Abstract
Electro-organic synthesis, an atom-efficient, sustainable, mild process, permits an ecofriendly and elegant green path to synthesize structurally complex, still valuable molecules, avoiding the use of conventional harsh oxidizing and reducing agents and long-route reaction protocols. Being one of the oldest forms of reaction setups in a laboratory, it deals with fundamental redox chemistry through the direct application of electrical potential. Here flow of electrons acts as an oxidizing agent at the anode at the same time reducing agent at the cathode, depending upon the requirement of the reaction. Simultaneously, it minimizes the generation of reagent waste during the reaction. However, electrifying organic synthesis plays more than preventing the waste footprint. This technology provides an alternative roadmap through nonclassical bond disconnections to access desired target molecules by cutting down a number of steps with the formation of apparently looking difficult bonds with excellent regio-, chemo-and stereoselectivity. Hence, it emerges as an alternative and attractive technique for the contemporary synthetic communities. Consequently, in recent years, multiple milestones have been achieved in the electro-organic synthesis of fascinating natural products through oxidative C-C bond formation, C-H/N-H functionalization, very rare oxidative N-N dimerization, RCDA dimerization, etc. Thus, synthesis of extremely complex natural products through finding new electro-synthetic route as a key methodology have become one of the alluring synthetic targets to synthetic chemists because of their versatile utilities in medicine, agriculture, food, and cosmetic industry. This review presents advances in electrochemistry in the total synthesis of 20 complex natural products reported since 2013. Enabling synthetic steps are analyzed alongside innate advantages as well as future prospects are speculated.
Graphical Abstract
[http://dx.doi.org/10.1038/nchem.143] [PMID: 21378778];
b) Whitesides, G.M. Reinventing chemistry. Angew. Chem. Int. Ed., 2015, 54(11), 3196-3209.
[http://dx.doi.org/10.1002/anie.201410884] [PMID: 25682927];
c) Hoffmann, R.W. Complex molecule synthesis, a personal view. Isr. J. Chem., 2018, 58(1-2), 73-79.
[http://dx.doi.org/10.1002/ijch.201700086];
d) Kühlborn, J.; Groß, J.; Opatz, T. Making natural products from renewable feedstocks: Back to the roots? Nat. Prod. Rep., 2020, 37(3), 380-424.
[http://dx.doi.org/10.1039/C9NP00040B] [PMID: 31625546]
[http://dx.doi.org/10.1002/prac.18470410118]
[http://dx.doi.org/10.1149/1.1462037];
b) Shatskiy, A.; Lundberg, H.; Kärkäs, M.D. Organic electrosynthesis: Applications in complex molecule synthesis. ChemElectroChem, 2019, 6(16), 4067-4092.
[http://dx.doi.org/10.1002/celc.201900435];
c) Pollok, D.; Waldvogel, S.R. Electro-organic synthesis-a 21st century technique. Chem. Sci., 2020, 11(46), 12386-12400.
[http://dx.doi.org/10.1039/D0SC01848A] [PMID: 34123227];
d) Schotten, C.; Nicholls, T.P.; Bourne, R.A.; Kapur, N.; Nguyen, B.N.; Willans, C.E. Making electrochemistry easily accessible to the synthetic chemist. Green Chem., 2020, 22(11), 3358-3375.
[http://dx.doi.org/10.1039/D0GC01247E]
[http://dx.doi.org/10.1016/j.tetlet.2010.07.037]
[http://dx.doi.org/10.1055/s-2007-969608] [PMID: 17340238];
b) Wu, W.N.; Liao, W.; Mahmoud, Z.F.; Beal, J.L.; Doskotch, R.W. Alkaloids of Thalictrum XXXIV. Three new alkaloids, thalmirabine, thalistine, and o-methylthalibrine, and others from roots of Thalictrum minus race B. J. Nat. Prod., 1980, 43(4), 472-481.
[http://dx.doi.org/10.1021/np50010a007]
[http://dx.doi.org/10.1039/D1OB00812A] [PMID: 34524341]
[http://dx.doi.org/10.1021/jo201871c] [PMID: 22004161]
[http://dx.doi.org/10.1002/ejoc.200700261]
[http://dx.doi.org/10.1002/ejoc.201301128]
b) Tajima, H.; Fuchigami, T. Farumashia, 2003, 32, 5-11.
[http://dx.doi.org/10.1016/S0040-4039(01)85135-2];
b) Slosse, P.; Hootelé, C. Myrtine and epimyrtine, quinolizidine alkaloids from Vaccinium myrtillus. Tetrahedron, 1981, 37(24), 4287-4294.
[http://dx.doi.org/10.1016/0040-4020(81)85024-7];
c) Michael, J.P. Indolizidine and quinolizidine alkaloids. Nat. Prod. Rep., 2004, 21(5), 625-649.
[http://dx.doi.org/10.1039/b310689f] [PMID: 15459758]
[http://dx.doi.org/10.1021/jo00048a003];
b) Pizzuti, M.G.; Minnaard, A.J.; Feringa, B.L. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine. Org. Biomol. Chem., 2008, 6(19), 3464-3466.
[http://dx.doi.org/10.1039/b807575a] [PMID: 19082145];
c) Ying, Y.; Kim, H.; Hong, J. Stereoselective synthesis of 2,6-cis- and 2,6-trans-piperidines through organocatalytic aza-Michael reactions: A facile synthesis of (+)-myrtine and (-)-epimyrtine. Org. Lett., 2011, 13(4), 796-799.
[http://dx.doi.org/10.1021/ol103064f] [PMID: 21250755];
d) Gardette, D.; Gelas-Mialhe, Y.; Gramain, J.C.; Perrin, B.; Remuson, R. Enantioselective synthesis of the quinolizidine alkaloids (+)-myrtine and (−)-epimyrtine. Tetrahedron Asymmetry, 1998, 9(10), 1823-1828.
[http://dx.doi.org/10.1016/S0957-4166(98)00170-0];
e) Davis, F.A.; Xu, H.; Zhang, J. Asymmetric synthesis of ring functionalized trans-2,6-disubstituted piperidines from N-sulfinyl δ-amino β-keto phosphonates. total synthesis of (-)-myrtine. J. Org. Chem., 2007, 72(6), 2046-2052.
[http://dx.doi.org/10.1021/jo062365t] [PMID: 17305397]
[http://dx.doi.org/10.1021/jo500104c] [PMID: 24670203]
[http://dx.doi.org/10.1021/np50060a023] [PMID: 3236011]
[http://dx.doi.org/10.1021/jo302712f] [PMID: 23397886];
b) Murali, R.V.N.S.; Chandrasekhar, S. Stereocontrolled synthesis of piperidine alkaloids, (−)-241D and (−)-isosolenopsin. Tetrahedron Lett., 2012, 53(27), 3467-3470.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.115];
c) Saha, N.; Chattopadhyay, S.K. Enantiodivergency and enantioconvergency in the synthesis of the dendrobate alkaloid 241D. J. Org. Chem., 2012, 77(24), 11056-11063.
[http://dx.doi.org/10.1021/jo3019329] [PMID: 23205643]
[http://dx.doi.org/10.1021/ol101427m] [PMID: 20704409];
b) Leverrier, A.; Awang, K.; Guéritte, F.; Litaudon, M. Pentacyclic polyketides from Endiandra kingiana as inhibitors of the Bcl-xL/Bak interaction. Phytochemistry, 2011, 72(11-12), 1443-1452.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.005] [PMID: 21550092]
[http://dx.doi.org/10.1021/ol303388k] [PMID: 23273168]
[http://dx.doi.org/10.1002/anie.201210084] [PMID: 23468400]
[http://dx.doi.org/10.1039/C4CC05906A] [PMID: 25196219]
[http://dx.doi.org/10.1002/ejoc.201200599];
b) Xu, Z.; Baunach, M.; Ding, L.; Hertweck, C. Bacterial synthesis of diverse indole terpene alkaloids by an unparalleled cyclization sequence. Angew. Chem. Int. Ed., 2012, 51(41), 10293-10297.
[http://dx.doi.org/10.1002/anie.201204087] [PMID: 22968942];
c) Baunach, M.; Ding, L.; Bruhn, T.; Bringmann, G.; Hertweck, C. Regiodivergent N-C and N-N aryl coupling reactions of indoloterpenes and cycloether formation mediated by a single bacterial flavoenzyme. Angew. Chem. Int. Ed., 2013, 52(34), 9040-9043.
[http://dx.doi.org/10.1002/anie.201303733] [PMID: 23843280]
[http://dx.doi.org/10.1021/ja047874w] [PMID: 15198586];
b) Perkin, W.H.; Tucker, S.H. XXVI.-The oxidation of carbazole. J. Chem. Soc. Trans., 1921, 119(0), 216-225.
[http://dx.doi.org/10.1039/CT9211900216]
[http://dx.doi.org/10.1021/jo00256a007]
[http://dx.doi.org/10.1021/ja5013323] [PMID: 24697810]
[http://dx.doi.org/10.1021/np50076a006] [PMID: 1791481]
[http://dx.doi.org/10.1021/np970191s]
[http://dx.doi.org/10.1021/ol502201d] [PMID: 25147957]
[http://dx.doi.org/10.1039/np9931000001] [PMID: 8383826];
b) Ward, R.S. Lignans, neolignans and related compounds. Nat. Prod. Rep., 1999, 16(1), 75-96.
[http://dx.doi.org/10.1039/a705992b]
[http://dx.doi.org/10.1021/jo01096a007];
b) Iida, T.; Nakano, M.; Ito, K. Hydroperoxysesquiterpene and lignan constituents of Magnolia kobus. Phytochemistry, 1982, 21(3), 673-675.
[http://dx.doi.org/10.1016/0031-9422(82)83163-4];
c) Kakisawa, H.; Chen, Y.P.; Hsü, H.Y. Lignans in flower buds of Magnolia fargesii. Phytochemistry, 1972, 11(7), 2289-2293.
[http://dx.doi.org/10.1016/S0031-9422(00)88392-2];
d) Bertram, S.H.; Van der Steur, J-P-K.; Waterman, H-I. Biochem. Z., 1928, 197, 1.;
e) Dryselius, E.; Lindberg, B.; Waterman, H.I.; Eliasson, N.A.; Thorell, B. Pinoresinol and its Dimethyl Ether from Araucaria angustifolia. Acta Chem. Scand., 1956, 10, 445-446.
[http://dx.doi.org/10.3891/acta.chem.scand.10-0445]
[http://dx.doi.org/10.1016/j.tet.2016.10.058]
[http://dx.doi.org/10.1016/j.tet.2006.04.050]
[http://dx.doi.org/10.1002/adsc.200700328]
[http://dx.doi.org/10.1021/jo960266h];
b) Whittell, L.R.; Batty, K.T.; Wong, R.P.M.; Bolitho, E.M.; Fox, S.A.; Davis, T.M.E.; Murray, P.E. Synthesis and antimalarial evaluation of novel isocryptolepine derivatives. Bioorg. Med. Chem., 2011, 19(24), 7519-7525.
[http://dx.doi.org/10.1016/j.bmc.2011.10.037] [PMID: 22055713]
[http://dx.doi.org/10.1002/anie.201602616] [PMID: 27240116]
[http://dx.doi.org/10.1002/hlca.193301601153]
[http://dx.doi.org/10.1002/cbic.200700464] [PMID: 18033720]
[http://dx.doi.org/10.1139/v76-556];
b) Hassner, A.; Rai, K.M.L. The benzoin and related acyl anion equivalent reactions; , 1991.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00017-2];
c) Stetter, H. Catalyzed addition of aldehydes to activated double bonds-a new synthetic approach. Angew. Chem. Int. Ed. Engl., 1976, 15(11), 639-647.
[http://dx.doi.org/10.1002/anie.197606391];
d) Mattson, A.E.; Bharadwaj, A.R.; Scheidt, K.A. The thiazolium-catalyzed Sila-Stetter reaction: Conjugate addition of acylsilanes to unsaturated esters and ketones. J. Am. Chem. Soc., 2004, 126(8), 2314-2315.
[http://dx.doi.org/10.1021/ja0318380] [PMID: 14982429];
e) Corey, E.J.; Hegedus, L.S. 1,4 Addition of acyl groups to conjugated enones. J. Am. Chem. Soc., 1969, 91(17), 4926-4928.
[http://dx.doi.org/10.1021/ja01045a061];
f) Liu, Y.J.; Li, Y.Y.; Qi, Y.; Wan, J. Samarium-promoted michael addition between aroyl chlorides and chalcones. Synthesis, 2010, 24, 4188-4192.;
g) Ballini, R.; Barboni, L.; Bosica, G.; Fiorini, D. One-pot synthesis of γ-Diketones, γ-Keto Esters, and conjugated cyclopentenones from Nitroalkanes. Synthesis, 2002, 18(18), 2725-2728.
[http://dx.doi.org/10.1055/s-2002-35993]
[http://dx.doi.org/10.1271/bbb.58.1181]
[http://dx.doi.org/10.1021/acs.joc.8b01994] [PMID: 30208277]
[http://dx.doi.org/10.3987/COM-03-9804]
[http://dx.doi.org/10.1093/mp/ssp106] [PMID: 20035037];
b) Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed., 2011, 50(3), 586-621.
[http://dx.doi.org/10.1002/anie.201000044] [PMID: 21226137];
c) Keylor, M.H.; Matsuura, B.S.; Stephenson, C.R.J. Chemistry and biology of resveratrol-derived natural products. Chem. Rev., 2015, 115(17), 8976-9027.
[http://dx.doi.org/10.1021/cr500689b] [PMID: 25835567]
[http://dx.doi.org/10.1021/cr500226n] [PMID: 25180889]
[http://dx.doi.org/10.1002/anie.201409773] [PMID: 25650836]
[http://dx.doi.org/10.1002/anie.201810870] [PMID: 30474921]
[http://dx.doi.org/10.1016/S0040-4039(00)96781-9]
[http://dx.doi.org/10.1016/S0031-9422(98)00725-0];
b) Sears, J.E.; Boger, D.L. Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure-function properties. Acc. Chem. Res., 2015, 48(3), 653-662.
[http://dx.doi.org/10.1021/ar500400w] [PMID: 25586069]
[http://dx.doi.org/10.1021/ol802394n] [PMID: 19055376]
[http://dx.doi.org/10.1021/jacs.6b10237]
[http://dx.doi.org/10.1002/cjoc.201800301]
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1783:AID-ANIE1783>3.0.CO;2-I] [PMID: 19750716];
b) Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. Cyclization cascades via N-amidyl radicals toward highly functionalized heterocyclic scaffolds. J. Am. Chem. Soc., 2015, 137(2), 964-973.
[http://dx.doi.org/10.1021/ja5115858] [PMID: 25561161]
[http://dx.doi.org/10.1002/anie.201701329] [PMID: 28295965];
b) Lennox, A.J.J.; Nutting, J.E.; Stahl, S.S. Selective electrochemical generation of benzylic radicals enabled by ferrocene-based electron-transfer mediators. Chem. Sci., 2018, 9(2), 356-361.
[http://dx.doi.org/10.1039/C7SC04032F] [PMID: 29732109];
c) Wu, Z.J.; Li, S.R.; Long, H.; Xu, H.C. Electrochemical dehydrogenative cyclization of 1,3-dicarbonyl compounds. Chem. Commun., 2018, 54(36), 4601-4604.
[http://dx.doi.org/10.1039/C8CC02472C] [PMID: 29670957]
[http://dx.doi.org/10.7164/antibiotics.51.518] [PMID: 9666183];
b) Uchida, R.; Imasato, R.; Yamaguchi, Y.; Masuma, R.; Shiomi, K.; Tomoda, H.; Ōmura, S. New insecticidal antibiotics, hydroxyfungerins A and B, produced by Metarhizium sp. FKI-1079. J. Antibiot., 2005, 58(12), 804-809.
[http://dx.doi.org/10.1038/ja.2005.107] [PMID: 16506697]
[http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1434:AID-ANIE1434>3.0.CO;2-A] [PMID: 19750790];
b) Kim, H.; Baker, J.B.; Lee, S.U.; Park, Y.; Bolduc, K.L.; Park, H.B.; Dickens, M.G.; Lee, D.S.; Kim, Y.; Kim, S.H.; Hong, J. Stereoselective synthesis and osteogenic activity of subglutinols A and B. J. Am. Chem. Soc., 2009, 131(9), 3192-3194.
[http://dx.doi.org/10.1021/ja8101192] [PMID: 19216570]
[http://dx.doi.org/10.1021/jo1006812] [PMID: 20540516]
[http://dx.doi.org/10.1021/jacs.8b04891] [PMID: 29921130]
[http://dx.doi.org/10.1021/ja00385a075]
[http://dx.doi.org/10.1016/S0014-2999(98)00862-0] [PMID: 9988096]
[http://dx.doi.org/10.1021/ja00838a046] [PMID: 1133384];
b) Trost, B.M.; Tang, W. Enantioselective synthesis of (-)-codeine and (-)-morphine. J. Am. Chem. Soc., 2002, 124(49), 14542-14543.
[http://dx.doi.org/10.1021/ja0283394] [PMID: 12465957]
[http://dx.doi.org/10.1039/jr9650002423] [PMID: 14288334]
[http://dx.doi.org/10.1002/anie.201803887] [PMID: 29786941]
[http://dx.doi.org/10.1021/ja00843a063];
b) Christensen, L.; Miller, L.L. Electrochemical oxidation of morphinandienones. J. Org. Chem., 1981, 46(24), 4876-4880.
[http://dx.doi.org/10.1021/jo00337a010]
[http://dx.doi.org/10.15666/aeer/0302_029038]
[http://dx.doi.org/10.1016/S0304-3959(97)00072-9] [PMID: 9414055];
b) Mercadante, S.; Arcuri, E. Breakthrough pain in cancer patients: Pathophysiology and treatment. Cancer Treat. Rev., 1998, 24(6), 425-432.
[http://dx.doi.org/10.1016/S0305-7372(98)90005-6] [PMID: 10189409];
c) Watson, C.P.; Babul, N. Efficacy of oxycodone in neuronathic pain. Neurology, 1998, 50, 1837.
[http://dx.doi.org/10.1212/WNL.50.6.1837] [PMID: 9633737];
d) Silvestri, B.; Bandieri, E.; Del Prete, S.; Ianniello, G.P.; Micheletto, G.; Dambrosio, M.; Sabbatini, G.; Endrizzi, L.; Marra, A.; Aitini, E.; Calorio, A.; Garetto, F.; Nastasi, G.; Piantedosi, F.; Sidoti, V.; Spanu, P. Oxycodone controlled-release as first-choice therapy for moderate-to-severe cancer pain in Italian patients: Results of an open-label, multicentre, observational study. Clin. Drug Investig., 2008, 28(7), 399-407.
[http://dx.doi.org/10.2165/00044011-200828070-00001] [PMID: 18544000]
[http://dx.doi.org/10.1039/C8CC07667G] [PMID: 30394459]
[http://dx.doi.org/10.1021/acs.orglett.9b00419] [PMID: 30775928]
[http://dx.doi.org/10.1039/np9890600523] [PMID: 2694030]
[http://dx.doi.org/10.1016/S0040-4039(00)98718-5]
[http://dx.doi.org/10.1055/s-2006-960144] [PMID: 1798796];
b) Min, B.S.; Gao, J.J.; Nakamura, N.; Kim, Y.H. Hattori, Triterpenes from the spores of Ganoderma lucidum and their cytotoxicity against meth-A and LLC tumor cells. M. Chem. Pharm. Bull., 2001, 49, 1217-1219.
[http://dx.doi.org/10.1248/cpb.49.1217] [PMID: 11558618];
c) Ghosal, S.; Lochan, R.; Kumar, A.Y.; Srivastava, R.S. Alkaloids of Haemanthus kalbreyeri. Phytochemistry, 1985, 24(8), 1825-1828.
[http://dx.doi.org/10.1016/S0031-9422(00)82560-1];
d) Chattopadhyay, S.; Chattopadhyay, U.; Mathur, P.; Saini, K.; Ghosal, S. Effects of hippadine, an Amaryllidaceae alkaloid, on testicular function in rats. Planta Med., 1983, 49(12), 252-254.
[http://dx.doi.org/10.1055/s-2007-969864] [PMID: 6669644]
[http://dx.doi.org/10.1016/S0040-4039(00)76203-4];
b) Boger, D.L.; Wolkenberg, S.E. Total synthesis of Amaryllidaceae alkaloids utilizing sequential intramolecular heterocyclic azadiene Diels-Alder reactions of an unsymmetrical 1,2,4,5-tetrazine. J. Org. Chem., 2000, 65(26), 9120-9124.
[http://dx.doi.org/10.1021/jo0012546] [PMID: 11149859];
c) Ganton, M.D.; Kerr, M.A. A domino amidation route to indolines and indoles: Rapid syntheses of anhydrolycorinone, hippadine, oxoassoanine, and pratosine. Org. Lett., 2005, 7(21), 4777-4779.
[http://dx.doi.org/10.1021/ol052086c] [PMID: 16209533]
[http://dx.doi.org/10.1021/acs.orglett.0c01082] [PMID: 32286833]
[http://dx.doi.org/10.1021/ja016885b] [PMID: 11697984];
b) Miura, T.; Kim, S.; Kitano, Y.; Tada, M.; Chiba, K. Electrochemical enol ether/olefin cross-metathesis in a lithium perchlorate/nitromethane electrolyte solution. Angew. Chem. Int. Ed., 2006, 45(9), 1461-1463.
[http://dx.doi.org/10.1002/anie.200503656] [PMID: 16440381]
[http://dx.doi.org/10.1039/b604174d] [PMID: 17003905];
b) Liu, M.; Wang, W.G.; Sun, H.D.; Pu, J.X. Diterpenoids from Isodon species: An update. Nat. Prod. Rep., 2017, 34(9), 1090-1140.
[http://dx.doi.org/10.1039/C7NP00027H] [PMID: 28758169]
[http://dx.doi.org/10.1248/cpb.30.727] [PMID: 7094154];
b) Fuji, K.; Node, M.; Ito, N.; Fujita, E.; Takeda, S.; Unemi, N.; Terpenoids, L. Antitumor activity of diterpenoids from Rabdosia shikokiana var. occidentalis. Chem. Pharm. Bull., 1985, 33(3), 1038-1042.
[http://dx.doi.org/10.1248/cpb.33.1038]
[http://dx.doi.org/10.1021/ja962799d];
b) Paquette, L.A.; Backhaus, D.; Braun, R.; Underiner, T.L.; Fuchs, K. First synthesis of cytotoxic 8,9-secokaurene diterpenoids. An enantioselective route to (−)- O -Methylshikoccin and (+)- O -Methylepoxyshikoccin. J. Am. Chem. Soc., 1997, 119(41), 9662-9671.
[http://dx.doi.org/10.1021/ja971527n]
[http://dx.doi.org/10.1002/anie.202104410] [PMID: 33900670]
[http://dx.doi.org/10.1055/s-0042-114573] [PMID: 27542177]
[http://dx.doi.org/10.1021/ol401991u] [PMID: 23944990]
[http://dx.doi.org/10.2174/1381612822666160101123106] [PMID: 26721256];
b) Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Divergent strategy in natural product total synthesis. Chem. Rev., 2018, 118(7), 3752-3832.
[http://dx.doi.org/10.1021/acs.chemrev.7b00653] [PMID: 29516724];
c) Sarkar, A.; Santra, S.; Kundu, S.K.; Hajra, A.; Zyryanov, G.V.; Chupakhin, O.N.; Charushin, V.N.; Majee, A. A decade update on solvent and catalyst-free neat organic reactions: A step forward towards sustainability. Green Chem., 2016, 18(16), 4475-4525.
[http://dx.doi.org/10.1039/C6GC01279E];
d) Kärkäs, M.D.; Porco, J.A., Jr; Stephenson, C.R.J. Photochemical approaches to complex chemotypes: Applications in natural product synthesis. Chem. Rev., 2016, 116(17), 9683-9747.
[http://dx.doi.org/10.1021/acs.chemrev.5b00760] [PMID: 27120289]
[http://dx.doi.org/10.1021/acs.orglett.1c01724] [PMID: 34170713]
[http://dx.doi.org/10.1038/nature17431] [PMID: 27096371]
b) Kondo, H.; Tomimura, K.; Ishiwata, S. J. Pharm. Soc. Jpn., 1932, 52, 51.
[http://dx.doi.org/10.2165/00003495-200060050-00008] [PMID: 11129124]
[http://dx.doi.org/10.1021/ja002231b];
b) Zhang, Y.; Shen, S.; Fang, H.; Xu, T. Total synthesis of galanthamine and lycoramine featuring an Early-Stage C–C and a late-stage dehydrogenation via C–H Activation. Org. Lett., 2020, 22(4), 1244-1248.
[http://dx.doi.org/10.1021/acs.orglett.9b04337] [PMID: 31904968];
c) Küenburg, B.; Czollner, L.; Fröhlich, J.; Jordis, U. Development of a pilot scale process for the anti-alzheimer drug (−)-galanthamine using large-scale phenolic oxidative coupling and crystallisation-induced chiral conversion. Org. Process Res. Dev., 1999, 3(6), 425-431.
[http://dx.doi.org/10.1021/op990019q]
[http://dx.doi.org/10.1039/D2OB00669C] [PMID: 35537211]
[http://dx.doi.org/10.1002/chir.22719] [PMID: 28649696]
[http://dx.doi.org/10.1002/chem.202201523] [PMID: 35662286]
b) Dewar, M.J.S. Structure of colchicine. Nature, 1945, 155(3927), 141-142.
[http://dx.doi.org/10.1038/155141d0]
[http://dx.doi.org/10.1021/ja01148a005]
[http://dx.doi.org/10.1039/B603857C] [PMID: 16729129]
[http://dx.doi.org/10.1021/acs.orglett.2c01084] [PMID: 35503929]
[http://dx.doi.org/10.1021/acs.accounts.9b00511] [PMID: 31850730]
[http://dx.doi.org/10.1038/nchembio.1613] [PMID: 25151135]
[http://dx.doi.org/10.1021/acs.orglett.2c00377] [PMID: 35212222]
[http://dx.doi.org/10.1021/acs.orglett.3c01270] [PMID: 37184442]
[http://dx.doi.org/10.1021/acs.orglett.0c02424] [PMID: 32790319]
[http://dx.doi.org/10.1021/jacs.1c09412] [PMID: 35015533]
[http://dx.doi.org/10.1021/acs.chemrev.7b00397] [PMID: 28991454]