Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Gait Parameters can Reflect Cognitive Performance in Older Adults with Cerebral Small Vessel Disease: A Cross-sectional Research

Author(s): Mingzhu Jiang, Yan Li, Ying Chen, Jinying Fan, Zhiqin Zhao, Wenkai Long, Hailun Huang, Chao Tang, Fang Luo, Mi Li, Bo Lin, Ning Xiao, Shan Wu* and Jing Ding

Volume 20, Issue 5, 2023

Published on: 14 December, 2023

Page: [568 - 577] Pages: 10

DOI: 10.2174/0115672026281431231212052728

Price: $65

Abstract

Background: Cerebral small vessel disease (CSVD) is a common chronic progressive disease. It remains unclear whether high gait variability is a marker of cognitive cortical dysfunction.

Methods: This study included 285 subjects (aged from 60 to 85 years, 60.3% female) including 37 controls, 179 presented as Fazekas II, and 69 presented as Fazekas III. The severity of white matter hyperintensities was assessed by the Fazekas Rating Scale. Gait parameters were assessed using a vision-based artificial intelligent gait analyzer. Cognitive function was tested by MMSE, MoCA, DST, and VFT.

Results: Three gait parameters including gait speed, gait length, and swing time were associated with cognitive performance in patients with CSVD. Gait speed was associated with cognitive performance, including MMSE (β 0.200; 95%CI 1.706-6.018; p <.001), MoCA (β 0.183; 95%CI 2.047-7.046; p <.001), DST (order) (β 0.204; 95%CI 0.563-2.093; p =.001) and VFT (β 0.162; 95%CI 0.753-4.865; p =.008). Gait length was associated with cognitive performance, including MMSE (β 0.193; 95%CI 3.475-12.845; p =.001), MoCA (β 0.213; 95%CI 6.098-16.942; p <.001), DST (order) (β 0.224; 95%CI 1.056-4.839; P <.001) and VFT (β 0.149; 95%CI 1.088- 10.114; p =.015). Swing time was associated with cognitive performance, including MMSE (β - 0.242; 95%CI -2.639 to -0.974; p<.001), MoCA (β -0.211; 95%CI -2.989 to -1.034; p <.001) and DST (reverse order) (β -0.140; 95%CI -0.568 to -0.049; p =.020).

Conclusion: This study revealed that the relationship between gait parameters and cognitive performance in patients with CSVD and the deteriorated gait parameters can reflect cognitive impairment and even dementia in older people with CSVD.

[1]
Chojdak-Łukasiewicz J, Dziadkowiak E, Zimny A, Paradowski B. Cerebral small vessel disease: A review. Adv Clin Exp Med 2021; 30(3): 349-56.
[http://dx.doi.org/10.17219/acem/131216] [PMID: 33768739]
[2]
Ihara M, Yamamoto Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease. Stroke 2016; 47(2): 554-60.
[http://dx.doi.org/10.1161/STROKEAHA.115.009627] [PMID: 26742799]
[3]
Chen X, Wang J, Shan Y, et al. Cerebral small vessel disease: Neuroimaging markers and clinical implication. J Neurol 2019; 266(10): 2347-62.
[http://dx.doi.org/10.1007/s00415-018-9077-3] [PMID: 30291424]
[4]
Pantoni L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9(7): 689-701.
[http://dx.doi.org/10.1016/S1474-4422(10)70104-6] [PMID: 20610345]
[5]
Evans LE, Taylor JL, Smith CJ, Pritchard HAT, Greenstein AS, Allan SM. Cardiovascular comorbidities, inflammation, and cerebral small vessel disease. Cardiovasc Res 2021; 117(13): cvab284.
[http://dx.doi.org/10.1093/cvr/cvab284] [PMID: 34499123]
[6]
Jiang M, Wu S, Zhang Y, et al. 2022.
[7]
Jokinen H, Laakso HM, Ahlström M, et al. Synergistic associations of cognitive and motor impairments with functional outcome in covert cerebral small vessel disease. Eur J Neurol 2022; 29(1): 158-67.
[http://dx.doi.org/10.1111/ene.15108] [PMID: 34528346]
[8]
Wilson J, Allcock L, Mc Ardle R, Taylor JP, Rochester L. The neural correlates of discrete gait characteristics in ageing: A structured review. Neurosci Biobehav Rev 2019; 100: 344-69.
[http://dx.doi.org/10.1016/j.neubiorev.2018.12.017] [PMID: 30552912]
[9]
Su C, Yang X, Wei S, Zhao R. Association of cerebral small vessel disease with gait and balance disorders. Front Aging Neurosci 2022; 14: 834496.
[http://dx.doi.org/10.3389/fnagi.2022.834496] [PMID: 35875801]
[10]
Cai M, Jacob MA, Norris DG, Duering M, de Leeuw FE, Tuladhar AM. Cognition mediates the relation between structural network efficiency and gait in small vessel disease. Neuroimage Clin 2021; 30: 102667.
[http://dx.doi.org/10.1016/j.nicl.2021.102667] [PMID: 33887698]
[11]
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12(8): 822-38.
[http://dx.doi.org/10.1016/S1474-4422(13)70124-8] [PMID: 23867200]
[12]
Creavin ST, Wisniewski S, Noel-Storr AH, et al. Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Libr 2016; 2016(4): CD011145.
[http://dx.doi.org/10.1002/14651858.CD011145.pub2] [PMID: 26760674]
[13]
O’Driscoll C, Shaikh M. Cross-cultural applicability of the montreal cognitive assessment (MoCA): A systematic review. J Alzheimers Dis 2017; 58(3): 789-801.
[http://dx.doi.org/10.3233/JAD-161042] [PMID: 28482634]
[14]
Tripathi R, Kumar K, Bharath SPM, Rawat VS, Varghese M. Indian older adults and the digit span A preliminary report. Dement Neuropsychol 2019; 13(1): 111-5.
[http://dx.doi.org/10.1590/1980-57642018dn13-010013] [PMID: 31073387]
[15]
Whiteside DM, Kealey T, Semla M, et al. Verbal fluency: Language or executive function measure? Appl Neuropsychol Adult 2016; 23(1): 29-34.
[http://dx.doi.org/10.1080/23279095.2015.1004574] [PMID: 26111011]
[16]
Tang Y, Wang Y, Feng X, et al. Diagnostic value of a vision-based intelligent gait analyzer in screening for gait abnormalities. Gait Posture 2022; 91(Jan): 205-11.
[http://dx.doi.org/10.1016/j.gaitpost.2021.10.028] [PMID: 34740057]
[17]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[18]
Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: A complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc 2012; 60(11): 2127-36.
[http://dx.doi.org/10.1111/j.1532-5415.2012.04209.x] [PMID: 23110433]
[19]
Rosso AL, Studenski SA, Chen WG, et al. Aging, the central nervous system, and mobility. Journals of Gerontology: Series A 2013; 68(11): 1379-86.
[http://dx.doi.org/10.1093/gerona/glt089] [PMID: 23843270]
[20]
Rensma SP, van Sloten TT, Launer LJ, Stehouwer CDA. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 90: 164-73.
[http://dx.doi.org/10.1016/j.neubiorev.2018.04.003] [PMID: 29656031]
[21]
Jayakody O, Breslin M, Beare R, et al. The association between simple reaction time variability and gait variability: The tasmanian study of cognition and gait. Gait Posture 2021; 89: 206-10.
[http://dx.doi.org/10.1016/j.gaitpost.2021.07.016] [PMID: 34340157]
[22]
Mo Y, Mao C, Yang D, et al. Altered neuroimaging patterns of cerebellum and cognition underlying the gait and balance dysfunction in cerebral small vessel disease. Front Aging Neurosci 2023; 15: 1117973.
[http://dx.doi.org/10.3389/fnagi.2023.1117973] [PMID: 36967823]
[23]
Ogama N, Endo H, Satake S, Niida S, Arai H, Sakurai T. Impact of regional white matter hyperintensities on specific gait function in Alzheimer’s disease and mild cognitive impairment. J Cachexia Sarcopenia Muscle 2021; 12(6): 2045-55.
[http://dx.doi.org/10.1002/jcsm.12807] [PMID: 34585518]
[24]
Mukli P, Detwiler S, Owens CD, et al. Gait variability predicts cognitive impairment in older adults with subclinical cerebral small vessel disease. Front Aging Neurosci 2022; 14: 1052451.
[http://dx.doi.org/10.3389/fnagi.2022.1052451] [PMID: 36466602]
[25]
Blumen HM, Jayakody O, Verghese J. Gait in cerebral small vessel disease, pre-dementia, and dementia: A systematic review. Int J Stroke 2023; 18(1): 53-61.
[http://dx.doi.org/10.1177/17474930221114562] [PMID: 35797006]
[26]
van de Schraaf SAJ, Rhodius-Meester HFM, Aben L, et al. Slowing: A vascular geriatric syndrome? J Am Med Dir Assoc 2022; 23(1): 47-53.e2.
[http://dx.doi.org/10.1016/j.jamda.2021.07.031] [PMID: 34454919]
[27]
Sarasso E, Filippi M, Agosta F. Clinical and MRI features of gait and balance disorders in neurodegenerative diseases. J Neurol 2023; 270(3): 1798-807.
[http://dx.doi.org/10.1007/s00415-022-11544-7] [PMID: 36577818]
[28]
Pieruccini-Faria F, Black SE, Masellis M, et al. Gait variability across neurodegenerative and cognitive disorders: Results from the Canadian Consortium of Neurodegeneration in Aging (CCNA) and the Gait and Brain Study. Alzheimers Dement 2021; 17(8): 1317-28.
[http://dx.doi.org/10.1002/alz.12298] [PMID: 33590967]
[29]
Hollman JH, McDade EM, Petersen RC. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011; 34(1): 111-8.
[http://dx.doi.org/10.1016/j.gaitpost.2011.03.024] [PMID: 21531139]
[30]
Stenum J, Cherry-Allen KM, Pyles CO, Reetzke RD, Vignos MF, Roemmich RT. Applications of pose estimation in human health and performance across the lifespan. Sensors 2021; 21(21): 7315.
[http://dx.doi.org/10.3390/s21217315] [PMID: 34770620]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy