Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Sesamol: A Phenolic Compound of Health Benefits and Therapeutic Promise in Neurodegenerative Diseases

Author(s): Hayate Javed*, Mohamed Fizur Nagoor Meeran, Niraj Kumar Jha, Ghulam Md Ashraf and Shreesh Ojha*

Volume 24, Issue 9, 2024

Published on: 20 December, 2023

Page: [797 - 809] Pages: 13

DOI: 10.2174/0115680266273944231213070916

Price: $65

Abstract

Sesamol, one of the key bioactive ingredients of sesame seeds (Sesamum indicum L.), is responsible for many of its possible nutritional benefits. Both the Chinese and Indian medical systems have recognized the therapeutic potential of sesame seeds. It has been shown to have significant therapeutic potential against oxidative stress, inflammatory diseases, metabolic syndrome, neurodegeneration, and mental disorders. Sesamol is a benign molecule that inhibits the expression of inflammatory indicators like numerous enzymes responsible for inducing inflammation, protein kinases, cytokines, and redox status. This review summarises the potential beneficial effects of sesamol against neurological diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Recently, sesamol has been shown to reduce amyloid peptide accumulation and attenuate cognitive deficits in AD models. Sesamol has also been demonstrated to reduce the severity of PD and HD in animal models by decreasing oxidative stress and inflammatory pathways. The mechanism of sesamol's pharmacological activities against neurodegenerative diseases will also be discussed in this review.

Graphical Abstract

[1]
Kim, J.; Lee, H.J.; Lee, K.W. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J. Neurochem., 2010, 112(6), 1415-1430.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06562.x] [PMID: 20050972]
[2]
Parihar, V.K.; Prabhakar, K.R.; Veerapur, V.P.; Kumar, M.S.; Reddy, Y.R.; Joshi, R.; Unnikrishnan, M.K.; Rao, C.M. Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2006, 611(1-2), 9-16.
[http://dx.doi.org/10.1016/j.mrgentox.2006.06.037] [PMID: 17045515]
[3]
Sankar, D.; Sambandam, G.; Ramakrishna Rao, M.; Pugalendi, K.V. Modulation of blood pressure, lipid profiles and redox status in hypertensive patients taking different edible oils. Clin. Chim. Acta., 2005, 355((1-2)), 97-104.
[4]
Bhat, K.V.; Kumari, R.; Pathak, N.; Rai, A.K. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev., 2014, 8(16), 147-155.
[http://dx.doi.org/10.4103/0973-7847.134249] [PMID: 25125886]
[5]
Bosebabu, B.; Cheruku, S.P.; Chamallamudi, M.R.; Nampoothiri, M.; Shenoy, R.R.; Nandakumar, K.; Parihar, V.K.; Kumar, N. An appraisal of current pharmacological perspectives of sesamol: A review. Mini Rev. Med. Chem., 2020, 20(11), 988-1000.
[http://dx.doi.org/10.2174/1389557520666200313120419] [PMID: 32167426]
[6]
Suja, K.P.; Jayalekshmy, A.; Arumughan, C. Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH(*) system. J. Agric. Food Chem., 2004, 52(4), 912-915.
[http://dx.doi.org/10.1021/jf0303621] [PMID: 14969550]
[7]
Sharma, S.; Kaur, I.P. Development and evaluation of sesamol as an antiaging agent. Int. J. Dermatol., 2006, 45(3), 200-208.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02537.x] [PMID: 16533216]
[8]
Kaur, I.P.; Saini, A. Sesamol exhibits antimutagenic activity against oxygen species mediated mutagenicity. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2000, 470(1), 71-76.
[http://dx.doi.org/10.1016/S1383-5718(00)00096-6] [PMID: 10986476]
[9]
Jnaneshwari, S.; Hemshekhar, M.; Thushara, R.M.; Sundaram, M.; Santhosh, M.; Sunitha, K.; Shankar, R.L.; Kemparaju, K.; Girish, K.S. Sesamol ameliorates cyclophosphamide-induced hepatotoxicity by modulating oxidative stress and inflammatory mediators. Anticancer. Agents Med. Chem., 2013, 14(7), 975-983.
[http://dx.doi.org/10.2174/1871520613666131224123346] [PMID: 24372526]
[10]
Kapadia, G.J.; Azuine, M.A.; Tokuda, H.; Takasaki, M.; Mukainaka, T.; Konoshima, T.; Nishino, H. Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the epstein–barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacol. Res., 2002, 45(6), 499-505.
[http://dx.doi.org/10.1006/phrs.2002.0992] [PMID: 12162952]
[11]
Decker, E.A. The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinone as nonessential dietary antioxidants. Nutr. Rev., 1995, 53(3), 49-58.
[http://dx.doi.org/10.1111/j.1753-4887.1995.tb01502.x] [PMID: 7770184]
[12]
Castro-González, L.M.; Alvarez-Idaboy, J.R.; Galano, A. Computationally designed sesamol derivatives proposed as potent antioxidants. ACS Omega, 2020, 5(16), 9566-9575.
[http://dx.doi.org/10.1021/acsomega.0c00898] [PMID: 32363309]
[13]
Ren, B.; Yuan, T.; Diao, Z.; Zhang, C.; Liu, Z.; Liu, X. Protective effects of sesamol on systemic oxidative stress-induced cognitive impairments via regulation of Nrf2/Keap1 pathway. Food Funct., 2018, 9(11), 5912-5924.
[http://dx.doi.org/10.1039/C8FO01436A] [PMID: 30375618]
[14]
Poljšak, B.; Fink, R. The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxid. Med. Cell. Longev., 2014, 2014, 1-22.
[http://dx.doi.org/10.1155/2014/671539] [PMID: 25140198]
[15]
Hsu, D.Z.; Chien, S.P.; Chen, K.T.; Liu, M.Y. The effect of sesamol on systemic oxidative stress and hepatic dysfunction in acutely iron-intoxicated mice. Shock, 2007, 28(5), 596-601.
[http://dx.doi.org/10.1097/shk.0b013e31804d4474] [PMID: 17589387]
[16]
Shimizu, S.; Fujii, G.; Takahashi, M.; Nakanishi, R.; Komiya, M.; Shimura, M.; Noma, N.; Onuma, W.; Terasaki, M.; Yano, T.; Mutoh, M. Sesamol suppresses cyclooxygenase-2 transcriptional activity in colon cancer cells and modifies intestinal polyp development in ApcMin/+ mice. J. Clin. Biochem. Nutr., 2014, 54(2), 95-101.
[http://dx.doi.org/10.3164/jcbn.13-91] [PMID: 24688218]
[17]
Joshi, R.; Kumar, M.S.; Satyamoorthy, K.; Unnikrisnan, M.K.; Mukherjee, T. Free radical reactions and antioxidant activities of sesamol: Pulse radiolytic and biochemical studies. J. Agric. Food Chem., 2005, 53(7), 2696-2703.
[http://dx.doi.org/10.1021/jf0489769] [PMID: 15796613]
[18]
Mazzio, E.; Harris, N.; Soliman, K. Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med., 1998, 64(7), 603-606.
[http://dx.doi.org/10.1055/s-2006-957530] [PMID: 9810264]
[19]
Singh, N.; Vishwas, S.; Kaur, A.; Kaur, H.; Kakoty, V.; Khursheed, R.; Chaitanya, M.; Babu, M.R.; Awasthi, A.; Corrie, L.; Harish, V.; Yanadaiah, P.; Gupta, S.; Sayed, A.A.; El-Sayed, A.; Ali, I.; Kensara, O.A.; Ghaboura, N.; Gupta, G.; Dou, A.M.; Algahtani, M.; El-Kott, A.F.; Dua, K.; Singh, S.K.; Abdel-Daim, M.M. Harnessing role of sesamol and its nanoformulations against neurodegenerative diseases. Biomed. Pharmacother., 2023, 167, 115512.
[20]
Yashaswini, P.S.; Rao, A.G.; Singh, S.A. Inhibition of lipoxygenase by sesamol corroborates its potential anti-inflammatory activity. Int. J. Biol. Macromolecul., 2017, 94((Pt B)), 781-787.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.048]
[21]
Chu, P.Y.; Hsu, D.Z.; Hsu, P.Y.; Liu, M.Y. Sesamol down-regulates the lipopolysaccharide-induced inflammatory response by inhibiting nuclear factor-kappa B activation. Innate Immun., 2010, 16(5), 333-339.
[http://dx.doi.org/10.1177/1753425909351880] [PMID: 19939906]
[22]
Wu, X.L.; Liou, C.J.; Li, Z.Y.; Lai, X.Y.; Fang, L.W.; Huang, W.C. Sesamol suppresses the inflammatory response by inhibiting NF-kappaB/MAPK activation and upregulating AMP kinase signaling in RAW 264.7 macrophages. Inflammat. Res., 2015, 64(8), 577-588.
[23]
Hassanzadeh, P.; Arbabi, E.; Rostami, F. The ameliorative effects of sesamol against seizures, cognitive impairment and oxidative stress in the experimental model of epilepsy. Iran. J. Basic Med. Sci., 2014, 17(2), 100-107.
[PMID: 24711892]
[24]
Poladian, N.; Navasardyan, I.; Narinyan, W.; Orujyan, D.; Venketaraman, V. Potential role of glutathione antioxidant pathways in the pathophysiology and adjunct treatment of psychiatric disorders. Clin. Pract., 2023, 13(4), 768-779.
[http://dx.doi.org/10.3390/clinpract13040070] [PMID: 37489419]
[25]
Huber, J.D.; VanGilder, R.L.; Houser, K.A. Streptozotocin-induced diabetes progressively increases blood-brain barrier permeability in specific brain regions in rats. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(6), H2660-H2668.
[http://dx.doi.org/10.1152/ajpheart.00489.2006] [PMID: 16951046]
[26]
Kuhad, A.; Chopra, K. Effect of sesamol on diabetes-associated cognitive decline in rats. Exp. Brain Res., 2008, 185(3), 411-420.
[http://dx.doi.org/10.1007/s00221-007-1166-y] [PMID: 17955223]
[27]
VanGilder, R.L.; Kelly, K.A.; Chua, M.D.; Ptachcinski, R.L.; Huber, J.D. Administration of sesamol improved blood–brain barrier function in streptozotocin-induced diabetic rats. Exp. Brain Res., 2009, 197(1), 23-34.
[http://dx.doi.org/10.1007/s00221-009-1866-6] [PMID: 19565232]
[28]
Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother., 2004, 58(1), 39-46.
[29]
Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001, 40(8), 959-975.
[http://dx.doi.org/10.1016/S0028-3908(01)00019-3] [PMID: 11406187]
[30]
Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep., 2016, 4(5), 519-522.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[31]
Angelova, P.R.; Abramov, A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett., 2018, 592(5), 692-702.
[http://dx.doi.org/10.1002/1873-3468.12964] [PMID: 29292494]
[32]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/2525967] [PMID: 28785371]
[33]
de la Monte, S.M.; Wands, J.R. Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J. Alzheimers Dis., 2006, 9(2), 167-181.
[http://dx.doi.org/10.3233/JAD-2006-9209] [PMID: 16873964]
[34]
Nunomura, A.; Perry, G.; Aliev, G.; Hirai, K.; Takeda, A.; Balraj, E.K.; Jones, P.K.; Ghanbari, H.; Wataya, T.; Shimohama, S.; Chiba, S.; Atwood, C.S.; Petersen, R.B.; Smith, M.A. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2001, 60(8), 759-767.
[http://dx.doi.org/10.1093/jnen/60.8.759] [PMID: 11487050]
[35]
Devi, L.; Prabhu, B.M.; Galati, D.F.; Avadhani, N.G.; Anandatheerthavarada, H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci., 2006, 26(35), 9057-9068.
[http://dx.doi.org/10.1523/JNEUROSCI.1469-06.2006] [PMID: 16943564]
[36]
Eckert, A.; Schulz, K.L.; Rhein, V.; Götz, J. Convergence of amyloid-beta and tau pathologies on mitochondria in vivo. Mol. Neurobiol., 2010, 41(2-3), 107-114.
[http://dx.doi.org/10.1007/s12035-010-8109-5] [PMID: 20217279]
[37]
Tamagno, E.; Parola, M.; Bardini, P.; Piccini, A.; Borghi, R.; Guglielmotto, M.; Santoro, G.; Davit, A.; Danni, O.; Smith, M.A.; Perry, G.; Tabaton, M. β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem., 2005, 92(3), 628-636.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02895.x] [PMID: 15659232]
[38]
Lovell, M.A.; Xiong, S.; Xie, C.; Davies, P.; Markesbery, W.R. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J. Alzheimers Dis., 2005, 6(6), 659-671.
[http://dx.doi.org/10.3233/JAD-2004-6610] [PMID: 15665406]
[39]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[40]
Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants, 2020, 9(9), 901.
[http://dx.doi.org/10.3390/antiox9090901] [PMID: 32971909]
[41]
Moghaddam, M.H.; Bayat, A.H.; Eskandari, N.; Abdollahifar, M.; Fotouhi, F.; Forouzannia, A.; Rafiei, R.; Hatari, S.; Seraj, A.; Shahidi, A.M.E.J.; Ghorbani, Z.; Peyvandi, A.A.; Aliaghaei, A. Elderberry diet ameliorates motor function and prevents oxidative stress-induced cell death in rat models of Huntington disease. Brain Res., 2021, 1762, 147444.
[http://dx.doi.org/10.1016/j.brainres.2021.147444] [PMID: 33745925]
[42]
Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of chronic oxidative stress on neuroinflammatory response mediated by cd4+t cells in neurodegenerative diseases. Front. Cell. Neurosci., 2018, 12, 114.
[http://dx.doi.org/10.3389/fncel.2018.00114] [PMID: 29755324]
[43]
Teleanu, D.M.; Niculescu, A.G. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci., 2022, 23(11)
[44]
Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., 2015, 24(4), 325-340.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[45]
Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell, 2019, 18(6), e13031.
[http://dx.doi.org/10.1111/acel.13031] [PMID: 31432604]
[46]
Moni, M.M.R.; Begum, M.M.; Uddin, M.S.; Ashraf, G.M. Deciphering the role of nanoparticle-based treatment for parkinson’s disease. Curr. Drug Metab., 2021, 22(7), 550-560.
[http://dx.doi.org/10.2174/1389200222666210202110129] [PMID: 33530903]
[47]
Sule, R.O.; Condon, L.; Gomes, A.V. A common feature of pesticides: Oxidative stress-the role of oxidative stress in pesticide-induced toxicity. Oxid. Med. Cell. Longev., 2022, 2022, 1-31.
[http://dx.doi.org/10.1155/2022/5563759] [PMID: 35096268]
[48]
Venkateshappa, C.; Harish, G.; Mythri, R.B.; Mahadevan, A.; Srinivas Bharath, M.M.; Shankar, S.K. Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem. Res., 2012, 37(2), 358-369.
[http://dx.doi.org/10.1007/s11064-011-0619-7] [PMID: 21971758]
[49]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[50]
Hastings, T.G. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J. Bioenerg. Biomembr., 2009, 41(6), 469-472.
[http://dx.doi.org/10.1007/s10863-009-9257-z] [PMID: 19967436]
[51]
Lotharius, J.; Brundin, P. Pathogenesis of parkinson’s disease: Dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci., 2002, 3(12), 932-942.
[http://dx.doi.org/10.1038/nrn983] [PMID: 12461550]
[52]
Grünblatt, E.; Mandel, S.; Youdim, M.B.H. Neuroprotective strategies in Parkinson’s disease using the models of 6-hydroxydopamine and MPTP. Ann. N. Y. Acad. Sci., 2000, 899(1), 262-273.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06192.x] [PMID: 10863545]
[53]
Burns, R.S.; Chiueh, C.C.; Markey, S.P.; Ebert, M.H.; Jacobowitz, D.M.; Kopin, I.J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci., 1983, 80(14), 4546-4550.
[http://dx.doi.org/10.1073/pnas.80.14.4546] [PMID: 6192438]
[54]
Bender, A.; Krishnan, K.J.; Morris, C.M.; Taylor, G.A.; Reeve, A.K.; Perry, R.H.; Jaros, E.; Hersheson, J.S.; Betts, J.; Klopstock, T.; Taylor, R.W.; Turnbull, D.M. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet., 2006, 38(5), 515-517.
[http://dx.doi.org/10.1038/ng1769] [PMID: 16604074]
[55]
Kraytsberg, Y.; Kudryavtseva, E.; McKee, A.C.; Geula, C.; Kowall, N.W.; Khrapko, K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet., 2006, 38(5), 518-520.
[http://dx.doi.org/10.1038/ng1778] [PMID: 16604072]
[56]
Zhu, J.; Chu, C.T. Mitochondrial dysfunction in Parkinson’s disease. J. Alzheimers Dis., 2010, 20(s2), S325-S334.
[http://dx.doi.org/10.3233/JAD-2010-100363] [PMID: 20442495]
[57]
Chinta, S.J.; Kumar, M.J.; Hsu, M.; Rajagopalan, S.; Kaur, D.; Rane, A.; Nicholls, D.G.; Choi, J.; Andersen, J.K. Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J. Neurosci., 2007, 27(51), 13997-14006.
[http://dx.doi.org/10.1523/JNEUROSCI.3885-07.2007] [PMID: 18094238]
[58]
Martin, H.L.; Teismann, P. Glutathione—a review on its role and significance in Parkinson’s disease. FASEB J., 2009, 23(10), 3263-3272.
[http://dx.doi.org/10.1096/fj.08-125443] [PMID: 19542204]
[59]
Cookson, M.R. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb. Perspect. Med., 2012, 2(9), a009415.
[http://dx.doi.org/10.1101/cshperspect.a009415] [PMID: 22951446]
[60]
Dodson, M.W.; Guo, M. Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr. Opin. Neurobiol., 2007, 17(3), 331-337.
[http://dx.doi.org/10.1016/j.conb.2007.04.010] [PMID: 17499497]
[61]
Ostrerova-Golts, N.; Petrucelli, L.; Hardy, J.; Lee, J.M.; Farer, M.; Wolozin, B. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci., 2000, 20(16), 6048-6054.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06048.2000] [PMID: 10934254]
[62]
Cookson, M.R. α-Synuclein and neuronal cell death. Mol. Neurodegener., 2009, 4(1), 9.
[http://dx.doi.org/10.1186/1750-1326-4-9] [PMID: 19193223]
[63]
Junn, E.; Mouradian, M.M. Human α-Synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci. Lett., 2002, 320(3), 146-150.
[http://dx.doi.org/10.1016/S0304-3940(02)00016-2] [PMID: 11852183]
[64]
Paxinou, E.; Chen, Q.; Weisse, M.; Giasson, B.I.; Norris, E.H.; Rueter, S.M.; Trojanowski, J.Q.; Lee, V.M.Y.; Ischiropoulos, H. Induction of alpha-synuclein aggregation by intracellular nitrative insult. J. Neurosci., 2001, 21(20), 8053-8061.
[http://dx.doi.org/10.1523/JNEUROSCI.21-20-08053.2001] [PMID: 11588178]
[65]
Ahn, T.B.; Kim, S.Y.; Kim, J.Y.; Park, S.S.; Lee, D.S.; Min, H.J.; Kim, Y.K.; Kim, S.E.; Kim, J.M.; Kim, H.J.; Cho, J.; Jeon, B.S. -Synuclein gene duplication is present in sporadic Parkinson disease. Neurology, 2008, 70(1), 43-49.
[http://dx.doi.org/10.1212/01.wnl.0000271080.53272.c7] [PMID: 17625105]
[66]
Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[67]
Kremer, B.; Goldberg, P.; Andrew, S.E.; Theilmann, J.; Telenius, H.; Zeisler, J.; Squitieri, F.; Lin, B.; Bassett, A.; Almqvist, E.; Bird, T.D.; Hayden, M.R. A worldwide study of the Huntington’s disease mutation. The sensitivity and specificity of measuring CAG repeats. N. Engl. J. Med., 1994, 330(20), 1401-1406.
[http://dx.doi.org/10.1056/NEJM199405193302001] [PMID: 8159192]
[68]
Lee, J.M.; Ramos, E.M.; Lee, J.H.; Gillis, T.; Mysore, J.S.; Hayden, M.R.; Warby, S.C.; Morrison, P.; Nance, M.; Ross, C.A.; Margolis, R.L.; Squitieri, F.; Orobello, S.; Di Donato, S.; Gomez-Tortosa, E.; Ayuso, C.; Suchowersky, O.; Trent, R.J.A.; McCusker, E.; Novelletto, A.; Frontali, M.; Jones, R.; Ashizawa, T.; Frank, S.; Saint-Hilaire, M.H.; Hersch, S.M.; Rosas, H.D.; Lucente, D.; Harrison, M.B.; Zanko, A.; Abramson, R.K.; Marder, K.; Sequeiros, J.; Paulsen, J.S.; Landwehrmeyer, G.B.; Myers, R.H.; MacDonald, M.E.; Gusella, J.F. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology, 2012, 78(10), 690-695.
[http://dx.doi.org/10.1212/WNL.0b013e318249f683] [PMID: 22323755]
[69]
Zheng, J.; Winderickx, J.; Franssens, V.; Liu, B. A mitochondria-associated oxidative stress perspective on huntington’s disease. Front. Mol. Neurosci., 2018, 11, 329.
[http://dx.doi.org/10.3389/fnmol.2018.00329] [PMID: 30283298]
[70]
Essa, M.M.; Moghadas, M.; Ba-Omar, T.; Walid Qoronfleh, M.; Guillemin, G.J.; Manivasagam, T.; Justin-Thenmozhi, A.; Ray, B.; Bhat, A.; Chidambaram, S.B.; Fernandes, A.J.; Song, B.J.; Akbar, M. Protective effects of antioxidants in huntington’s disease: An extensive review. Neurotox. Res., 2019, 35(3), 739-774.
[http://dx.doi.org/10.1007/s12640-018-9989-9] [PMID: 30632085]
[71]
Tobore, T.O. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington’s disease. J. Neurosci. Res., 2019, 97(11), 1455-1468.
[http://dx.doi.org/10.1002/jnr.24492] [PMID: 31304621]
[72]
Aylward, E.H.; Nopoulos, P.C.; Ross, C.A.; Langbehn, D.R.; Pierson, R.K.; Mills, J.A.; Johnson, H.J.; Magnotta, V.A.; Juhl, A.R.; Paulsen, J.S. Longitudinal change in regional brain volumes in prodromal Huntington disease. J. Neurol. Neurosurg. Psychiatry, 2011, 82(4), 405-410.
[http://dx.doi.org/10.1136/jnnp.2010.208264] [PMID: 20884680]
[73]
Rosas, H.D.; Salat, D.H.; Lee, S.Y.; Zaleta, A.K.; Pappu, V.; Fischl, B.; Greve, D.; Hevelone, N.; Hersch, S.M. Cerebral cortex and the clinical expression of Huntington’s disease: Complexity and heterogeneity. Brain, 2008, 131(4), 1057-1068.
[http://dx.doi.org/10.1093/brain/awn025] [PMID: 18337273]
[74]
van der Burg, J.M.M.; Björkqvist, M.; Brundin, P. Beyond the brain: Widespread pathology in Huntington’s disease. Lancet Neurol., 2009, 8(8), 765-774.
[http://dx.doi.org/10.1016/S1474-4422(09)70178-4] [PMID: 19608102]
[75]
Bono-Yagüe, J.; Gómez-Escribano, A.P.; Millán, J.M.; Vázquez-Manrique, R.P. Reactive species in huntington disease: Are they really the radicals you want to catch? Antioxidants, 2020, 9(7), 577.
[http://dx.doi.org/10.3390/antiox9070577] [PMID: 32630706]
[76]
Kumar, A.; Ratan, R.R. Oxidative stress and huntington’s disease: The good, the bad, and the ugly. J. Huntingtons Dis., 2016, 5(3), 217-237.
[http://dx.doi.org/10.3233/JHD-160205] [PMID: 27662334]
[77]
Prasad, N.R.; Mahesh, T.; Menon, V.P.; Jeevanram, R.K.; Pugalendi, K.V. Photoprotective effect of sesamol on UVB-radiation induced oxidative stress in human blood lymphocytes in vitro. Environ. Toxicol. Pharmacol., 2005, 20(1), 1-5.
[http://dx.doi.org/10.1016/j.etap.2004.09.009] [PMID: 21783559]
[78]
Kumar, B.; Kuhad, A.; Chopra, K. Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: Behavioral and biochemical evidences. Psychopharmacology, 2011, 214(4), 819-828.
[http://dx.doi.org/10.1007/s00213-010-2094-2] [PMID: 21103863]
[79]
Ruankham, W.; Suwanjang, W.; Wongchitrat, P.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Sesamin and sesamol attenuate H 2 O 2 -induced oxidative stress on human neuronal cells via the SIRT1-SIRT3-FOXO3a signaling pathway. Nutr. Neurosci., 2021, 24(2), 90-101.
[http://dx.doi.org/10.1080/1028415X.2019.1596613] [PMID: 30929586]
[80]
Gao, X.J.; Xie, G.N.; Liu, L.; Fu, Z.J.; Zhang, Z.W.; Teng, L.Z. Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp. Ther. Med., 2017, 14(1), 841-847.
[http://dx.doi.org/10.3892/etm.2017.4550] [PMID: 28673008]
[81]
Kumar, P.; Kalonia, H.; Kumar, A. Protective effect of sesamol against 3-nitropropionic acid-induced cognitive dysfunction and altered glutathione redox balance in rats. Basic Clin. Pharmacol. Toxicol., 2010, 107(1), 577-582.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00537.x] [PMID: 20102363]
[82]
Liu, Q.; Xie, T.; Xi, Y.; Li, L.; Mo, F.; Liu, X.; Liu, Z.; Gao, J.M.; Yuan, T. Sesamol attenuates amyloid peptide accumulation and cognitive deficits in APP/PS1 mice: The mediating role of the gut–brain axis. J. Agric. Food Chem., 2021, 69(43), 12717-12729.
[http://dx.doi.org/10.1021/acs.jafc.1c04687] [PMID: 34669408]
[83]
Sonia Angeline, M.; Sarkar, A.; Anand, K.; Ambasta, R.K.; Kumar, P. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience, 2013, 254, 379-394.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.029] [PMID: 24070629]
[84]
Abu-Elfotuh, K.; Selim, H.M.R.M.; Riad, O.K.M.; Hamdan, A.M.E.; Hassanin, S.O.; Sharif, A.F.; Moustafa, N.M.; Gowifel, A.M.H.; Mohamed, M.Y.A.; Atwa, A.M.; Zaghlool, S.S.; El-Din, M.N. The protective effects of sesamol and/or the probiotic, Lactobacillus rhamnosus, against aluminum chloride-induced neurotoxicity and hepatotoxicity in rats: Modulation of Wnt/β-catenin/GSK-3β, JAK-2/STAT-3, PPAR-γ, inflammatory, and apoptotic pathways. Front. Pharmacol., 2023, 14, 1208252.
[http://dx.doi.org/10.3389/fphar.2023.1208252] [PMID: 37601053]
[85]
Aboul-Enein, H.Y.; Kruk, I.; Kładna, A.; Lichszteld, K.; Michalska, T. Scavenging effects of phenolic compounds on reactive oxygen species. Biopolymers, 2007, 86(3), 222-230.
[http://dx.doi.org/10.1002/bip.20725] [PMID: 17373654]
[86]
Jan, K.C.; Ho, C.T.; Hwang, L.S. Bioavailability and tissue distribution of sesamol in rat. J. Agric. Food Chem., 2008, 56(16), 7032-7037.
[http://dx.doi.org/10.1021/jf8012647] [PMID: 18636732]
[87]
Chen, Y.; Vartiainen, N.E.; Ying, W.; Chan, P.H.; Koistinaho, J.; Swanson, R.A. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J. Neurochem., 2001, 77(6), 1601-1610.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00374.x] [PMID: 11413243]
[88]
A.K., K.V. Antioxidant potential and reducing activity of sesamol. IJPRBS, 2013, 2
[89]
Moodie, F.M.; Marwick, J.A.; Anderson, C.S.; Szulakowski, P.; Biswas, S.K.; Bauter, M.R.; Kilty, I.; Rahman, I. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-κB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J., 2004, 18(15), 1897-1899.
[http://dx.doi.org/10.1096/fj.04-1506fje] [PMID: 15456740]
[90]
Shi, D.; Xiao, X.; Wang, J.; Liu, L.; Chen, W.; Fu, L.; Xie, F.; Huang, W.; Deng, W. Melatonin suppresses proinflammatory mediators in lipopolysaccharide-stimulated CRL1999 cells via targeting MAPK, NF-κB, c/EBPβ, and p300 signaling. J. Pineal Res., 2012, 53(2), 154-165.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00982.x] [PMID: 22348531]
[91]
Bartzokis, G. Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer’s disease. Neurobiol. Aging, 2004, 25(1), 5-18.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.03.001] [PMID: 14675724]
[92]
Liu, Q.; Chen, Y.; Shen, C.; Xiao, Y.; Wang, Y.; Liu, Z.; Liu, X. Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-κB. FASEB J., 2017, 31(4), 1494-1507.
[http://dx.doi.org/10.1096/fj.201601071R] [PMID: 28003341]
[93]
Sachdeva, A.K.; Misra, S.; Pal Kaur, I.; Chopra, K. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: Behavioral and biochemical evidence. Eur. J. Pharmacol., 2015, 747, 132-140.
[http://dx.doi.org/10.1016/j.ejphar.2014.11.014] [PMID: 25449035]
[94]
Liu, Z.; Chen, Y.; Qiao, Q.; Sun, Y.; Liu, Q.; Ren, B.; Liu, X. Sesamol supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of nuclear factor kappaB. Mol. Nutr. Food Res., 2017, 61(5)
[PMID: 27860258]
[95]
Fonseca, A.C.R.G.; Resende, R.; Oliveira, C.R.; Pereira, C.M.F. Cholesterol and statins in Alzheimer’s disease: Current controversies. Exp. Neurol., 2010, 223(2), 282-293.
[http://dx.doi.org/10.1016/j.expneurol.2009.09.013] [PMID: 19782682]
[96]
Chamallamudi, M.R.; John, J.; Nampoothiri, M.; Kumar, N.; Mudgal, J.; Nampurath, G.K. Sesamol, a lipid lowering agent, ameliorates aluminium chloride induced behavioral and biochemical alterations in rats. Pharmacogn. Mag., 2015, 11(42), 327-336.
[http://dx.doi.org/10.4103/0973-1296.153086] [PMID: 25829772]
[97]
Nampoothiri, M.; Kumar, N.; Venkata Ramalingayya, G.; Gopalan Kutty, N.; Krishnadas, N.; Mallikarjuna Rao, C. Effect of insulin on spatial memory in aluminum chloride-induced dementia in rats. Neuroreport, 2017, 28(9), 540-544.
[http://dx.doi.org/10.1097/WNR.0000000000000799] [PMID: 28498150]
[98]
Nampoothiri, M.; Ramalingayya, G.V.; Kutty, N.G.; Krishnadas, N.; Rao, C.M. Insulin combined with glucose improves spatial learning and memory in aluminum chloride-induced dementia in rats. J. Environmen. Pathol., Toxicol. Oncol., 2017.
[99]
Sarkar, P.; Jayaraj, P.; Patwardhan, K.; Yeole, S.; Das, S.; Somaiya, Y.; Desikan, R.; Thirumurugan, K. in silico analysis to link insulin resistance, obesity and ageing with alzheimer's disease. J. Mol. Neurosci., 2021, 71(12), 2608-2617.
[100]
Misra, S.; Tiwari, V.; Kuhad, A.; Chopra, K. Modulation of nitrergic pathway by sesamol prevents cognitive deficits and associated biochemical alterations in intracerebroventricular streptozotocin administered rats. Eur. J. Pharmacol., 2011, 659(2-3), 177-186.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.026] [PMID: 21463622]
[101]
Zhang, P.; Wang, Y.; Wang, H.; Cao, J. Sesamol alleviates chronic intermittent hypoxia-induced cognitive deficits via inhibiting oxidative stress and inflammation in rats. Neuroreport, 2021, 32(2), 105-111.
[http://dx.doi.org/10.1097/WNR.0000000000001564] [PMID: 33323839]
[102]
Zheng, Y.; Deng, Y.; Gao, J.; Lv, C.; Lang, L.; Shi, J.; Yu, C.; Gong, Q. Icariside II inhibits lipopolysaccharide-induced inflammation and amyloid production in rat astrocytes by regulating IKK/IκB/NF-κB/BACE1 signaling pathway. Acta Pharmacol. Sin., 2020, 41(2), 154-162.
[http://dx.doi.org/10.1038/s41401-019-0300-2] [PMID: 31554962]
[103]
Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.; Duong, S.; Tanzi, R.E.; Moir, R.D. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One, 2010, 5(3), e9505.
[http://dx.doi.org/10.1371/journal.pone.0009505] [PMID: 20209079]
[104]
Anderson, G. Why do anti-amyloid beta antibodies not work? Time to reconceptualize dementia pathophysiology by incorporating astrocyte melatonergic pathway desynchronization from amyloid-beta production. Rev. Bras. Psiquiatr., 2023, 45(2), 89-92.
[http://dx.doi.org/10.47626/1516-4446-2022-2949] [PMID: 36571832]
[105]
Innos, J.; Hickey, M.A. Using rotenone to model parkinson’s disease in mice: A review of the role of pharmacokinetics. Chem. Res. Toxicol., 2021, 34(5), 1223-1239.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00522] [PMID: 33961406]
[106]
D.R., K. Sesamol ameliorates the motor behavior in rotenone-induced rat model of Parkinson’s disease. Int. J. Pharm. Bio. Sci., 2017, 8, 330-337.
[107]
Engelbrecht, I.; Petzer, J.P.; Petzer, A. The synthesis and evaluation of sesamol and benzodioxane derivatives as inhibitors of monoamine oxidase. Bioorg. Med. Chem. Lett., 2015, 25(9), 1896-1900.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.040] [PMID: 25857942]
[108]
Rohini, D; K., V. Protective effect of sesamol on rotenone-induced C6 cell line and rat brain. Europ. J. Mol. Biol. Biochem., 2018.
[109]
Priya, N. Effect of sesamol and folic acid on behavioural activity and antioxidant profile of rats induced with 6-hydroxy dopamine. Int. J. Res. Pharm. Sci., 2014, 6, 930-935.
[110]
Khadira, S. Effect of sesamol on association with folic acid on 6-OHDA induced parkinsonian animals-biochemical, neurochemical and histopathological evidence. Int. J. Res. Pharm. Sci., 2017, 5, 16-20.
[111]
A, K.V. Sesamol in association with folic acid shows anti-parkinson effect on 6-ohda induced parkinsonian animal by regulating the park genes. Int. J. Pharma Bio Sci., 2015, 6, 346-354.
[112]
Rohini, D.K.V. Sesamol antagonizes rotenone-induced cell death in SH-SY5Y neuronal cells. Int. J. Pharma Sci., 2016, 8, 72-77.
[113]
Wang, B.Y.; Ye, Y.Y.; Qian, C.; Zhang, H.B.; Mao, H.X.; Yao, L.P.; Sun, X.; Lu, G.H.; Zhang, S.Z. Stress increases MHC-I expression in dopaminergic neurons and induces autoimmune activation in Parkinson's disease. Neural Regen. Res., 2021, 16(12), 2521-2527.
[http://dx.doi.org/10.4103/1673-5374.313057] [PMID: 33907043]
[114]
Fatokun, A.A.; Smith, R.A.; Stone, T.W. Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons. Brain Res., 2008, 1215, 200-207.
[http://dx.doi.org/10.1016/j.brainres.2008.04.013] [PMID: 18486115]
[115]
Huang, Q.Y.; Yu, L.; Ferrante, R.J.; Chen, J.F. Mutant SOD1G93A in bone marrow-derived cells exacerbates 3-nitropropionic acid induced striatal damage in mice. Neurosci. Lett., 2007, 418(2), 175-180.
[http://dx.doi.org/10.1016/j.neulet.2007.03.038] [PMID: 17418947]
[116]
Alexi, T.; Borlongan, C.V.; Faull, R.L.; Williams, C.E.; Clark, R.G.; Gluckman, P.D.; Hughes, P.E. Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog. Neurobiol., 2000, 60(5), 409-470.
[http://dx.doi.org/10.1016/S0301-0082(99)00032-5] [PMID: 10697073]
[117]
Alexi, T.; Hughes, P.E.; Faull, R.L.; Williams, C.E. 3-Nitropropionic acid’s lethal triplet: Cooperative pathways of neurodegeneration. Neuroreport, 1998, 9(11), R57-R64.
[http://dx.doi.org/10.1097/00001756-199808030-00001] [PMID: 9721909]
[118]
Fontaine, M.A.; Geddes, J.W.; Banks, A.; Butterfield, D.A. Effect of exogenous and endogenous antioxidants on 3-nitropionic acid-induced in vivo oxidative stress and striatal lesions: Insights into Huntington’s disease. J. Neurochem., 2000, 75(4), 1709-1715.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0751709.x] [PMID: 10987854]
[119]
Kumar, P.; Kalonia, H.; Kumar, A. Sesamol attenuate 3-nitropropionic acid-induced Huntington-like behavioral, biochemical, and cellular alterations in rats. J. Asian Nat. Prod. Res., 2009, 11(5), 439-450.
[http://dx.doi.org/10.1080/10286020902862194] [PMID: 19504387]
[120]
Khan, S.; Choudhary, S.; Kumar, A.; Tripathi, A.M.; Alok, A.; Adhikari, J.S.; Rizvi, M.A.; Chaudhury, N.K. Evaluation of sesamol-induced histopathological, biochemical, haematological and genomic alteration after acute oral toxicity in female C57BL/6 mice. Toxicol. Rep., 2016, 3, 880-894.
[http://dx.doi.org/10.1016/j.toxrep.2016.03.005] [PMID: 28959616]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy