi.org/10.1021/acs.energyfuels.2c01868]
[256]
Taheri-Ledari, R.; Jalali, F.; Heidari, L.; Ganjali, F.; Asl, F.R.; Zarei-Shokat, S.; Forouzandeh-Malati, M.; Mohammadi, A.; Maleki, A. An effective antimicrobial complex of nanoscale β-cyclodextrin and ciprofloxacin conjugated to a cell adhesive dipeptide. RSC Advances, 2022, 12(54), 35383-35395.
[http://dx.doi.org/10.1039/D2RA05822G] [PMID: 36544467]
[257]
Soltaninejad, V.; Ahghari, M.R.; Taheri-Ledari, R.; Maleki, A. Bifunctional PVA/ZnO/AgI/Chlorophyll nanocomposite film: Enhanced photocatalytic activity for degradation of pollutants and antimicrobial property under visible-light irradiation. Langmuir, 2021, 37(15), 4700-4713.
[http://dx.doi.org/10.1021/acs.langmuir.1c00501] [PMID: 33821643]
[258]
Taheri-Ledari, R.; Fazeli, A.; Kashtiaray, A.; Salek Soltani, S.; Maleki, A.; Zhang, W. Cefixime-containing silica nanoseeds coated by a hybrid PVA-gold network with a Cys–Arg dipeptide conjugation: Enhanced antimicrobial and drug release properties. Langmuir, 2022, 38(1), 132-146.
[http://dx.doi.org/10.1021/acs.langmuir.1c02233] [PMID: 34961315]
[259]
Maleki, A.; Eskandarpour, V.; Rahimi, J.; Hamidi, N. Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr. Polym., 2019, 208, 251-260.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.069] [PMID: 30658798]
[260]
Rahimi, J.; Taheri-Ledari, R.; Maleki, A. Maleki, A Cellulose-supported sulfonated magnetic nanoparticles: Utilized for one-pot synthesis of α-iminonitrile derivatives. Curr. Org. Synth., 2020, 17(4), 288-294.
[http://dx.doi.org/10.2174/1570179417666200324184936] [PMID: 32208119]
[261]
Hajizadeh, Z.; Valadi, K.; Taheri-Ledari, R.; Maleki, A. Convenient Cr(VI) removal from aqueous samples: Executed by a promising clay-based catalytic system, magnetized by Fe3O4 nanoparticles and functionalized with humic acid. ChemistrySelect, 2020, 5(8), 2441-2448.
[http://dx.doi.org/10.1002/slct.201904672]
[262]
Taheri-Ledari, R.; Asl, F.R.; Saeidirad, M.; Kashtiaray, A.; Maleki, A. Convenient synthesis of dipeptide structures in solution phase assisted by a thioaza functionalized magnetic nanocatalyst. Sci. Rep., 2022, 12(1), 4719.
[http://dx.doi.org/10.1038/s41598-022-07303-3] [PMID: 35304475]
[263]
Taheri Kal-Koshvandi, A.; Ahghari, M.R.; Maleki, A. Design and antibacterial activity assessment of “green” synthesized 1,4-disubstituted 1,2,3-triazoles via an Fe3O4/silicalite-1/PVA/Cu(I) nanocomposite catalyzed three component reaction. New J. Chem., 2020, 44(29), 12619-12632.
[http://dx.doi.org/10.1039/D0NJ01984D]
[264]
Maleki, A.; Eskandarpour, V. Design and development of a new functionalized cellulose-based magnetic nanocomposite: preparation, characterization, and catalytic application in the synthesis of diverse pyrano[2,3-c]pyrazole derivatives. J. Indian Chem. Soc., 2019, 16(7), 1459-1472.
[http://dx.doi.org/10.1007/s13738-019-01610-9]
[265]
Esmaeili, M.S.; Varzi, Z.; Eivazzadeh-Keihan, R.; Maleki, A.; Ghafuri, H. Design and development of natural and biocompatible raffinose-Cu2O magnetic nanoparticles as a heterogeneous nanocatalyst for the selective oxidation of alcohols; Mol Cat, 2020, p. 492.
[266]
Maleki, A.; Taheri-Ledari, R.; Ghalavand, R. Design and fabrication of a magnetite-based polymer-supported hybrid nanocomposite: A promising heterogeneous catalytic system utilized in known palladium-assisted coupling reactions. Comb. Chem. High Throughput Screen., 2020, 23(2), 119-125.
[http://dx.doi.org/10.2174/1386207323666200128152136] [PMID: 32003667]
[267]
Maleki, A.; Niksefat, M.; Rahimi, J.; Hajizadeh, Z. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite film and surface coating by sulfonic acid viain situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines. BMC Chem., 2019, 13(1), 19.
[http://dx.doi.org/10.1186/s13065-019-0538-2] [PMID: 31384768]
[268]
Varzi, Z.; Maleki, A. Design and preparation of ZnS-ZnFe2O4: A green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2,4,5-triaryl-1H-imidazoles. Appl. Organomet. Chem., 2019, 33.
[269]
Ahghari, M.A.; Ahghari, M.R.; Kamalzare, M.; Maleki, A. Design, synthesis, and characterization of novel eco-friendly chitosan-AgIO3 bionanocomposite and study its antibacterial activity. Sci. Rep., 2022, 12(1), 10491.
[http://dx.doi.org/10.1038/s41598-022-14501-6] [PMID: 35729281]
[270]
Hajizadeh, Z.; Radinekiyan, F.; Eivazzadeh-keihan, R.; Maleki, A. Development of novel and green NiFe2O4/geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations. Sci. Rep., 2020, 10(1), 11671.
[http://dx.doi.org/10.1038/s41598-020-68426-z] [PMID: 32669578]
[271]
Forouzandeh-Malati, M.; Ganjali, F.; Zamiri, E.; Zarei-Shokat, S.; Jalali, F.; Padervand, M.; Taheri-Ledari, R.; Maleki, A. Efficient photodegradation of eriochrome black-T by a trimetallic magnetic self-synthesized nanophotocatalyst based on Zn/Au/Fe-embedded poly(vinyl alcohol). Langmuir, 2022, 38(45), 13728-13743.
[http://dx.doi.org/10.1021/acs.langmuir.2c01822] [PMID: 36318162]
[272]
Zhang, W.; Taheri-Ledari, R.; Hajizadeh, Z.; Zolfaghari, E.; Ahghari, M.R.; Maleki, A.; Hamblin, M.R.; Tian, Y. Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide. Nanoscale, 2020, 12(6), 3855-3870.
[http://dx.doi.org/10.1039/C9NR09687F] [PMID: 31996884]
[273]
Rahimi, J.; Taheri-Ledari, R.; Niksefat, M.; Maleki, A. Enhanced reduction of nitrobenzene derivatives: Effective strategy executed by Fe3O4/PVA-10%Ag as a versatile hybrid nanocatalyst. Catal. Commun., 2020, 134, 105850.
[http://dx.doi.org/10.1016/j.catcom.2019.105850]
[274]
Rahimi, J.; Niksefat, M.; Maleki, A. Fabrication of Fe3O4@PVA-Cu nanocomposite and its application for facile and selective oxidation of alcohols. Front Chem., 2020, 8, 615.
[http://dx.doi.org/10.3389/fchem.2020.00615] [PMID: 32850642]
[275]
Taheri-Ledari, R.; Esmaeili, M.S.; Varzi, Z.; Eivazzadeh-Keihan, R.; Maleki, A.; Shalan, A.E. Facile route to synthesize Fe3O4 @acacia–SO3 H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Advances, 2020, 10(66), 40055-40067.
[http://dx.doi.org/10.1039/D0RA07986C] [PMID: 35520839]
[276]
Varzi, Z.; Esmaeili, M.S.; Taheri-Ledari, R. Maleki, A Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis. Inorg. Chem. Commun., 2021, 125.
[277]
Vatanpour, V.; Paziresh, S.; Behroozi, A.H.; Karimi, H.; Esmaeili, M.S.; Parvaz, S.; Imanian Ghazanlou, S.; Maleki, A. Fe3O4@Gum Arabic modified polyvinyl chloride membranes to improve antifouling performance and separation efficiency of organic pollutants. Chemosphere, 2023, 328, 138586.
[http://dx.doi.org/10.1016/j.chemosphere.2023.138586] [PMID: 37028725]
[278]
Eivazzadeh-Keihan, R.; Taheri-Ledari, R.; Khosropour, N.; Dalvand, S.; Maleki, A.; Mousavi-Khoshdel, S.M.; Sohrabi, H. Fe3O4/GO@melamine-ZnO nanocomposite: A promising versatile tool for organic catalysis and electrical capacitance. Colloids Surf. A Physicochem. Eng. Asp., 2020, 587.
[279]
Maleki, A.; Azadegan, S.; Rahimi, J. Gallic acid grafted to amine-functionalized magnetic nanoparticles as a proficient catalyst for environmentally friendly synthesis of α-aminonitriles. Appl. Organomet. Chem., 2019, 33(5), e4810.
[http://dx.doi.org/10.1002/aoc.4810]
[280]
Azizi, M.; Maleki, A.; Hakimpoor, F.; Firouzi-Haji, R.; Ghassemi, M.; Rahimi, J. Green approach for highly efficient synthesis of polyhydroquinolines using Fe3O4@PEO-SO3 H as a novel and recoverable magnetic nanocomposite catalyst. Lett. Org. Chem., 2018, 15(9), 753-759.
[http://dx.doi.org/10.2174/1570178615666180126155204]
[281]
Maleki, A.; Rahimi, J.; Demchuk, O.M.; Wilczewska, A.Z. Jasiński, R. Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst. Ultrason. Sonochem., 2018, 43, 262-271.
[http://dx.doi.org/10.1016/j.ultsonch.2017.12.047] [PMID: 29555283]
[282]
Maleki, A. Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason. Sonochem, 2018, 40(Pt A), 460-464.
[http://dx.doi.org/10.1016/j.ultsonch.2017.07.020] [PMID: 28946446]
[283]
Maleki, A.; Firouzi-Haji, R. Green synthesis of aminocarbonyl compounds using a nanostructured heterogeneous catalyst under mild reaction conditions. Inorganic and Nano-Metal Chemistry, 2019, 49(5), 132-135.
[http://dx.doi.org/10.1080/24701556.2019.1577258]
[284]
Esmaeili, M.S.; Khodabakhshi, M.R.; Maleki, A.; Varzi, Z. Green, natural and low cost xanthum gum supported Fe3O4 as a robust biopolymer nanocatalyst for the one-pot synthesis of 2-amino-3-cyano-4H-pyran derivatives. Polycycl. Aromat. Compd., 2020.
[285]
Hajizadeh, Z.; Maleki, A.; Rahimi, J.; Eivazzadeh-Keihan, R. Halloysite nanotubes modified by Fe3O4 nanoparticles and applied as a natural and efficient nanocatalyst for the symmetricalhantzsch reaction. Silicon, 2020, 12(5), 1247-1256.
[http://dx.doi.org/10.1007/s12633-019-00224-3]
[286]
Taheri-Ledari, R.; Valadi, K.; Maleki, A. High-performance HTL-free perovskite solar cell: An efficient composition of ZnO NRs, RGO, and CuInS2 QDs, as electron-transporting layer matrix. Prog. Photovolt. Res. Appl., 2020, 28(9), 956-970.
[http://dx.doi.org/10.1002/pip.3306]
[287]
Taheri-Ledari, R.; Hashemi, S.M.; Maleki, A. High-performance sono/nano-catalytic system: CTSN/Fe3O4–Cu nanocomposite, a promising heterogeneous catalyst for the synthesis of N-arylimidazoles. RSC Advances, 2019, 9(69), 40348-40356.
[http://dx.doi.org/10.1039/C9RA08062G] [PMID: 35542689]
[288]
Eyvazzadeh-Keihan, R.; Bahrami, N.; Taheri-Ledari, R.; Maleki, A. Highly facilitated synthesis of phenyl(tetramethyl)acridinedione pharmaceuticals by a magnetized nanoscale catalytic system, constructed of GO, Fe3O4 and creatine; Diamond Relat Mat, 2020, p. 102.
[289]
Maleki, A.; Firouzi-Haji, R. L-Proline functionalized magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpyridines. Sci. Rep., 2018, 8(1), 17303.
[http://dx.doi.org/10.1038/s41598-018-35676-x] [PMID: 30470821]
[290]
Firouzi-Haji, R. Maleki, A. L-proline-functionalized Fe 3 O 4 nanoparticles as an efficient nanomagnetic organocatalyst for highly stereoselective one-pot two-step tandem synthesis of substituted cyclopropanes. ChemistrySelect, 2019, 4(3), 853-857.
[http://dx.doi.org/10.1002/slct.201802608]
[291]
Maleki, A.; Hajizadeh, Z. Magnetic aluminosilicate nanoclay: A natural and efficient nanocatalyst for the green synthesis of 4h-pyran derivatives. Silicon, 2019, 11(6), 2789-2798.
[http://dx.doi.org/10.1007/s12633-019-0069-4]
[292]
Maleki, A.; Hassanzadeh-Afruzi, F.; Varzi, Z.; Esmaeili, M.S. Magnetic dextrin nanobiomaterial: An organic-inorganic hybrid catalyst for the synthesis of biologically active polyhydroquinoline derivatives by asymmetric Hantzsch reaction. Mater. Sci. Eng. C, 2020, 109.
[293]
Maleki, A.; Firouzi-Haji, R.; Hajizadeh, Z. Magnetic guanidinylated chitosan nanobiocomposite: A green catalyst for the synthesis of 1,4-dihydropyridines. Int. J. Biol. Macromol., 2018, 116, 320-326.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.035] [PMID: 29751038]
[294]
Rahimi, J.; Naderi, M.; Ijdani, M.T.; Heidari, M.; Azizi, M.; Maleki, A. Magnetite Pd-loaded nitrogen-rich porous organic polymer as a catalyst for suzuki-miyaura coupling reaction. Mater. Today Chem., 2023, 28.
[295]
Maleki, A.; Hajizadeh, Z.; Salehi, P. Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci. Rep., 2019, 9(1), 5552.
[http://dx.doi.org/10.1038/s41598-019-42126-9] [PMID: 30944394]
[296]
Taheri-Ledari, R.; Rahimi, J.; Maleki, A. Method screening for conjugation of the small molecules onto the vinyl-coated Fe3O4/silica nanoparticles: Highlighting the efficiency of ultrasonication. Mater. Res. Express, 2020, 7.
[297]
Koyuncu, I.; Yavuzturk Gul, B.; Esmaeili, M.S.; Pekgenc, E.; Orhun Teber, O.; Tuncay, G.; Karimi, H.; Parvaz, S.; Maleki, A.; Vatanpour, V. Modification of PVDF membranes by incorporation Fe3O4@Xanthan gum to improve anti-fouling, anti-bacterial, and separation performance. J. Environ. Chem. Eng., 2022, 10.
[298]
Maleki, A.; Kari, T. Novel leaking-free, green, double core/shell, palladium-loaded magnetic heterogeneous nanocatalyst for selective aerobic oxidation. Catal. Lett., 2018, 148(9), 2929-2934.
[http://dx.doi.org/10.1007/s10562-018-2492-3]
[299]
Mansourian, S.H.; Shahhosseini, S.; Maleki, A. Optimization of oxidative polymerization-desulfurization of a model fuel using polyoxometalate: Effect of ultrasound irradiation. J. Ind. Eng. Chem., 2019, 80, 576-589.
[http://dx.doi.org/10.1016/j.jiec.2019.08.040]
[300]
Maleki, A.; Haji, R.F.; Ghassemi, M.; Ghafuri, H. Preparation and application of a magnetic organic-inorganic hybrid nanocatalyst for the synthesis of α-aminonitriles. J. Chem. Sci., 2017, 129(4), 457-462.
[http://dx.doi.org/10.1007/s12039-017-1253-y]
[301]
Maleki, A.; Varzi, Z.; Hassanzadeh-Afruzi, F. Preparation and characterization of an eco-friendly ZnFe2O4@alginic acid nanocomposite catalyst and its application in the synthesis of 2-amino-3-cyano-4H-pyran derivatives. Polyhedron, 2019, 171, 193-202.
[http://dx.doi.org/10.1016/j.poly.2019.07.016]
[302]
Kara, G.K.; Rahimi, J.; Niksefat, M.; Taheri-Ledari, R.; Rabbani, M.; Maleki, A. Preparation and characterization of perlite/V2O5 nano-spheres via a novel green method: Applied for oxidation of benzyl alcohol derivatives. Mater. Chem. Phys., 2020, 250.
[303]
Esmaeili, M.S.; Varzi, Z.; Taheri-Ledari, R.; Maleki, A. Preparation and study of the catalytic application in the synthesis of xanthenedione pharmaceuticals of a hybrid nano-system based on copper, zinc and iron nanoparticles. Res. Chem. Intermed., 2021, 47(3), 973-996.
[http://dx.doi.org/10.1007/s11164-020-04311-8]
[304]
Maleki, A.; Gharibi, S.; Valadi, K.; Taheri-Ledari, R. Pumice-modified cellulose fiber: An environmentally benign solid state hybrid catalytic system for the synthesis of 2,4,5-triarylimidazole derivatives. J. Phys. Chem. Solids, 2020, 142, 109443.
[http://dx.doi.org/10.1016/j.jpcs.2020.109443]
[305]
Zhang, W.; Taheri-Ledari, R.; Saeidirad, M.; Qazi, F.S.; Kashtiaray, A.; Ganjali, F.; Tian, Y.; Maleki, A. Regulation of porosity in MOFs: A review on tunable scaffolds and related effects and advances in different applications. J. Environ. Chem. Eng., 2022, 10.
[306]
Khaleghi, N.; Forouzandeh-Malati, M.; Ganjali, F.; Rashvandi, Z.; Zarei-Shokat, S.; Taheri-Ledari, R.; Maleki, A. Silver-assisted reduction of nitroarenes by an Ag-embedded curcumin/melamine-functionalized magnetic nanocatalyst. Sci. Rep., 2023, 13(1), 5225.
[http://dx.doi.org/10.1038/s41598-023-32560-1] [PMID: 36997564]
[307]
Maleki, A.; Rahimi, J.; Valadi, K. Sulfonated Fe3O4@PVA superparamagnetic nanostructure: Design, in-situ preparation, characterization and application in the synthesis of imidazoles as a highly efficient organic–inorganic Bronsted acid catalyst; Nano-Struct Nano-Objects, 2019, p. 18.
[308]
Maleki, A.; Hamidi, N.; Maleki, S. Rahimi, J Surface modified SPIONs-Cr(VI) ions-immobilized organic-inorganic hybrid as a magnetically recyclable nanocatalyst for rapid synthesis of polyhydroquinolines under solvent-free conditions at room temperature. Appl. Organomet. Chem., 2018, 32.
[309]
Taheri-Ledari, R.; Valadi, K.; Gharibi, S.; Maleki, A. Synergistic photocatalytic effect between green LED light and Fe3O4/ZnO-modified natural pumice: A novel cleaner product for degradation of methylene blue. Mater. Res. Bull., 2020, 130.
[310]
Soltani, S.S.; Taheri-Ledari, R.; Farnia, S.M.F.; Maleki, A.; Foroumadi, A. Synthesis and characterization of a supported Pd complex on volcanic pumice laminates textured by cellulose for facilitating Suzuki-Miyaura cross-coupling reactions. RSC Advances, 2020, 10(39), 23359-23371.
[http://dx.doi.org/10.1039/D0RA04521G] [PMID: 35520332]
[311]
Maleki, A.; Rahimi, J.; Hajizadeh, Z.; Niksefat, M. Synthesis and characterization of an acidic nanostructure based on magnetic polyvinyl alcohol as an efficient heterogeneous nanocatalyst for the synthesis of α-aminonitriles. J. Organomet. Chem., 2019, 881, 58-65.
[http://dx.doi.org/10.1016/j.jorganchem.2018.12.002]
[312]
Maleki, A.; Ghalavand, R. R, Firouzi Synthesis and characterization of the novel diamine-functionalized Fe3O4@SiO2 nanocatalyst and its application for one-pot three-component synthesis of chromenes. Appl. Organomet. Chem., 2018, 32(1), e3916.
[313]
Maleki, A.; Rahimi, J. Synthesis of dihydroquinazolinone and octahydroquinazolinone and benzimidazoloquinazolinone derivatives catalyzed by an efficient magnetically recoverable GO-based nanocomposite. J. Porous Mater., 2018, 25(6), 1789-1796.
[http://dx.doi.org/10.1007/s10934-018-0592-5]
[314]
Askari, E.; Naghib, S.M.; Seyfoori, A.; Maleki, A.; Rahmanian, M. Ultrasonic-assisted synthesis and In vitro biological assessments of a novel herceptin-stabilized graphene using three dimensional cell spheroid. Ultrason. Sonochem., 2019, 58, 104615.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104615] [PMID: 31450294]
[315]
Taheri-Ledari, R.; Rahimi, J.; Maleki, A.; Shalan, A.E. Ultrasound-assisted diversion of nitrobenzene derivatives to their aniline equivalents through a heterogeneous magnetic Ag/Fe3O4 -IT nanocomposite catalyst. New J. Chem., 2020, 44(45), 19827-19835.
[http://dx.doi.org/10.1039/D0NJ05147K]
[316]
Valadi, K.; Gharibi, S.; Taheri-Ledari, R.; Maleki, A. Ultrasound-assisted synthesis of 1,4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sci., 2020, 101.
[317]
A voyant tools analysis of hybrid nanocatalysts: Examining trends and patterns in research using query α, Available from: https://voyant-tools.org/?corpus=09f83d6fe0639e4fe6652e98c971c095&lang=en
[318]
A voyant tools analysis of hybrid nanocatalysts: Examining trends and patterns in research using query β, Available from: https://voyant-tools.org/?corpus=ad71aad60c263838a54ea070abb5d084&lang=en
[319]
Gómez, Roberto Development of ruthenium nanoparticles as catalyst models for the splitting of water: Combination of experimental and theoretical chemistry approaches. Semantic Scholar, 2019. Available from: https://www.semanticscholar.org/paper/Development-ofruthenium-nanoparticles-as-catalyst-G%C3%B3mez/1b9bb95e5968b7ef438f4f1d62d657f1bce622ab?utm_source=direct_link
[320]
Gomes Souza, F., Jr; Pal, K.; Ampah, J.D.; Dantas, M.C.; Araújo, A.; Maranhão, F.; Domingues, P. Biofuels and nanocatalysts: Python boosting visualization of similarities. Materials, 2023, 16(3), 1175.
[http://dx.doi.org/10.3390/ma16031175] [PMID: 36770184]
[321]
Aghbolagh, Z.S.; Khorrami, M.R.K.; Rahmatyan, M.S. Sum of ranking differences in studies on high performance of catalytic oxidative denitrogenation and desulfurization of model fuel using efficient organic–inorganic hybrid nanocatalyst. J. Indian Chem. Soc., 2022, 19(1), 219-230.
[http://dx.doi.org/10.1007/s13738-021-02304-x]
[322]
Asadniaye Fardjahromi, M.; Nazari, H.; Ahmadi Tafti, S.M.; Razmjou, A.; Mukhopadhyay, S.; Warkiani, M.E. Metal-organic framework-based nanomaterials for bone tissue engineering and wound healing. Mater. Today Chem., 2022, 23, 100670.
[http://dx.doi.org/10.1016/j.mtchem.2021.100670]
[323]
Chen, S.; Lu, J.; You, T.; Sun, D. Metal-organic frameworks for improving wound healing. Coord. Chem. Rev., 2021, 439, 213929.
[http://dx.doi.org/10.1016/j.ccr.2021.213929]
[324]
Liu, X.; Yan, Z.; Zhang, Y.; Liu, Z.; Sun, Y.; Ren, J.; Qu, X. Two-dimensional metal–organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano, 2019, 13(5), 5222-5230.
[http://dx.doi.org/10.1021/acsnano.8b09501] [PMID: 31002497]
[325]
Xiong, Y.; Lu, X. Eds.; Metallic nanostructures: From controlled synthesis to applications; Springer International Publishing: Cham, 2015.
[http://dx.doi.org/10.1007/978-3-319-11304-3]
[326]
Cao, G.; Wang, Y. Nanostructures and nanomaterials: Synthesis, properties, and applications, 2nd ed; WORLD SCIENTIFIC, 2011.
[http://dx.doi.org/10.1142/7885]
[327]
Abdel-Salam, M.O.; Yoon, T. Cobalt-ferrite/Ag-fMWCNT hybrid nanocomposite catalyst for efficient degradation of synthetic organic dyes via peroxymonosulfate activation. Environ. Res., 2022, 205, 112424.
[http://dx.doi.org/10.1016/j.envres.2021.112424] [PMID: 34838758]
[328]
Baran, T.; Nasrollahzadeh, M. Pd/CoFe2O4/chitosan: A highly effective and easily recoverable hybrid nanocatalyst for synthesis of benzonitriles and reduction of 2-nitroaniline. J. Phys. Chem. Solids, 2021, 149, 109772.
[http://dx.doi.org/10.1016/j.jpcs.2020.109772]
[329]
Hodoroaba, V-D. Energy-dispersive X-ray spectroscopy (EDS). In: Characterization of Nanoparticles; Elsevier, 2020;; pp. 397-417.
[330]
Sikeyi, L.L.; Ntuli, T.D.; Mongwe, T.H.; Maxakato, N.W.; Coville, N.J.; Maubane-Nkadimeng, M.S. Platinum nanoparticles loaded on pristine and boron oxide modified carbon nano-onions for enhanced ammonia electrooxidation in alkaline direct ammonia fuel cells. J. Electroanal. Chem., 2022, 917, 116411.
[http://dx.doi.org/10.1016/j.jelechem.2022.116411]
[331]
Arkas, M.; Douloudi, M.; Nikoli, E.; Karountzou, G.; Kitsou, I.; Kavetsou, E.; Korres, D.; Vouyiouka, S.; Tsetsekou, A.; Giannakopoulos, K.; Papageorgiou, M. Investigation of two bioinspired reaction mechanisms for the optimization of nano catalysts generated from hyperbranched polymer matrices. React. Funct. Polym., 2022, 174, 105238.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2022.105238]
[332]
Simsek, M.; Wongkaew, N. Carbon nanomaterial hybrids via laser writing for high-performance non-enzymatic electrochemical sensors: A critical review. Anal. Bioanal. Chem., 2021, 413(24), 6079-6099.
[http://dx.doi.org/10.1007/s00216-021-03382-9] [PMID: 33978780]
[333]
Ramis Gual, J.; Hueso Martos, J.L.; Calzada Funes, J. Santamaría Ramiro, J. Desarrollo de catalizadores que mimetizan el comportamiento enzimático regulatorio del metabolismo en células tumorales; Universidad de Zaragoza: Zaragoza, 2020.
[334]
Huang, Y.; Han, Y.; Sun, J.; Zhang, Y.; Han, L. Dual nanocatalysts co-decorated three-dimensional, laser-induced graphene hybrid nanomaterials integrated with a smartphone portable electrochemical system for point-of-care non-enzymatic glucose diagnosis. Mater. Today Chem., 2022, 24, 100895.
[http://dx.doi.org/10.1016/j.mtchem.2022.100895]
[335]
Raw data Available from: https://osf.io/v7ujf

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy