Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Novel Chalcone Derivatives Containing Pyridone and Thiazole Moieties: Design, Synthesis, Molecular Docking, Antibacterial, and Antioxidant Activities

Author(s): Rita M. Borik*

Volume 27, Issue 22, 2023

Published on: 21 December, 2023

Page: [1960 - 1977] Pages: 18

DOI: 10.2174/0113852728278212231215045922

Price: $65

Abstract

A new series of chalcones 4a-i; 6a,b, and 8 was synthesized from the condensation of ketone 2, which was prepared from the reaction of thiourea derivative 1 with 3- chloropentane-2,4-dione in MeOH at reflux temperature, with substituted aromatic/ heterocycle aldehydes in EtOH containing NaOH at room temperature. Antimicrobial and antioxidant activities were assessed for the synthesized compounds. The antimicrobial susceptibility tests revealed that compounds (4c, 4e, 4f, and 4i) exhibited good to excellent activity against C. albicans, S. aureus ATCC25923, E. faecalis ATCC29212, P. aeruginosa ATCC10145, and S. mutans ATCC25175. The antioxidant capabilities were assessed using the DPPH and ABTS radical scavenging methods. Compounds (4b, 4c, 4d, and 4e) proved to be better at scavenging DPPH and ABTS. This study involved in-silico drug-likeness and physicochemical properties and evaluated their ADMET profiles. According to the results of the molecular docking simulation, the synthesized compounds showed lower binding energy at the active sites of Dihydropteroate synthase, Sortase A, LasR, and Penicillin-binding protein pockets, which suggests that they may have an inhibitory effect on the enzymes and show promise as antimicrobial agents.

Graphical Abstract

[1]
Coman, F.M.; Mbaveng, A.T.; Leonte, D.; Bencze, L.C.; Vlase, L.; Imre, S.; Kuete, V.; Efferth, T.; Zaharia, V. Heterocycles 44. Synthesis, characterization and anticancer activity of new thiazole ortho-hydroxychalcones. Med. Chem. Res., 2018, 27(5), 1396-1407.
[http://dx.doi.org/10.1007/s00044-018-2156-2]
[2]
Thirumurugan, C.; Vadivel, P.; Lalitha, A.; Lakshmanan, S. Synthesis, characterization of novel quinoline-2-carboxamide based chalcone derivatives and their molecular docking, photochemical studies. Synth. Commun., 2020, 50(6), 831-839.
[http://dx.doi.org/10.1080/00397911.2020.1720737]
[3]
Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 95, 103565.
[http://dx.doi.org/10.1016/j.bioorg.2019.103565] [PMID: 31927336]
[4]
Sabina, X.J.; Karthikeyan, J.; Velmurugan, G.; Tamizh, M.M.; Shetty, A.N. Design and in vitro biological evaluation of substituted chalcones synthesized from nitrogen mustards as potent microtubule targeted anticancer agents. New J. Chem., 2017, 41(10), 4096-4109.
[http://dx.doi.org/10.1039/C7NJ00265C]
[5]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[6]
Mansour, E.; Aboelnaga, A.; Nassar, E.M.; Elewa, S.I. A new series of thiazolyl pyrazoline derivatives linked to benzo[1,3]dioxole moiety: Synthesis and evaluation of antimicrobial and anti-proliferative activities. Synth. Commun., 2020, 50(3), 368-379.
[http://dx.doi.org/10.1080/00397911.2019.1695839]
[7]
Xue, Y.; Liu, Y.; Luo, Q.; Wang, H.; Chen, R.; Liu, Y.; Li, Y. Antiradical activity and mechanism of coumarin-chalcone hybrids: Theoretical insights. J. Phys. Chem. A, 2018, 122(43), 8520-8529.
[http://dx.doi.org/10.1021/acs.jpca.8b06787] [PMID: 30296082]
[8]
Choi, D.; Park, J.C. In vitro osteogenic differentiation and antibacterial potentials of chalcone derivatives. Mol. Pharm., 2018, 15(8), 3197-3204.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00288]
[9]
Lu, S.; Obianom, O.N.; Ai, Y. Novel hybrids derived from aspirin and chalcones potently suppress colorectal cancer in vitro and in vivo. MedChemComm, 2018, 9(10), 1722-1732.
[http://dx.doi.org/10.1039/C8MD00284C] [PMID: 30429977]
[10]
Vinoth, R.; Rangarajan, T.M. Ayushee; Singh, R.P.; Singh, M. Synthesis of novel chalcones through palladium-catalyzed CO cross-coupling reaction of bromo-chalcones with ethyl acetohydroxamate and their antiplasmodial evaluation against Plasmodium falcipuram in vitro. Bioorg. Chem., 2019, 86, 631-640.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.016] [PMID: 30818235]
[11]
Abdullah, M.I.; Mahmood, A.; Madni, M.; Masood, S.; Kashif, M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg. Chem., 2014, 54, 31-37.
[http://dx.doi.org/10.1016/j.bioorg.2014.03.006] [PMID: 24747187]
[12]
Özdemir, A.; Altıntop, M.D.; Sever, B.; Gençer, H.K.; Kapkaç, H.A.; Atlı, Ö.; Baysal, M. A new series of pyrrole-based chalcones: Synthesis and evaluation of antimicrobial activity, cytotoxicity, and genotoxicity. Molecules, 2017, 22(12), 2112.
[http://dx.doi.org/10.3390/molecules22122112] [PMID: 29189730]
[13]
Mojarrab, M.; Soltani, R.; Aliabadi, A. Pyridine based chalcones: Synthesis and evaluation of antioxidant activity of 1-phenyl-3-(pyridin-2-yl)prop-2-en-1-one derivatives. Jundishapur J. Nat. Pharm. Prod., 2013, 8(3), 125-130.
[http://dx.doi.org/10.17795/jjnpp-10024] [PMID: 24624201]
[14]
Özdemir, A.; Altıntop, M.D.; Turan-Zitouni, G.; Çiftçi, G.A.; Ertorun, İ.; Alataş, Ö.; Kaplancıklı, Z.A. Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents. Eur. J. Med. Chem., 2015, 89, 304-309.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.056] [PMID: 25462246]
[15]
Chavan, H.V.; Adsul, L.K.; Kotmale, A.S.; Dhakane, V.D.; Thakare, V.N.; Bandgar, B.P. Design, synthesis, characterization and in vitro and in vivo anti-inflammatory evaluation of novel pyrazole-based chalcones. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 22-31.
[http://dx.doi.org/10.3109/14756366.2013.873037] [PMID: 24666306]
[16]
Rajeshirke, M.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. Enhancement of NLO properties in OBO fluorophores derived from carbazole-coumarin chalcones containing carboxylic acid at the N-alykl terminal end. J. Phys. Chem. C, 2018, 122(26), 14313-14325.
[http://dx.doi.org/10.1021/acs.jpcc.8b02937]
[17]
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules, 2020, 25(5), 1047.
[http://dx.doi.org/10.3390/molecules25051047] [PMID: 32110945]
[18]
Parikh, K.; Joshi, D. Antibacterial and antifungal screening of newly synthesized benzimidazole-clubbed chalcone derivatives. Med. Chem. Res., 2013, 22(8), 3688-3697.
[http://dx.doi.org/10.1007/s00044-012-0369-3]
[19]
Bala, D.; Jinga, L.I.; Popa, M.; Hanganu, A.; Voicescu, M.; Bleotu, C.; Tarko, L.; Nica, S. Design, synthesis, and biological evaluation of new azulene-containing chalcones. Materials, 2022, 15(5), 1629.
[http://dx.doi.org/10.3390/ma15051629] [PMID: 35268860]
[20]
Kumari, R.; Varghese, A.; George, L.; Sudhakar, Y.N. Effect of solvent polarity on the photophysical properties of chalcone derivatives. RSC Advances, 2017, 7, 24204-24214.
[http://dx.doi.org/10.1039/C7RA01705G]
[21]
Elkanzi, N.A.A.; Hrichi, H.; Alolayan, R.A.; Derafa, W.; Zahou, F.M.; Bakr, R.B. Synthesis of chalcones derivatives and their biological activities: A review. ACS Omega, 2022, 7(32), 27769-27786.
[http://dx.doi.org/10.1021/acsomega.2c01779] [PMID: 35990442]
[22]
Rajendran, G.; Bhanu, D.; Aruchamy, B.; Ramani, P.; Pandurangan, N.; Bobba, K.N.; Oh, E.J.; Chung, H.Y.; Gangadaran, P.; Ahn, B.C. Chalcone: A promising bioactive scaffold in medicinal chemistry. Pharmaceuticals, 2022, 15(10), 1250.
[http://dx.doi.org/10.3390/ph15101250] [PMID: 36297362]
[23]
Ngameni, B.; Cedric, K.; Mbaveng, A.T.; Erdoğan, M.; Simo, I.; Kuete, V.; Daştan, A. Design, synthesis, characterization, and anticancer activity of a novel series of O-substituted chalcone derivatives. Bioorg. Med. Chem. Lett., 2021, 35, 127827.
[http://dx.doi.org/10.1016/j.bmcl.2021.127827] [PMID: 33508467]
[24]
Li, W.; Xu, F.; Shuai, W.; Sun, H.; Yao, H.; Ma, C.; Xu, S.; Yao, H.; Zhu, Z.; Yang, D.H.; Chen, Z.S.; Xu, J. Discovery of novel quinolone-chalcone derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. J. Med. Chem., 2019, 62(2), 993-1013.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01755] [PMID: 30525584]
[25]
Mustafa, M.; Mostafa, Y.A. A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide-chalcones and their in vitro antimicrobial activity. Monatsh. Chem., 2020, 151(3), 417-427.
[http://dx.doi.org/10.1007/s00706-020-02568-8]
[26]
Ušjak, D.; Ivković, B.; Božić, D.D.; Bošković, L.; Milenković, M. Antimicrobial activity of novel chalcones and modulation of virulence factors in hospital strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Microb. Pathog., 2019, 131, 186-196.
[http://dx.doi.org/10.1016/j.micpath.2019.04.015] [PMID: 30980878]
[27]
Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem., 2019, 91, 103133.
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[28]
Fu, Y.; Liu, D.; Zeng, H.; Ren, X.; Song, B.; Hu, D.; Gan, X. New chalcone derivatives: Synthesis, antiviral activity and mechanism of action. RSC Advances, 2020, 10(41), 24483-24490.
[http://dx.doi.org/10.1039/D0RA03684F] [PMID: 35516226]
[29]
Osipova, V.P.; Polovinkina, M.A.; Telekova, L.R.; Velikorodov, A.V.; Stepkina, N.N.; Berberova, N.T. Synthesis and antioxidant activity of new hydroxy derivatives of chalcones. Russ. Chem. Bull., 2020, 69(3), 504-509.
[http://dx.doi.org/10.1007/s11172-020-2790-y]
[30]
Greeff, J.; Joubert, J.; Malan, S.F.; van Dyk, S. Antioxidant properties of 4-quinolones and structurally related flavones. Bioorg. Med. Chem., 2012, 20(2), 809-818.
[http://dx.doi.org/10.1016/j.bmc.2011.11.068] [PMID: 22197671]
[31]
Cao, Y.; Xu, W.; Huang, Y.; Zeng, X. Licochalcone B, a chalcone derivative from Glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer’s disease. Nat. Prod. Res., 2020, 34(5), 736-739.
[http://dx.doi.org/10.1080/14786419.2018.1496429] [PMID: 30345819]
[32]
Wang, K.; Yu, L.; Shi, J.; Liu, W.; Sang, Z. Multifunctional indanone-chalcone hybrid compounds with anti-β-amyloid (Aβ) aggregation, monoamine oxidase B (MAO-B) inhibition and neuroprotective properties against Alzheimer’s disease. Med. Chem. Res., 2019, 28(11), 1912-1922.
[http://dx.doi.org/10.1007/s00044-019-02423-4]
[33]
Zhou, W.; Zhang, W.; Peng, Y.; Jiang, Z.H.; Zhang, L.; Du, Z. Design, synthesis and anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative Topoisomerase II catalytic inhibitors. Molecules, 2020, 25(14), 3180.
[http://dx.doi.org/10.3390/molecules25143180] [PMID: 32664629]
[34]
Rammohan, A.; Bhaskar, B.V.; Venkateswarlu, N.; Gu, W.; Zyryanov, G.V. Design, synthesis, docking and biological evaluation of chalcones as promising antidiabetic agents. Bioorg. Chem., 2020, 95, 103527.
[http://dx.doi.org/10.1016/j.bioorg.2019.103527] [PMID: 31911298]
[35]
Maliyakkal, N.; Saleem, U.; Anwar, F.; Shah, M.A.; Ahmad, B.; Umer, F.; Almoyad, M.A.A.; Parambi, D.G.T.; Beeran, A.A.; Nath, L.R.; Aleya, L.; Mathew, B. Ameliorative effect of ethoxylated chalcone-based MAO-B inhibitor on behavioural predictors of haloperidol-induced Parkinsonism in mice: Evidence of its antioxidative role against Parkinson’s diseases. Environ. Sci. Pollut. Res. Int., 2022, 29(5), 7271-7282.
[http://dx.doi.org/10.1007/s11356-021-15955-3] [PMID: 34476688]
[36]
Hsieh, H.K.; Tsao, L.T.; Wang, J.P.; Lin, C.N. Synthesis and anti-inflammatory effect of chalcones. J. Pharm. Pharmacol., 2010, 52(2), 163-171.
[http://dx.doi.org/10.1211/0022357001773814] [PMID: 10714946]
[37]
Wang, H.; Zhao, Z.; Zhou, J.; Guo, Y.; Wang, G.; Hao, H.; Xu, X. Corrigendum to “A novel intestinal-restricted FXR agonist”. Bioorg. Med. Chem. Lett., 2017, 27(23), 5353.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.033] [PMID: 29110987]
[38]
de Campos-Buzzi, F.; Pereira de Campos, J.; Pozza Tonini, P.; Corrêa, R.; Augusto Yunes, R.; Boeck, P.; Cechinel-Filho, V. Antinociceptive effects of synthetic chalcones obtained from xanthoxyline. Arch. Pharm. (Weinheim), 2006, 339(7), 361-365.
[http://dx.doi.org/10.1002/ardp.200600049] [PMID: 16838282]
[39]
Charris, J.E.; Monasterios, M.C.; Acosta, M.E.; Rodríguez, M.A.; Gamboa, N.D.; Martínez, G.P.; Rojas, H.R.; Mijares, M.R.; De Sanctis, J.B. Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med. Chem. Res., 2019, 28(11), 2050-2066.
[http://dx.doi.org/10.1007/s00044-019-02435-0]
[40]
Sashidhara, K.V.; Avula, S.R.; Mishra, V.; Palnati, G.R.; Singh, L.R.; Singh, N.; Chhonker, Y.S.; Swami, P.; Bhatta, R.S. palit, G. Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur. J. Med. Chem., 2015, 89, 638-653.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.068] [PMID: 25462272]
[41]
Sharma, H.; Patil, S.; Sanchez, T.W.; Neamati, N.; Schinazi, R.F.; Buolamwini, J.K. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. Bioorg. Med. Chem., 2011, 19(6), 2030-2045.
[http://dx.doi.org/10.1016/j.bmc.2011.01.047] [PMID: 21371895]
[42]
Khidre, R.E.; Radini, I.A.M. Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents. Sci. Rep., 2021, 11(1), 7846.
[http://dx.doi.org/10.1038/s41598-021-86424-7] [PMID: 33846389]
[43]
Khidre, R.E.; Sabry, E.; El-Sayed, A.F.; Sediek, A.A. Design, one-pot synthesis, in silico ADMET prediction and molecular docking of novel triazolyl thiadiazine and thiazole derivatives with evaluation of antimicrobial, antioxidant and antibiofilm inhibition activity. J. Iran Chem. Soc., 2023, 20, 2923-2947.
[http://dx.doi.org/10.1007/s13738-023-02889-5]
[44]
Kumar, G.; Singh, N.P. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives. Bioorg. Chem., 2021, 107, 104608.
[http://dx.doi.org/10.1016/j.bioorg.2020.104608] [PMID: 33465668]
[45]
Sayed, A.R.; Gomha, S.M.; Taher, E.A.; Muhammad, Z.A.; El-Seedi, H.R.; Gaber, H.M.; Ahmed, M.M. One-pot synthesis of novel thiazoles as potential anti-cancer agents. Drug Des. Devel. Ther., 2020, 14, 1363-1375.
[http://dx.doi.org/10.2147/DDDT.S221263] [PMID: 32308369]
[46]
Raveesha, R.; Kumar, K.Y.; Raghu, M.S.; Prasad, S.B.B.; Alsalme, A.; Krishnaiah, P.; Prashanth, M.K. Synthesis, molecular docking, antimicrobial, antioxidant and anti-convulsant assessment of novel S and C-linker thiazole derivatives. Chem. Phys. Lett., 2022, 791, 139408.
[http://dx.doi.org/10.1016/j.cplett.2022.139408]
[47]
Li, A.H.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X.; Jacobson, K.A. Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J. Med. Chem., 1999, 42(4), 706-721.
[http://dx.doi.org/10.1021/jm980550w] [PMID: 10052977]
[48]
Vacher, B.; Bonnaud, B.; Funes, P.; Jubault, N.; Koek, W.; Assié, M.B.; Cosi, C.; Kleven, M. Novel derivatives of 2-pyridinemethylamine as selective, potent, and orally active agonists at 5-HT1A receptors. J. Med. Chem., 1999, 42(9), 1648-1660.
[http://dx.doi.org/10.1021/jm9806906] [PMID: 10229633]
[49]
Khidre, R.E.; El-Gogary, S.R.; Mostafa, M.S. Design, synthesis, and antimicrobial evaluation of some novel pyridine, coumarin, and thiazole derivatives. J. Heterocycl. Chem., 2017, 54, 2511-2519.
[http://dx.doi.org/10.1002/jhet.2854]
[50]
Khidre, R.E.; Radini, I.A.M.; Ibrahima, D.A. Synthesis of a novel heterocyclic scaffold utilizing 2-cyano-N-(3-cyano-4,6-dimethyl-2-oxopyridin-1-yl) acetamide. ARKIVOC, 2016, 2016(5), 301-317.
[http://dx.doi.org/10.3998/ark.5550190.p009.722]
[51]
Elangovan, N.; Sowrirajan, S.; Manoj, K.P.; Kumar, A.M. Synthesis, structural investigation, computational study, antimicrobial activity and molecular docking studies of novel synthesized (E)-4-((pyridine-4-ylmethylene)amino)-N-(pyrimidin-2-yl)benzenesulfonamide from pyridine-4-carboxaldehyde and sulfadiazine. J. Mol. Struct., 2021, 1241, 130544.
[http://dx.doi.org/10.1016/j.molstruc.2021.130544]
[52]
Jawhari, A.H.; Mukhrish, Y.E.; El-Sayed, A.F.; Khidre, R.E. Design, synthesis, in silico ADMET prediction, molecular docking, antimicrobial and antioxidant evaluation of novel diethyl pyridinyl phosphonate derivatives. Curr. Org. Chem., 2023, 27, 860-875.
[http://dx.doi.org/10.2174/1385272827666230809094204]
[53]
Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: Synthesis, DFT calculations and molecular docking study. Heliyon, 2020, 6(1), e03185.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03185] [PMID: 31956713]
[54]
Mohamed, E.A.; Ismail, N.S.M.; Hagras, M.; Refaat, H. Medicinal attributes of pyridine scaffold as anticancer targeting agents. Fut. J. Pharm. Sci., 2021, 7(1), 24.
[http://dx.doi.org/10.1186/s43094-020-00165-4]
[55]
Márquez-Flores, Y.K.; Campos-Aldrete, M.E.; Salgado-Zamora, H.; Correa-Basurto, J.; Meléndez-Camargo, M.E. Acute and chronic anti-inflammatory evaluation of imidazo[1,2-a]pyridine carboxylic acid derivatives and docking analysis. Med. Chem. Res., 2012, 21(11), 3491-3498.
[http://dx.doi.org/10.1007/s00044-011-9870-3]
[56]
Sondhi, S.M.; Dinodia, M.; Kumar, A. Synthesis, anti-inflammatory and analgesic activity evaluation of some amidine and hydrazone derivatives. Bioorg. Med. Chem., 2006, 14(13), 4657-4663.
[http://dx.doi.org/10.1016/j.bmc.2006.02.014] [PMID: 16504522]
[57]
Elmansy, M.F.; Borik, R.M.; Khidre, R.E. Synthetic approaches towards taxol; From Holton to Chida. Curr. Org. Chem., 2023, 27(5), 444-459.
[http://dx.doi.org/10.2174/1385272827666230512114730]
[58]
Hussein, M.A.; Borik, R.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship. Curr. Pharm. Biotechnol., 2022, 23(9), 1179-1203.
[http://dx.doi.org/10.2174/1389201022666210601170650] [PMID: 34077343]
[59]
Borik, R.M.; Hussein, M.A. Synthesis, molecular docking, biological potentials and structure activity relationship of new quinazoline and quinazoline-4-one derivatives. Asian J. Chem., 2021, 33(2), 423-438.
[http://dx.doi.org/10.14233/ajchem.2021.23036]
[60]
Nadeem, A.; Naz, S.; Ali, J.S.; Mannan, A.; Zia, M. Synthesis, characterization, and biological activities of monometallic and bimetallic nanoparticles using Mirabilis jalapa leaf extract. Biotechnol. Rep., 2019, 22, e00338.
[http://dx.doi.org/10.1016/j.btre.2019.e00338]
[61]
Nasrallah, O.; El Kurdi, R.; Mouslmani, M.; Patra, D. Doping of ZnO nanoparticles with curcumin: pH dependent release and DPPH scavenging activity of curcumin in the nanocomposites. Curr. Nanomater., 2019, 3, 147-152.
[http://dx.doi.org/10.2174/2405461503666181116115755]
[62]
Forootanfar, H.; Adeli-Sardou, M.; Nikkhoo, M.; Mehrabani, M.; Amir-Heidari, B.; Shahverdi, A.R.; Shakibaie, M. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J. Trace Elem. Med. Biol., 2014, 28(1), 75-79.
[http://dx.doi.org/10.1016/j.jtemb.2013.07.005] [PMID: 24074651]
[63]
Mansoor, S.; Shahid, S.; Javed, M.; Saad, M.; Iqbal, S.; Alsaab, H.O.; Awwad, N.S.; Ibrahium, H.A.; Zaman, S.; Sarwar, M.N.; Fatima, A. Green synthesis of a MnO-GO-Ag nanocomposite using leaf extract of Fagonia arabica and its antioxidant and anti-inflammatory performance. Nano-Struct. Nano-Objects, 2022, 29, 100835.
[http://dx.doi.org/10.1016/j.nanoso.2021.100835]
[64]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[65]
Magaldi, S.; Mata-Essayag, S.; Hartung de Capriles, C.; Pérez, C.; Colella, M.T.; Olaizola, C.; Ontiveros, Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis., 2004, 8(1), 39-45.
[http://dx.doi.org/10.1016/j.ijid.2003.03.002] [PMID: 14690779]
[66]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[67]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[68]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[69]
Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.J.; Schotzinger, R.J. Structural analyses of Candida albicans sterol 14-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J. Biol. Chem., 2017, 292(16), 6728-6743.
[http://dx.doi.org/10.1074/jbc.M117.778308]
[70]
Lu, J.; Patel, S.; Sharma, N.; Soisson, S.M.; Kishii, R.; Takei, M.; Fukuda, Y.; Lumb, K.J.; Singh, S.B. Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chem. Biol., 2014, 9(9), 2023-2031.
[http://dx.doi.org/10.1021/cb5001197] [PMID: 24992706]
[71]
Mouilleron, S.; Badet-Denisot, M.A.; Golinelli-Pimpaneau, B. Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. J. Mol. Biol., 2008, 377(4), 1174-1185.
[http://dx.doi.org/10.1016/j.jmb.2008.01.077]
[72]
Hampele, I.C.; D’Arcy, A.; Dale, G.E.; Kostrewa, D.; Nielsen, J.; Oefner, C.; Page, M.G.P.; Schönfeld, H-J.; Stüber, D.; Then, R.L. Structure and function of the dihy-dropteroate synthase from Staphylococcus aureus. J. Mol. Biol., 1997, 268(1), 21-30.
[http://dx.doi.org/10.1006/jmbi.1997.0944]
[73]
Bottomley, M.J.; Muraglia, E.; Bazzo, R.; Carfì, A. Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J. Biol. Chem., 2007, 282(18), 13592-13600.
[http://dx.doi.org/10.1074/jbc.M700556200]
[74]
Choi, H.J.; Kang, S.W.; Yang, C.H.; Rhee, S.G.; Ryu, S.E. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat. Struct. Biol., 1998, 5(5), 400-406.
[http://dx.doi.org/10.1038/nsb0598-400]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy