Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Differential Signaling Pathways in Medulloblastoma: Nano-biomedicine Targeting Non-coding Epigenetics to Improve Current and Future Therapeutics

Author(s): Daniil Sokolov, Neha Sharda, Aindrila Banerjee, Kseniia Denisenko, Emad B. Basalious, Hem Shukla, Jaylyn Waddell, Nadia M. Hamdy* and Aditi Banerjee*

Volume 30, Issue 1, 2024

Published on: 27 December, 2023

Page: [31 - 47] Pages: 17

DOI: 10.2174/0113816128277350231219062154

Price: $65

Abstract

Background: Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease.

Methodology: This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials.

Results: This study indicates that several signaling pathways, such as sonic hedgehog, WNT/β-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-β and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates.

Conclusion: This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.

[1]
Schakelaar MY, Monnikhof M, Crnko S, et al. Cellular immunotherapy for medulloblastoma. Neuro-oncol 2023; 25(4): 617-27.
[http://dx.doi.org/10.1093/neuonc/noac236] [PMID: 36219688]
[2]
Johnson KJ, Cullen J, Barnholtz-Sloan JS, et al. Childhood brain tumor epidemiology: A brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev 2014; 23(12): 2716-36.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0207] [PMID: 25192704]
[3]
Millard NE, De Braganca KC. Medulloblastoma. J Child Neurol 2016; 31(12): 1341-53.
[http://dx.doi.org/10.1177/0883073815600866] [PMID: 26336203]
[4]
Grausam KB, Dooyema SDR, Bihannic L, et al. ATOH1 promotes leptomeningeal dissemination and metastasis of sonic hedgehog subgroup medulloblastomas. Cancer Res 2017; 77(14): 3766-77.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1836] [PMID: 28490517]
[5]
Liang KH, Chang CC, Wu KS, et al. Notch signaling and natural killer cell infiltration in tumor tissues underlie medulloblastoma prognosis. Sci Rep 2021; 11(1): 23282.
[http://dx.doi.org/10.1038/s41598-021-02651-y] [PMID: 34857809]
[6]
Eid AM, Heabah NAEG. Medulloblastoma: Clinicopathological parameters, risk stratification, and survival analysis of immunohistochemically validated molecular subgroups. J Egypt Natl Canc Inst 2021; 33(1): 6.
[http://dx.doi.org/10.1186/s43046-021-00060-w] [PMID: 33555447]
[7]
Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 2011; 29(11): 1408-14.
[http://dx.doi.org/10.1200/JCO.2009.27.4324] [PMID: 20823417]
[8]
Wang YX, Wu H, Ren Y, et al. Elevated Kir2.1/nuclear N2ICD defines a highly malignant subtype of non-WNT/SHH medulloblastomas. Signal Transduct Target Ther 2022; 7(1): 72.
[http://dx.doi.org/10.1038/s41392-022-00890-7] [PMID: 35273141]
[9]
Funakoshi Y, Sugihara Y, Uneda A, Nakashima T, Suzuki H. Recent advances in the molecular understanding of medulloblastoma. Cancer Sci 2023; 114(3): 741-9.
[http://dx.doi.org/10.1111/cas.15691] [PMID: 36520034]
[10]
Hager NA, McAtee CK, Lesko MA, O’Donnell AF. Inwardly rectifying potassium channel kir2.1 and its “kir-ious” regulation by protein trafficking and roles in development and disease. Front Cell Dev Biol 2022; 9: 796136.
[http://dx.doi.org/10.3389/fcell.2021.796136] [PMID: 35223865]
[11]
Guessous F, Li Y, Abounader R. Signaling pathways in medulloblastoma. J Cell Physiol 2008; 217(3): 577-83.
[http://dx.doi.org/10.1002/jcp.21542] [PMID: 18651559]
[12]
Banerjee A, Ahmed H, Yang P, Czinn SJ, Blanchard TG. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment. Oncotarget 2016; 7(27): 41432-4.
[http://dx.doi.org/10.18632/oncotarget.9180] [PMID: 27166181]
[13]
Blanchard TG, Czinn SJ, Banerjee V, et al. Identification of cross talk between FoxM1 and RASSF1A as a therapeutic target of colon cancer. Cancers 2019; 11(2): 199.
[http://dx.doi.org/10.3390/cancers11020199] [PMID: 30744076]
[14]
Blanchard TG, Lapidus R, Banerjee V, et al. Upregulation of RASSF1A in colon cancer by suppression of angiogenesis signaling and Akt activation. Cell Physiol Biochem 2018; 48(3): 1259-73.
[http://dx.doi.org/10.1159/000492012] [PMID: 30045022]
[15]
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85: 107-22.
[http://dx.doi.org/10.1016/j.semcancer.2021.04.003] [PMID: 33836254]
[16]
Sokolov D, Sharda N, Giri B, et al. Melatonin and andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta‐catenin signaling. J Pineal Res 2022; 73(1): e12808.
[http://dx.doi.org/10.1111/jpi.12808] [PMID: 35619550]
[17]
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: A dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78(8): 3883-906.
[http://dx.doi.org/10.1007/s00018-021-03756-3] [PMID: 33599798]
[18]
Ingham PW, Placzek M. Orchestrating ontogenesis: Variations on a theme by sonic hedgehog. Nat Rev Genet 2006; 7(11): 841-50.
[http://dx.doi.org/10.1038/nrg1969] [PMID: 17047684]
[19]
di Magliano MP, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003; 3(12): 903-11.
[http://dx.doi.org/10.1038/nrc1229] [PMID: 14737121]
[20]
Wijaya J, Vo BT, Liu J, et al. An ABC transporter drives medulloblastoma pathogenesis by regulating sonic hedgehog signaling. Cancer Res 2020; 80(7): 1524-37.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-2054] [PMID: 31948942]
[21]
Dobson THW, Tao RH, Swaminathan J, et al. Transcriptional repressor REST drives lineage stage-specific chromatin compaction at Ptch1 and increases AKT activation in a mouse model of medulloblastoma. Sci Signal 2019; 12(565): eaan8680.
[http://dx.doi.org/10.1126/scisignal.aan8680] [PMID: 30670636]
[22]
Ho Y, Li X, Jamison S, et al. PERK activation promotes medulloblastoma tumorigenesis by attenuating premalignant granule cell precursor apoptosis. Am J Pathol 2016; 186(7): 1939-51.
[http://dx.doi.org/10.1016/j.ajpath.2016.03.004] [PMID: 27181404]
[23]
da Silva LS, Mançano BM, de Paula FE, et al. Expression of GNAS, TP53, and PTEN improves the patient prognostication in Sonic Hedgehog (SHH) medulloblastoma subgroup. J Mol Diagn 2020; 22(7): 957-66.
[http://dx.doi.org/10.1016/j.jmoldx.2020.04.207] [PMID: 32380172]
[24]
Duarte TT, Teixeira SA, Gonzalez-Reyes L, Reis RM. Decoding the roles of astrocytes and hedgehog signaling in medulloblastoma. Curr Oncol 2021; 28(4): 3058-70.
[http://dx.doi.org/10.3390/curroncol28040267] [PMID: 34436033]
[25]
Hartmann W, Digon-Söntgerath B, Koch A, et al. Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clin Cancer Res 2006; 12(10): 3019-27.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2187] [PMID: 16707597]
[26]
Sun J, Li S, Wang F, Fan C, Wang J. Identification of key pathways and genes in PTEN mutation prostate cancer by bioinformatics analysis. BMC Med Genet 2019; 20(1): 191.
[http://dx.doi.org/10.1186/s12881-019-0923-7] [PMID: 31791268]
[27]
Li W, Zhang T, Guo L, Huang L. Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res 2018; 37(1): 223.
[http://dx.doi.org/10.1186/s13046-018-0898-9] [PMID: 30217221]
[28]
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing sonic hedgehog medulloblastoma: Molecular subtypes, drivers, and beyond. Trends Genet 2021; 37(3): 235-50.
[http://dx.doi.org/10.1016/j.tig.2020.11.001] [PMID: 33272592]
[29]
Yu Z, Zhang C, Chai R, et al. Prognostic significance and molecular mechanism of ATP-binding cassette subfamily C member 4 in resistance to neoadjuvant radiotherapy of locally advanced rectal carcinoma. PLoS One 2014; 9(1): e85446.
[http://dx.doi.org/10.1371/journal.pone.0085446] [PMID: 24454870]
[30]
Ma P, An T, Zhu L, et al. RNF220 is required for cerebellum development and regulates medulloblastoma progression through epigenetic modulation of Shh signaling. Development 2020; 147(21): dev.188078.
[http://dx.doi.org/10.1242/dev.188078] [PMID: 32376680]
[31]
Gong Y, Chen Y. UbE3-APA: A bioinformatic strategy to elucidate ubiquitin E3 ligase activities in quantitative proteomics study. Bioinformatics 2022; 38(8): 2211-8.
[http://dx.doi.org/10.1093/bioinformatics/btac069] [PMID: 35139152]
[32]
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: Styles, structures and functions. Mol Biomed 2021; 2(1): 23.
[http://dx.doi.org/10.1186/s43556-021-00043-2] [PMID: 35006464]
[33]
Li Y, Yang C, Wang H, et al. Sequential stabilization of RNF220 by RLIM and ZC4H2 during cerebellum development and Shh-group medulloblastoma progression. J Mol Cell Biol 2022; 14(1): mjab082.
[http://dx.doi.org/10.1093/jmcb/mjab082] [PMID: 35040952]
[34]
Raleigh DR, Choksi PK, Krup AL, Mayer W, Santos N, Reiter JF. Hedgehog signaling drives medulloblastoma growth via CDK6. J Clin Invest 2017; 128(1): 120-4.
[http://dx.doi.org/10.1172/JCI92710] [PMID: 29202464]
[35]
Daggubati V, Hochstelter J, Bommireddy A, et al. Smoothened-activating lipids drive resistance to CDK4/6 inhibition in Hedgehog-associated medulloblastoma cells and preclinical models. J Clin Invest 2021; 131(6): e141171.
[http://dx.doi.org/10.1172/JCI141171] [PMID: 33476305]
[36]
Lospinoso Severini L, Ghirga F, Bufalieri F, Quaglio D, Infante P, Di Marcotullio L. The SHH/GLI signaling pathway: A therapeutic target for medulloblastoma. Expert Opin Ther Targets 2020; 24(11): 1159-81.
[http://dx.doi.org/10.1080/14728222.2020.1823967] [PMID: 32990091]
[37]
Yang C, Qi Y, Sun Z. The role of sonic hedgehog pathway in the development of the central nervous system and aging-related neurodegenerative diseases. Front Mol Biosci 2021; 8: 711710.
[http://dx.doi.org/10.3389/fmolb.2021.711710] [PMID: 34307464]
[38]
Amoretti M, Amsler C, Bonomi G, et al. Production and detection of cold antihydrogen atoms. Nature 2002; 419(6906): 456-9.
[http://dx.doi.org/10.1038/nature01096] [PMID: 12368849]
[39]
Abd El Fattah YK, Abulsoud AI, AbdelHamid SG, Hamdy NM. Interactome battling of lncRNA CCDC144NL-AS1: Its role in the emergence and ferocity of cancer and beyond. Int J Biol Macromol 2022; 222(Pt B): 1676-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.209]
[40]
El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; Integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240: 154183.
[http://dx.doi.org/10.1016/j.prp.2022.154183] [PMID: 36327824]
[41]
Lee SE, Lim SD, Kang SY, Suh SB, Suh YL. Prognostic significance of Ror2 and Wnt5a expression in medulloblastoma. Brain Pathol 2013; 23(4): 445-53.
[http://dx.doi.org/10.1111/bpa.12017] [PMID: 23278988]
[42]
Juraschka K, Taylor MD. Medulloblastoma in the age of molecular subgroups: A review. J Neurosurg Pediatr 2019; 24(4): 353-63.
[http://dx.doi.org/10.3171/2019.5.PEDS18381] [PMID: 31574483]
[43]
Anne SL, Govek EE, Ayrault O, et al. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS One 2013; 8(11): e81769.
[http://dx.doi.org/10.1371/journal.pone.0081769] [PMID: 24303070]
[44]
Pöschl J, Bartels M, Ohli J, et al. Wnt/β-catenin signaling inhibits the Shh pathway and impairs tumor growth in Shh-dependent medulloblastoma. Acta Neuropathol 2014; 127(4): 605-7.
[http://dx.doi.org/10.1007/s00401-014-1258-2] [PMID: 24531885]
[45]
Northcott PA, Buchhalter I, Morrissy AS, et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017; 547(7663): 311-7.
[http://dx.doi.org/10.1038/nature22973] [PMID: 28726821]
[46]
Zinke J, Schneider FT, Harter PN, et al. β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol Cancer 2015; 14(1): 17.
[http://dx.doi.org/10.1186/s12943-015-0294-4] [PMID: 25645196]
[47]
Youn YH, Hou S, Wu CC, et al. Primary cilia control translation and the cell cycle in medulloblastoma. Genes Dev 2022; 36(11-12): 737-51.
[http://dx.doi.org/10.1101/gad.349596.122] [PMID: 35798383]
[48]
Khoonkari M, Liang D, Lima MT, et al. The unfolded protein response sensor perk mediates stiffness-dependent adaptation in glioblastoma cells. Int J Mol Sci 2022; 23(12): 6520.
[http://dx.doi.org/10.3390/ijms23126520] [PMID: 35742966]
[49]
Le Reste PJ, Avril T, Quillien V, Morandi X, Chevet E. Signaling the unfolded protein response in primary brain cancers. Brain Res 2016; 1642: 59-69.
[http://dx.doi.org/10.1016/j.brainres.2016.03.015] [PMID: 27016056]
[50]
Peñaranda-Fajardo NM, Meijer C, Liang Y, et al. ER stress and UPR activation in glioblastoma: identification of a noncanonical PERK mechanism regulating GBM stem cells through SOX2 modulation. Cell Death Dis 2019; 10(10): 690.
[http://dx.doi.org/10.1038/s41419-019-1934-1] [PMID: 31534165]
[51]
Lin W, Lin Y, Li J, Harding HP, Ron D, Jamison S. A deregulated integrated stress response promotes interferon-γ-induced medulloblastoma. J Neurosci Res 2011; 89(10): 1586-95.
[http://dx.doi.org/10.1002/jnr.22693] [PMID: 21688289]
[52]
Jamison S, Lin Y, Lin W. Pancreatic endoplasmic reticulum kinase activation promotes medulloblastoma cell migration and invasion through induction of vascular endothelial growth factor A. PLoS One 2015; 10(3): e0120252.
[http://dx.doi.org/10.1371/journal.pone.0120252] [PMID: 25794107]
[53]
Eldeeb M, Sanad EF, Ragab A, et al. Anticancer effects with molecular docking confirmation of newly synthesized isatin sulfonamide molecular hybrid derivatives against hepatic cancer cell lines. Biomedicines 2022; 10(3): 722.
[http://dx.doi.org/10.3390/biomedicines10030722] [PMID: 35327524]
[54]
Macaluso M, Caracciolo V, Rizzo V, et al. Integrating role of T antigen, Rb2/p130, CTCF and BORIS in mediating non-canonical endoplasmic reticulum-dependent death pathways triggered by chronic ER stress in mouse medulloblastoma. Cell Cycle 2012; 11(9): 1841-50.
[http://dx.doi.org/10.4161/cc.20242] [PMID: 22544282]
[55]
Flora A, Klisch TJ, Schuster G, Zoghbi HY. Deletion of Atoh1 disrupts sonic hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science 2009; 326(5958): 1424-7.
[http://dx.doi.org/10.1126/science.1181453] [PMID: 19965762]
[56]
Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF. Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev 2008; 22(6): 722-7.
[http://dx.doi.org/10.1101/gad.1636408] [PMID: 18347090]
[57]
Julian E, Dave RK, Robson JP, Hallahan AR, Wainwright BJ. Canonical notch signaling is not required for the growth of Hedgehog pathway-induced medulloblastoma. Oncogene 2010; 29(24): 3465-76.
[http://dx.doi.org/10.1038/onc.2010.101] [PMID: 20418906]
[58]
Julian E, Hallahan AR, Wainwright BJ. RBP-J is not required for granule neuron progenitor development and medulloblastoma initiated by Hedgehog pathway activation in the external germinal layer. Neural Dev 2010; 5(1): 27.
[http://dx.doi.org/10.1186/1749-8104-5-27] [PMID: 20950430]
[59]
Emam O, Wasfey EF, Hamdy NM. Notch-associated lncRNAs profiling circuiting epigenetic modification in colorectal cancer. Cancer Cell Int 2022; 22(1): 316.
[http://dx.doi.org/10.1186/s12935-022-02736-2] [PMID: 36229883]
[60]
Ballabio C, Gianesello M, Lago C, et al. Notch1 switches progenitor competence in inducing medulloblastoma. Sci Adv 2021; 7(26): eabd2781.
[http://dx.doi.org/10.1126/sciadv.abd2781] [PMID: 34162555]
[61]
Thomaz A, Jaeger M, Brunetto AL, et al. Neurotrophin signaling in medulloblastoma. Cancers 2020; 12(9): 2542.
[http://dx.doi.org/10.3390/cancers12092542] [PMID: 32906676]
[62]
Manoranjan B, Wang X, Hallett RM, et al. FoxG1 interacts with Bmi1 to regulate self-renewal and tumorigenicity of medulloblastoma stem cells. Stem Cells 2013; 31(7): 1266-77.
[http://dx.doi.org/10.1002/stem.1401] [PMID: 23592496]
[63]
Liang L, Coudière-Morrison L, Tatari N, et al. CD271+ cells are diagnostic and prognostic and exhibit elevated MAPK activity in SHH medulloblastoma. Cancer Res 2018; 78(16): 4745-59.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0027] [PMID: 29930101]
[64]
Aref D, Moffatt CJ, Agnihotri S, et al. Canonical TGF-β pathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development. Brain Pathol 2013; 23(2): 178-91.
[http://dx.doi.org/10.1111/j.1750-3639.2012.00631.x] [PMID: 22966790]
[65]
van Bree NFHN, Wilhelm M. The tumor microenvironment of medulloblastoma: An intricate multicellular network with therapeutic potential. Cancers 2022; 14(20): 5009.
[http://dx.doi.org/10.3390/cancers14205009] [PMID: 36291792]
[66]
Santhana Kumar K, Neve A, Guerreiro Stucklin AS, et al. TGF-β determines the pro-migratory potential of bFGF signaling in medulloblastoma. Cell Rep 2018; 23(13): 3798-3812.e8.
[http://dx.doi.org/10.1016/j.celrep.2018.05.083] [PMID: 29949765]
[67]
Liang Y, Diehn M, Bollen AW, Israel MA, Gupta N. Type I collagen is overexpressed in medulloblastoma as a component of tumor microenvironment. J Neurooncol 2008; 86(2): 133-41.
[http://dx.doi.org/10.1007/s11060-007-9457-5] [PMID: 17653508]
[68]
Anwar MM, Albanese C, Hamdy NM, Sultan AS. Rise of the natural red pigment ‘prodigiosin’ as an immunomodulator in cancer. Cancer Cell Int 2022; 22(1): 419.
[http://dx.doi.org/10.1186/s12935-022-02815-4] [PMID: 36577970]
[69]
da Cunha Jaeger M, Ghisleni EC, Cardoso PS, et al. HDAC and MAPK/ERK inhibitors cooperate to reduce viability and stemness in medulloblastoma. J Mol Neurosci 2020; 70(6): 981-92.
[http://dx.doi.org/10.1007/s12031-020-01505-y] [PMID: 32056089]
[70]
Antonucci L, Di Magno L, D’Amico D, et al. Mitogen-activated kinase kinase kinase 1 inhibits hedgehog signaling and medulloblastoma growth through GLI1 phosphorylation. Int J Oncol 2019; 54(2): 505-14.
[PMID: 30483764]
[71]
Gao R, Zhang R, Zhang C, Zhao L, Zhang Y. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway. Tumori 2018; 104(1): 43-50.
[http://dx.doi.org/10.5301/tj.5000662] [PMID: 28777430]
[72]
Silber J, Hashizume R, Felix T, et al. Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro-oncol 2013; 15(1): 83-90.
[http://dx.doi.org/10.1093/neuonc/nos281] [PMID: 23172372]
[73]
Li KKW, Pang JC, Ching AK, et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol 2009; 40(9): 1234-43.
[http://dx.doi.org/10.1016/j.humpath.2009.02.003] [PMID: 19427019]
[74]
Tenga A, Beard JA, Takwi A, Wang YM, Chen T. Regulation of nuclear receptor Nur77 by miR-124. PLoS One 2016; 11(2): e0148433.
[http://dx.doi.org/10.1371/journal.pone.0148433] [PMID: 26840408]
[75]
Pierson J, Hostager B, Fan R, Vibhakar R. Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 2008; 90(1): 1-7.
[http://dx.doi.org/10.1007/s11060-008-9624-3] [PMID: 18607543]
[76]
Ferretti E, De Smaele E, Miele E, et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 2008; 27(19): 2616-27.
[http://dx.doi.org/10.1038/emboj.2008.172] [PMID: 18756266]
[77]
Lucon DR, Rocha CS, Craveiro RB, et al. Downregulation of 14q32 microRNAs in primary human desmoplastic medulloblastoma. Front Oncol 2013; 3: 254.
[http://dx.doi.org/10.3389/fonc.2013.00254] [PMID: 24093088]
[78]
Hemmesi K, Squadrito ML, Mestdagh P, et al. miR-135a inhibits cancer stem cell-driven medulloblastoma development by directly repressing Arhgef6 expression. Stem Cells 2015; 33(5): 1377-89.
[http://dx.doi.org/10.1002/stem.1958] [PMID: 25639612]
[79]
Lv SQ, Kim YH, Giulio F, et al. Genetic alterations in microRNAs in medulloblastomas. Brain Pathol 2012; 22(2): 230-9.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00523.x] [PMID: 21793975]
[80]
Murphy BL, Obad S, Bihannic L, et al. Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Res 2013; 73(23): 7068-78.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0927] [PMID: 24145352]
[81]
Zindy F, Kawauchi D, Lee Y, et al. Role of the miR-17∼92 cluster family in cerebellar and medulloblastoma development. Biol Open 2014; 3(7): 597-605.
[http://dx.doi.org/10.1242/bio.20146734] [PMID: 24928431]
[82]
Weeraratne SD, Amani V, Teider N, et al. Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 2012; 123(4): 539-52.
[http://dx.doi.org/10.1007/s00401-012-0969-5] [PMID: 22402744]
[83]
Panwalkar P, Moiyadi A, Goel A, et al. MiR-206, a cerebellum enriched miRNA is downregulated in all medulloblastoma subgroups and its overexpression is necessary for growth inhibition of medulloblastoma cells. J Mol Neurosci 2015; 56(3): 673-80.
[http://dx.doi.org/10.1007/s12031-015-0548-z] [PMID: 25859932]
[84]
Shi JA, Lu DL, Huang X, Tan W. miR-219 inhibits the proliferation, migration and invasion of medulloblastoma cells by targeting CD164. Int J Mol Med 2014; 34(1): 237-43.
[http://dx.doi.org/10.3892/ijmm.2014.1749] [PMID: 24756834]
[85]
Xu QF, Pan YW, Li LC, et al. MiR-22 is frequently downregulated in medulloblastomas and inhibits cell proliferation via the novel target PAPST1. Brain Pathol 2014; 24(6): 568-83.
[http://dx.doi.org/10.1111/bpa.12136] [PMID: 24576181]
[86]
de Antonellis P, Medaglia C, Cusanelli E, et al. MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One 2011; 6(9): e24584.
[http://dx.doi.org/10.1371/journal.pone.0024584] [PMID: 21931765]
[87]
Tanaka T, Arai M, Jiang X, et al. Downregulation of microRNA-431 by human interferon-β inhibits viability of medulloblastoma and glioblastoma cells via upregulation of SOCS6. Int J Oncol 2014; 44(5): 1685-90.
[http://dx.doi.org/10.3892/ijo.2014.2317] [PMID: 24584142]
[88]
Zhou X, Ye F, Yin C, Zhuang Y, Yue G, Zhang G. The interaction between MiR-141 and lncRNA-H19 in regulating cell proliferation and migration in gastric cancer. Cell Physiol Biochem 2015; 36(4): 1440-52.
[http://dx.doi.org/10.1159/000430309] [PMID: 26160158]
[89]
Beccaria K, Padovani L, Bouchoucha Y, Doz F. Current treatments of medulloblastoma. Curr Opin Oncol 2021; 33(6): 615-20.
[http://dx.doi.org/10.1097/CCO.0000000000000788] [PMID: 34482338]
[90]
Bouffet E. Management of high-risk medulloblastoma. Neurochirurgie 2021; 67(1): 61-8.
[http://dx.doi.org/10.1016/j.neuchi.2019.05.007] [PMID: 31229532]
[91]
Menyhárt O, Giangaspero F. Győrffy B. Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas. J Hematol Oncol 2019; 12(1): 29.
[http://dx.doi.org/10.1186/s13045-019-0712-y] [PMID: 30876441]
[92]
Packer RJ, Vezina G. Management of and prognosis with medulloblastoma: Therapy at a crossroads. Arch Neurol 2008; 65(11): 1419-24.
[http://dx.doi.org/10.1001/archneur.65.11.1419] [PMID: 19001159]
[93]
Northcott PA, Robinson GW, Kratz CP, et al. Medulloblastoma. Nat Rev Dis Primers 2019; 5(1): 11.
[http://dx.doi.org/10.1038/s41572-019-0063-6] [PMID: 30765705]
[94]
Rossi A, Caracciolo V, Russo G, Reiss K, Giordano A. Medulloblastoma: From molecular pathology to therapy. Clin Cancer Res 2008; 14(4): 971-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-2072] [PMID: 18281528]
[95]
Palla M, Scarpato L, Di Trolio R, Ascierto PA. Sonic hedgehog pathway for the treatment of inflammatory diseases: Implications and opportunities for future research. J Immunother Cancer 2022; 10(6): e004397.
[http://dx.doi.org/10.1136/jitc-2021-004397] [PMID: 35710292]
[96]
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(D1): D605-12.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[97]
Simonneau C, Duschmalé M, Gavrilov A, et al. Investigating receptor-mediated antibody transcytosis using blood-brain barrier organoid arrays. Fluids Barriers CNS 2021; 18(1): 43.
[http://dx.doi.org/10.1186/s12987-021-00276-x] [PMID: 34544422]
[98]
Presutti D, Ceccarelli M, Micheli L, et al. Tis21-gene therapy inhibits medulloblastoma growth in a murine allograft model. PLoS One 2018; 13(3): e0194206.
[http://dx.doi.org/10.1371/journal.pone.0194206] [PMID: 29538458]
[99]
Li S, McLendon R, Sankey E, et al. CD155 is a putative therapeutic target in medulloblastoma. Clin Transl Oncol 2022; 25(3): 696-705.
[http://dx.doi.org/10.1007/s12094-022-02975-9] [PMID: 36301489]
[100]
Marques RF, Moreno DA, da Silva L, et al. Digital expression profile of immune checkpoint genes in medulloblastomas identifies CD24 and CD276 as putative immunotherapy targets. Front Immunol 2023; 14: 1062856.
[http://dx.doi.org/10.3389/fimmu.2023.1062856] [PMID: 36825029]
[101]
Wen J, Hadden MK. Medulloblastoma drugs in development: Current leads, trials and drawbacks. Eur J Med Chem 2021; 215: 113268.
[http://dx.doi.org/10.1016/j.ejmech.2021.113268] [PMID: 33636537]
[102]
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133: 106427.
[http://dx.doi.org/10.1016/j.bioorg.2023.106427] [PMID: 36841046]
[103]
Mostafa AM, Hamdy NM, Abdel-Rahman SZ, El-Mesallamy HO. Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes. IUBMB Life 2016; 68(7): 535-43.
[http://dx.doi.org/10.1002/iub.1510] [PMID: 27251372]
[104]
Hamdy NM, Suwailem SM, El-Mesallamy HO. Influence of vitamin E supplementation on endothelial complications in type 2 diabetes mellitus patients who underwent coronary artery bypass graft. J Diabetes Complications 2009; 23(3): 167-73.
[http://dx.doi.org/10.1016/j.jdiacomp.2007.10.006] [PMID: 18413198]
[105]
Negri M, Gentile A, de Angelis C, et al. Vitamin D-induced molecular mechanisms to potentiate cancer therapy and to reverse drug-resistance in cancer cells. Nutrients 2020; 12(6): 1798.
[http://dx.doi.org/10.3390/nu12061798] [PMID: 32560347]
[106]
Levy AS, Krailo M, Chi S, et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr Blood Cancer 2021; 68(8): e29031.
[http://dx.doi.org/10.1002/pbc.29031] [PMID: 33844469]
[107]
Elamin MH, Shinwari Z, Hendrayani SF, et al. Curcumin inhibits the sonic hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Mol Carcinog 2010; 49(3): 302-14.
[http://dx.doi.org/10.1002/mc.20604] [PMID: 20025076]
[108]
Gong W, Zhao W, Liu G, Shi L, Zhao X. Curcumin analogue BDDD-721 exhibits more potent anticancer effects than curcumin on medulloblastoma by targeting Shh/Gli1 signaling pathway. Aging 2022; 14(13): 5464-77.
[http://dx.doi.org/10.18632/aging.204161] [PMID: 35802536]
[109]
Maier H, Dalianis T, Kostopoulou ON. New approaches in targeted therapy for medulloblastoma in children. Anticancer Res 2021; 41(4): 1715-26.
[http://dx.doi.org/10.21873/anticanres.14936] [PMID: 33813375]
[110]
Schönholzer MT, Migliavacca J, Alvarez E, et al. Real-time sensing of MAPK signaling in medulloblastoma cells reveals cellular evasion mechanism counteracting dasatinib blockade of ERK activation during invasion. Neoplasia 2020; 22(10): 470-83.
[http://dx.doi.org/10.1016/j.neo.2020.07.006] [PMID: 32818841]
[111]
Li Y, Song Q, Day BW. Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of paediatric and adult MB patients: A systemic review and meta-analysis. Acta Neuropathol Commun 2019; 7(1): 123.
[http://dx.doi.org/10.1186/s40478-019-0773-8] [PMID: 31362788]
[112]
Xie H, Paradise BD, Ma WW, Fernandez-Zapico ME. Recent advances in the clinical targeting of Hedgehog/GLI signaling in cancer. Cells 2019; 8(5): 394.
[http://dx.doi.org/10.3390/cells8050394] [PMID: 31035664]
[113]
Luo J, Wang J, Yang J, et al. Saikosaponin B1 and Saikosaponin D inhibit tumor growth in medulloblastoma allograft mice via inhibiting the hedgehog signaling pathway. J Nat Med 2022; 76(3): 584-93.
[http://dx.doi.org/10.1007/s11418-022-01603-8] [PMID: 35171398]
[114]
El Moukhtari SH, Garbayo E, Fernández-Teijeiro A, Rodríguez-Nogales C, Couvreur P, Blanco-Prieto MJ. Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. J Control Release 2022; 348: 553-71.
[http://dx.doi.org/10.1016/j.jconrel.2022.06.010] [PMID: 35705114]
[115]
Hamdy NM, Shaker FH, Zhan X, Basalious EB. Tangled quest of post-COVID-19 infection-caused neuropathology and what 3P nano-bio-medicine can solve? EPMA J 2022; 13(2): 261-84.
[http://dx.doi.org/10.1007/s13167-022-00285-2] [PMID: 35668839]
[116]
Yousry C, Zikry PM, Salem HM, Basalious EB, El-Gazayerly ON. Integrated nanovesicular/self-nanoemulsifying system (INV/SNES) for enhanced dual ocular drug delivery: Statistical optimization, in vitro and in vivo evaluation. Drug Deliv Transl Res 2020; 10(3): 801-14.
[http://dx.doi.org/10.1007/s13346-020-00716-5] [PMID: 31989414]
[117]
Basalious EB, Abdallah Ahmed M. Phospholipid based self-nanoemulsifying self-nanosuspension (p-SNESNS) as a dual solubilization approach for development of formulation with diminished food effect: Fast/fed in vivo pharmacokinetics study in human. Eur J Pharm Sci 2017; 109: 244-52.
[http://dx.doi.org/10.1016/j.ejps.2017.08.017] [PMID: 28823855]
[118]
Ma Y, Cong Z, Gao P, Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and in vivo fate. Eur J Pharm Sci 2023; 185: 106425.
[http://dx.doi.org/10.1016/j.ejps.2023.106425] [PMID: 36934992]
[119]
El-Setouhy DA, Basalious EB, Abdelmalak NS. Bioenhanced sublingual tablet of drug with limited permeability using novel surfactant binder and microencapsulated polysorbate: In vitro/in vivo evaluation. Eur J Pharm Biopharm 2015; 94: 386-92.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.006] [PMID: 26086847]
[120]
Shamma RN, Basalious EB, Shoukri R. Development of novel sustained release matrix pellets of betahistine dihydrochloride: effect of lipophilic surfactants and co-surfactants. Pharm Dev Technol 2012; 17(5): 583-93.
[http://dx.doi.org/10.3109/10837450.2011.557730] [PMID: 21770719]
[121]
Hamdy NM, Eskander G, Basalious EB. Insights on the dynamic innovative tumor targeted-nanoparticles-based drug delivery systems activation techniques. Int J Nanomedicine 2022; 17: 6131-55.
[http://dx.doi.org/10.2147/IJN.S386037] [PMID: 36514378]
[122]
Xiong B, Wang Y, Chen Y, et al. strategies for structural modification of small molecules to improve blood–brain barrier penetration: A recent perspective. J Med Chem 2021; 64(18): 13152-73.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00910] [PMID: 34505508]
[123]
Fouad SA, Shamma RN, Basalious EB, El-Nabarawi MM, Tayel SA. Novel instantly-dispersible nanocarrier powder system (IDNPs) for intranasal delivery of dapoxetine hydrochloride: In-vitro optimization, ex-vivo permeation studies, and in-vivo evaluation. Drug Dev Ind Pharm 2018; 44(9): 1443-50.
[http://dx.doi.org/10.1080/03639045.2018.1459675] [PMID: 29614890]
[124]
Lakkadwala S, Singh J. Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. J Pharm Sci 2018; 107(11): 2902-13.
[http://dx.doi.org/10.1016/j.xphs.2018.07.020] [PMID: 30055226]
[125]
Mohsen K, Azzazy HME, Allam NK, Basalious EB. Intranasal lipid nanocapsules for systemic delivery of nimodipine into the brain: In vitro optimization and in vivo pharmacokinetic study. Mater Sci Eng C 2020; 116: 111236.
[http://dx.doi.org/10.1016/j.msec.2020.111236] [PMID: 32806316]
[126]
Alberto M, Paiva-Santos AC, Veiga F, Pires PC. Lipid and polymeric nanoparticles: Successful strategies for nose-to-brain drug delivery in the treatment of depression and anxiety disorders. Pharmaceutics 2022; 14(12): 2742.
[http://dx.doi.org/10.3390/pharmaceutics14122742] [PMID: 36559236]
[127]
ElShagea HN, Makar RR, Salama AH, Elkasabgy NA, Basalious EB. Investigating the targeting power to brain tissues of intranasal rasagiline mesylate-loaded transferosomal in situ gel for efficient treatment of Parkinson’s disease. Pharmaceutics 2023; 15(2): 533.
[http://dx.doi.org/10.3390/pharmaceutics15020533] [PMID: 36839855]
[128]
Ramaswamy V, Taylor MD. Medulloblastoma: From Myth to molecular. J Clin Oncol 2017; 35(21): 2355-63.
[http://dx.doi.org/10.1200/JCO.2017.72.7842] [PMID: 28640708]
[129]
Borah A, Pillai SC, Rochani AK, et al. GANT61 and curcumin-loaded PLGA nanoparticles for GLI1 and PI3K/Akt-mediated inhibition in breast adenocarcinoma. Nanotechnology 2020; 31(18): 185102.
[http://dx.doi.org/10.1088/1361-6528/ab6d20] [PMID: 31952056]
[130]
Caimano M, Lospinoso Severini L, Loricchio E, Infante P, Di Marcotullio L. Drug delivery systems for hedgehog inhibitors in the treatment of shh-medulloblastoma. Front Chem 2021; 9: 688108.
[http://dx.doi.org/10.3389/fchem.2021.688108] [PMID: 34164380]
[131]
MacDonald TJ, Liu J, Yu B, et al. Liposome-imipramine blue inhibits sonic hedgehog medulloblastoma in vivo. Cancers 2021; 13(6): 1220.
[http://dx.doi.org/10.3390/cancers13061220] [PMID: 33799550]
[132]
Song W, Tang Z, Lei T, et al. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine 2016; 12(2): 377-86.
[http://dx.doi.org/10.1016/j.nano.2015.10.022] [PMID: 26711966]
[133]
Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 2023; 28(18): 6624.
[http://dx.doi.org/10.3390/molecules28186624] [PMID: 37764400]
[134]
Ahmad F, Varghese R, Panda S, et al. Smart nanoformulations for brain cancer theranostics: Challenges and promises. Cancers 2022; 14(21): 5389.
[http://dx.doi.org/10.3390/cancers14215389] [PMID: 36358807]
[135]
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin 2020; 70(2): 86-104.
[http://dx.doi.org/10.3322/caac.21596] [PMID: 31944278]
[136]
El-Mesallamy HO, Hamdy NM, El-Etriby AK, Wasfey EF. Plasma granzyme B in ST elevation myocardial infarction versus non-ST elevation acute coronary syndrome: Comparisons with IL-18 and fractalkine. Mediators Inflamm 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/343268] [PMID: 24307760]
[137]
El Mesallamy HO, Hamdy NM, Mostafa DM, Amin AI. The serine protease granzyme B as an inflammatory marker, in relation to the insulin receptor cleavage in human obesity and type 2 diabetes mellitus. J Interferon Cytokine Res 2014; 34(3): 179-86.
[http://dx.doi.org/10.1089/jir.2013.0059] [PMID: 24195710]
[138]
Sanad EF, Hamdy NM, El-Etriby AK, Sebak SA, El-Mesallamy HO. Peripheral leucocytes and tissue gene expression of granzyme B/perforin system and serpinB9: Impact on inflammation and insulin resistance in coronary atherosclerosis. Diabetes Res Clin Pract 2017; 131: 132-41.
[http://dx.doi.org/10.1016/j.diabres.2017.07.013] [PMID: 28743062]
[139]
Luzzi S, Giotta Lucifero A, Brambilla I, et al. Targeting the medulloblastoma: A molecular-based approach. Acta Biomed 2020; 91(7-S): 79-100.
[PMID: 32608377]
[140]
Khatua S, Cooper LJN, Sandberg DI, et al. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro-oncol 2020; 22(8): 1214-25.
[http://dx.doi.org/10.1093/neuonc/noaa047] [PMID: 32152626]
[141]
Hammad R, Aglan RB, Mohammed SA, et al. Cytotoxic T cell expression of leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) in viral hepatitis C-mediated hepatocellular carcinoma. Int J Mol Sci 2022; 23(20): 12541.
[http://dx.doi.org/10.3390/ijms232012541] [PMID: 36293412]
[142]
Ali NA, Hamdy NM, Gibriel AA. EL Mesallamy HO. Investigation of the relationship between CTLA4 and the tumor suppressor RASSF1A and the possible mediating role of STAT4 in a cohort of Egyptian patients infected with hepatitis C virus with and without hepatocellular carcinoma. Arch Virol 2021; 166(6): 1643-51.
[http://dx.doi.org/10.1007/s00705-021-04981-8] [PMID: 33796885]
[143]
Youssef SS, Hamdy NM. SOCS1 and pattern recognition receptors: TLR9 and RIG-I; novel haplotype associations in Egyptian fibrotic/cirrhotic patients with HCV genotype 4. Arch Virol 2017; 162(11): 3347-54.
[http://dx.doi.org/10.1007/s00705-017-3498-7] [PMID: 28762092]
[144]
Menyhárt O. Győrffy B. Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer Metastasis Rev 2020; 39(1): 211-33.
[http://dx.doi.org/10.1007/s10555-020-09854-1] [PMID: 31970590]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy