Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

PCM1: A Potential Prognostic Biomarker Correlated with Immune Infiltration in Lung Adenocarcinoma

Author(s): Zhihua Guo, Jinghao Liang, Xin Zhang, Qing Ai, Zixian Xie, Haonan Zhao, Fayuan Wu, Zhaofeng Tan, Weiqiang Yin* and Linghua Ji

Volume 20, Issue 3, 2023

Published on: 08 December, 2023

Page: [208 - 221] Pages: 14

DOI: 10.2174/0115701646270898231123065507

Price: $65

Abstract

Background: Recent studies have validated the role of Pericentriolar Material 1 (PCM1) in several malignant tumour cell lines, but its specific biological function in lung adenocarcinoma (LUAD) remains unclear.

Objective: To address this gap, this study analyzed 411 LUAD and control samples to evaluate the prognostic value of PCM1 using Cox regression analysis.

Methods: Multiple genes co-expressed with PCM1 were also analyzed to investigate the biological processes and roles involved in PCM1. An endogenous competitive network with PCM1 as the key gene was constructed to uncover its regulatory and competitive relationships in LUAD. The study further explored the immunological characteristics of PCM1 in different expression groups based on immune infiltration analysis.

Results: These findings indicated that higher PCM1 expression levels were associated with better survival prognoses, possibly due to its antagonistic effects on RHOC. Immunological infiltration analysis revealed a significant correlation between PCM1 and various immune cell infiltration levels, including CD4+ T cells, naïve B cells, M2 macrophages, and mast cells. However, there was no significant relationship between PCM1 and MSI, TMB, or stemness, although it was positively correlated with m6A genes. Patients with lower PCM1 expression responded better to CTLA-4 therapy. The study also estimated that some chemotherapeutic and targeted agents might be effective in treating patients with high PCM1 levels. PCM1 was mainly expressed in the cytoplasmic and membranous structures.

Conclusion: PCM1 shows potential as a prognostic biomarker for LUAD due to its strong correlation with immune cell infiltration and its ability to enhance anticancer treatment sensitivity.

« Previous
Graphical Abstract

[1]
Raghunath, S.; Maldonado, F.; Rajagopalan, S.; Karwoski, R.A.; DePew, Z.S.; Bartholmai, B.J.; Peikert, T.; Robb, R.A. Noninvasive risk stratification of lung adenocarcinoma using quantitative computed tomography. J. Thorac. Oncol., 2014, 9(11), 1698-1703.
[http://dx.doi.org/10.1097/JTO.0000000000000319] [PMID: 25170645]
[2]
Yang, K.; Li, Z.; Chen, Y.; Yin, F.; Ji, X.; Zhou, J.; Li, X.; Zeng, T.; Fei, C.; Ren, C.; Wang, Y.; Fang, L.; Chen, L.; Zhang, P.; Mu, L.; Qian, Y.; Chen, Y.; Yin, W. Na, K-ATPase α1 cooperates with its endogenous ligand to reprogram immune microenvironment of lung carcinoma and promotes immune escape. Sci. Adv., 2023, 9(6), eade5393.
[http://dx.doi.org/10.1126/sciadv.ade5393] [PMID: 36763655]
[3]
Zhang, H.; Liu, Y.; Xu, Z.; Chen, Q. miR-873 and miR-105-2 may affect the tumour microenvironment and are potential biomarkers for lung adenocarcinoma. Int J Gen Med, , 2022, 15, 3433-3445.
[4]
Deng, J.; Zeng, W.; Kong, W.; Shi, Y.; Mou, X.; Guo, J. Multi-constrained joint non-negative matrix factorization with application to imaging genomic study of lung metastasis in soft tissue sarcomas. IEEE Trans. Biomed. Eng., 2020, 67(7), 2110-2118.
[PMID: 31751222]
[5]
Travis, W.D.; Brambilla, E.; Riely, G.J. New pathologic classification of lung cancer: Relevance for clinical practice and clinical trials. J. Clin. Oncol., 2013, 31(8), 992-1001.
[http://dx.doi.org/10.1200/JCO.2012.46.9270] [PMID: 23401443]
[6]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[7]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[8]
Deng, J.; Zeng, W.; Shi, Y.; Kong, W.; Guo, S. Fusion of FDG-PET image and clinical features for prediction of lung metastasis in soft tissue sarcomas. Comput Math Methods Med, , 2020, 2020, 8153295.
[http://dx.doi.org/10.1155/2020/8153295]
[9]
Zhu, K.; Wang, B.; Li, Y.; Yu, Y.; Chen, Z.; Yue, H.; Meng, Q.; Tian, D.; Liu, X.; Shen, W.; Tian, Y. CAVIN2/SDPR functioned as a tumor suppressor in lung adenocarcinoma from systematic analysis of caveolae-related genes and experimental validation. J. Cancer, 2023, 14(11), 2001-2014.
[http://dx.doi.org/10.7150/jca.84567] [PMID: 37497407]
[10]
Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; Geisinger, K.; Hirsch, F.R.; Ishikawa, Y.; Kerr, K.M.; Noguchi, M.; Pelosi, G.; Powell, C.A.; Tsao, M.S.; Wistuba, I.; Panel, W.H.O. The 2015 world health organization classification of lung tumors. J. Thorac. Oncol., 2015, 10(9), 1243-1260.
[http://dx.doi.org/10.1097/JTO.0000000000000630] [PMID: 26291008]
[11]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[12]
Wang, W.; Ren, S.; Wang, Z.; Zhang, C.; Huang, J. Increased expression of TTC21A in lung adenocarcinoma infers favorable prognosis and high immune infiltrating level. Int Immunopharmacol, 2020, 78, 106077.
[http://dx.doi.org/10.1016/j.intimp.2019.106077]
[13]
Seguin, L.; Durandy, M.; Feral, C.C. Lung adenocarcinoma tumor origin: A guide for personalized medicine. Cancers, 2022, 14(7), 1759.
[http://dx.doi.org/10.3390/cancers14071759] [PMID: 35406531]
[14]
Succony, L.; Rassl, D.M.; Barker, A.P.; McCaughan, F.M.; Rintoul, R.C. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat Rev,, 2021, 99, 102237.
[15]
Miller, V.A.; Hirsh, V.; Cadranel, J.; Chen, Y.M.; Park, K.; Kim, S.W.; Zhou, C.; Su, W.C.; Wang, M.; Sun, Y.; Heo, D.S.; Crino, L.; Tan, E.H.; Chao, T.Y.; Shahidi, M.; Cong, X.J.; Lorence, R.M.; Yang, J.C.H. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol., 2012, 13(5), 528-538.
[http://dx.doi.org/10.1016/S1470-2045(12)70087-6] [PMID: 22452896]
[16]
Moll, H.P.; Pranz, K.; Musteanu, M.; Grabner, B.; Hruschka, N.; Mohrherr, J.; Aigner, P.; Stiedl, P.; Brcic, L.; Laszlo, V.; Schramek, D.; Moriggl, R.; Eferl, R.; Moldvay, J.; Dezso, K.; Lopez-Casas, P.P.; Stoiber, D.; Hidalgo, M.; Penninger, J.; Sibilia, M.; Győrffy, B.; Barbacid, M.; Dome, B.; Popper, H.; Casanova, E. Afatinib restrains K-RAS–driven lung tumorigenesis. Sci. Transl. Med., 2018, 10(446), eaao2301.
[http://dx.doi.org/10.1126/scitranslmed.aao2301] [PMID: 29925635]
[17]
Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; O’Brien, M.; Rao, S.; Hotta, K.; Leiby, M.A.; Lubiniecki, G.M.; Shentu, Y.; Rangwala, R.; Brahmer, J.R.; Investigators, K. Pembrolizumab versus chemotherapy for PD-L1–Positive non–small-cell lung cancer. N. Engl. J. Med., 2016, 375(19), 1823-1833.
[http://dx.doi.org/10.1056/NEJMoa1606774] [PMID: 27718847]
[18]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[19]
Xu, Z.; Wang, S.; Ren, Z.; Gao, X.; Xu, L.; Zhang, S.; Ren, B. An integrated analysis of prognostic and immune infiltrates for hub genes as potential survival indicators in patients with lung adenocarcinoma. World J. Surg. Oncol., 2022, 20(1), 99.
[http://dx.doi.org/10.1186/s12957-022-02543-z] [PMID: 35354488]
[20]
Fang, P.; Chen, H.; Ma, Z.; Han, C.; Yin, W.; Wang, S.; Zhu, H.; Xia, W.; Wang, J.; Xu, L.; Liu, T.; Yin, R. LncRNA LINC00525 suppresses p21 expression via mRNA decay and triplex-mediated changes in chromatin structure in lung adenocarcinoma. Cancer Commun., 2021, 41(7), 596-614.
[http://dx.doi.org/10.1002/cac2.12181] [PMID: 34105888]
[21]
Lahiri, A.; Maji, A.; Potdar, P.D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.; Paul, M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer, 2023, 22(1), 40.
[http://dx.doi.org/10.1186/s12943-023-01740-y] [PMID: 36810079]
[22]
Deng, J.; Kong, W.; Wang, S.; Mou, X.; Zeng, W. Prior knowledge driven joint NMF algorithm for ceRNA co-module identification. Int. J. Biol. Sci., 2018, 14(13), 1822-1833.
[http://dx.doi.org/10.7150/ijbs.27555] [PMID: 30443186]
[23]
Zhu, K.; Liu, X.; Deng, W.; Wang, G.; Fu, B. Identification of a chromatin regulator signature and potential candidate drugs for bladder cancer. Hereditas, 2022, 159(1), 13.
[http://dx.doi.org/10.1186/s41065-021-00212-x] [PMID: 35125116]
[24]
Reck, M.; Rabe, K.F. Precision diagnosis and treatment for advanced non–small-cell lung cancer. N. Engl. J. Med., 2017, 377(9), 849-861.
[http://dx.doi.org/10.1056/NEJMra1703413] [PMID: 28854088]
[25]
Shinwari, K.; Rehman, H.M.; Liu, G.; Bolkov, M.A.; Tuzankina, I.A.; Chereshnev, V.A. Novel disease-associated missense single-nucleotide polymorphisms variants predication by algorithms tools and molecular dynamics simulation of human TCIRG1 gene causing congenital neutropenia and osteopetrosis. Front Mol Biosci, 2022, 9, 879875.
[http://dx.doi.org/10.3389/fmolb.2022.879875]
[26]
Alipoor, B.; Ghaedi, H.; Omrani, M.D.; Bastami, M.; Meshkani, R.; Golmohammadi, T. A bioinformatics approach to prioritize single nucleotide polymorphisms in TLRs signaling pathway genes. Int. J. Mol. Cell. Med., 2016, 5(2), 65-79.
[PMID: 27478803]
[27]
Liu, H.; Wang, J.; Luo, T.; Zhen, Z.; Liu, L.; Zheng, Y.; Zhang, C.; Hu, X. Correlation between ITGB2 expression and clinical characterization of glioma and the prognostic significance of its methylation in low-grade glioma(LGG). Front Endocrinol , 2022, 13, 1106120.
[28]
Deng, J.; Zeng, W.; Kong, W.; Shi, Y.; Mou, X. The study of sarcoma microenvironment heterogeneity associated with prognosis based on an immunogenomic landscape analysis. Front Bioeng Biotechnol, 2020, 8, 1003.
[http://dx.doi.org/10.3389/fbioe.2020.01003]
[29]
Yu, S.; Yang, Y.; Yang, H.; Peng, L.; Wu, Z.; Sun, L.; Wu, Z.; Yu, X.; Yin, X. Pancancer analysis of oncogenic BARX2 identifying its prognostic value and immunological function in liver hepatocellular carcinoma. Sci. Rep., 2023, 13(1), 7560.
[http://dx.doi.org/10.1038/s41598-023-34519-8] [PMID: 37161008]
[30]
Ma, J.; Jin, J.; Lu, H.; Zhang, J.; Li, Y.; Cai, X. Exonuclease 1 is a potential diagnostic and prognostic biomarker in hepatocellular carcinoma. Front Mol Biosci, 2022, 9, 889414.
[http://dx.doi.org/10.3389/fmolb.2022.889414]
[31]
Chen, L.; Xiong, Z.; Zhao, H.; Teng, C.; Liu, H.; Huang, Q.; Wanggou, S.; Li, X. Identification of the novel prognostic biomarker, MLLT11, reveals its relationship with immune checkpoint markers in glioma. Front Oncol, 2022, 12 889351
[32]
Lu, X.; Li, Y.; Yang, Y.; Zhuang, W.; Chai, X.; Gong, C. OLFML2A overexpression predicts an unfavorable prognosis in patients with AML. J Oncol, 2023, 2023, 6017852.
[http://dx.doi.org/10.1155/2023/6017852]
[33]
Shi, X.; Dong, A.; Jia, X.; Zheng, G.; Wang, N.; Wang, Y.; Yang, C.; Lu, J.; Yang, Y. Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on T-cell marker genes to predict prognosis and therapeutic response in lung squamous cell carcinoma. Front Immunol, 2022, 13, 992990.
[http://dx.doi.org/10.3389/fimmu.2022.992990]
[34]
Spella, M.; Stathopoulos, G.T. Immune resistance in lung adenocarcinoma. Cancers, 2021, 13(3), 384.
[http://dx.doi.org/10.3390/cancers13030384] [PMID: 33494181]
[35]
Liu, S.; Fan, S.; Wang, Y.; Chen, R.; Wang, Z.; Zhang, Y.; Jiang, W.; Chen, Y.; Xu, X.; Yu, Y.; Li, C.; Li, X. ACSL4 serves as a novel prognostic biomarker correlated with immune infiltration in Cholangiocarcinoma. BMC Cancer, 2023, 23(1), 444.
[http://dx.doi.org/10.1186/s12885-023-10903-5] [PMID: 37193981]
[36]
Li, K.; Tan, G.; Zhang, X.; Lu, W.; Ren, J.; Si, Y.; Adu-Gyamfi, E.A.; Li, F.; Wang, Y.; Xie, B.; Wang, M. EIF4G1 Is a potential prognostic biomarker of breast cancer. Biomolecules, 2022, 12(12), 1756.
[http://dx.doi.org/10.3390/biom12121756] [PMID: 36551184]
[37]
Chen, J.; Lian, Y.; Zhao, B.; Han, J.; Li, X.; Wu, J.; Hou, M.; Yue, M.; Zhang, K.; Liu, G.; Tu, M.; Ruan, W.; Ji, S.; An, Y. Deciphering the prognostic and therapeutic significance of cell cycle regulator CENPF: A potential biomarker of prognosis and immune microenvironment for patients with Liposarcoma. Int. J. Mol. Sci., 2023, 24(8), 7010.
[http://dx.doi.org/10.3390/ijms24087010] [PMID: 37108172]
[38]
Lin, M.; Zhong, H.Y.; Yim, R.L.H.; Chen, Q.Y.; Du, H.; He, H.; Lin, K.; Zhao, P.; Gao, R.; Gao, F.; Zhang, M.Y. Pan-cancer analysis of oncogenic TNFAIP2 identifying its prognostic value and immunological function in acute myeloid leukemia. BMC Cancer, 2022, 22(1), 1068.
[http://dx.doi.org/10.1186/s12885-022-10155-9] [PMID: 36243694]
[39]
Liu, K.; Cui, Y.; Li, H.; Mi, J.; Wang, H.; Zhuang, Y.; Tang, L.; Liu, J.; Tian, C.; Zhang, Z.; Zhou, J.; Shi, H.; Tian, X.; Liu, P. The mechanism investigation of mutation genes in liver and lung metastasis of colorectal cancer by using NGS technique. Crit Rev Oncol Hematol, 2023, 188, 104057.
[http://dx.doi.org/10.1016/j.critrevonc.2023.104057]
[40]
Gopalakrishnan, J.; Frederick Chim, Y-C.; Ha, A.; Basiri, M.L.; Lerit, D.A.; Rusan, N.M.; Avidor-Reiss, T. Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment. Nat. Cell Biol., 2012, 14(8), 865-873.
[http://dx.doi.org/10.1038/ncb2527] [PMID: 22729084]
[41]
Watanabe, K.; Takao, D.; Ito, K.K.; Takahashi, M.; Kitagawa, D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat. Commun., 2019, 10(1), 931.
[http://dx.doi.org/10.1038/s41467-019-08862-2] [PMID: 30804344]
[42]
Hall, E.A.; Kumar, D.; Prosser, S.L.; Yeyati, P.L.; Herranz-Pérez, V.; García-Verdugo, J.M.; Rose, L.; McKie, L.; Dodd, D.O.; Tennant, P.A.; Megaw, R.; Murphy, L.C.; Ferreira, M.F.; Grimes, G.; Williams, L.; Quidwai, T.; Pelletier, L.; Reiter, J.F.; Mill, P. Centriolar satellites expedite mother centriole remodeling to promote ciliogenesis. eLife, 2023, 12, e79299.
[http://dx.doi.org/10.7554/eLife.79299] [PMID: 36790165]
[43]
Martello, A.; Lauriola, A.; Mellis, D.; Parish, E.; Dawson, J.C.; Imrie, L.; Vidmar, M.; Gammoh, N.; Mitić, T.; Brittan, M.; Mills, N.L.; Carragher, N.O.; D’Arca, D.; Caporali, A. Trichoplein binds PCM 1 and controls endothelial cell function by regulating autophagy. EMBO Rep., 2020, 21(7), e48192.
[http://dx.doi.org/10.15252/embr.201948192] [PMID: 32337819]
[44]
Baer, C.; Muehlbacher, V.; Kern, W.; Haferlach, C.; Haferlach, T. Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2. Haematologica, 2018, 103(8), e348-e350.
[http://dx.doi.org/10.3324/haematol.2017.187302] [PMID: 29567772]
[45]
Bain, B.J.; Ahmad, S. Should myeloid and lymphoid neoplasms withPCM 1- JAK 2 and other rearrangements ofJAK 2 be recognized as specific entities? Br. J. Haematol., 2014, 166(6), 809-817.
[http://dx.doi.org/10.1111/bjh.12963] [PMID: 24913195]
[46]
Hoeller, S.; Walz, C.; Reiter, A.; Dirnhofer, S.; Tzankov, A. PCM1–JAK2-fusion: A potential treatment target in myelodysplastic–myeloproliferative and other hemato-lymphoid neoplasms. Expert Opin. Ther. Targets, 2011, 15(1), 53-62.
[http://dx.doi.org/10.1517/14728222.2011.538683] [PMID: 21091042]
[47]
Kaplan, H.G.; Jin, R.; Bifulco, C.B.; Scanlan, J.M.; Corwin, D.R. PCM1-JAK2 fusion tyrosine kinase gene-related neoplasia: A systematic review of the clinical literature. Oncologist, 2022, 27(8), e661-e670.
[http://dx.doi.org/10.1093/oncolo/oyac072] [PMID: 35472244]
[48]
Lánczky, A.; Győrffy, B. Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. J. Med. Internet Res., 2021, 23(7), e27633.
[http://dx.doi.org/10.2196/27633] [PMID: 34309564]
[49]
Hou, G.X.; Liu, P.; Yang, J.; Wen, S. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan–Meier plotter. PLoS One, 2017, 12(3), e0174515.
[http://dx.doi.org/10.1371/journal.pone.0174515] [PMID: 28355294]
[50]
Li, L.; Liu, Z.H.; Wang, H.J.; Wang, L.; Ru, G.Q.; Wang, Y.Y. ZNF521 is correlated with tumor immune cell infiltration and act as a valuable prognostic biomarker in gastric cancer. Gastroenterol Res Pract, , 2022, 5288075.
[http://dx.doi.org/10.1155/2022/5288075]
[51]
Therneau, T. 2023. A package for survival analysis in R. R package version 3.5-7, Available from: https://CRAN.R-project.org/package=survival
[52]
Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[53]
Taiwo, G.A.; Idowu, M.; Denvir, J.; Cervantes, A.P.; Ogunade, I.M. Identification of key pathways associated with residual feed intake of beef cattle based on whole blood transcriptome data analyzed using gene set enrichment analysis. Front Vet Sci, 2022, 9, 848027.
[http://dx.doi.org/10.3389/fvets.2022.848027]
[54]
Merico, D.; Isserlin, R.; Stueker, O.; Emili, A.; Bader, G.D. Enrichment map: A network-based method for gene-set enrichment visualization and interpretation. PLoS One, 2010, 5(11), e13984.
[http://dx.doi.org/10.1371/journal.pone.0013984] [PMID: 21085593]
[55]
Joly, J.H.; Lowry, W.E.; Graham, N.A. Differential gene set enrichment analysis: A statistical approach to quantify the relative enrichment of two gene sets. Bioinformatics, 2021, 36(21), 5247-5254.
[http://dx.doi.org/10.1093/bioinformatics/btaa658] [PMID: 32692836]
[56]
Tan, Y.; Wu, F.; Tamayo, P.; Haining, W.N.; Mesirov, J.P. Constellation map: Downstream visualization and interpretation of gene set enrichment results. F1000Res, 2015, 4, F1000Res.
[57]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[58]
Zhou, Q.; Xu, T.; Li, J.; Tan, J.; Mao, Q.; Liu, T.; Wang, L.; Zhang, M. Identification of the potential ferroptosis key genes in lung cancer with bone metastasis. J. Thorac. Dis., 2023, 15(5), 2708-2720.
[http://dx.doi.org/10.21037/jtd-23-539] [PMID: 37324090]
[59]
Fokin Artem, I.; Zhapparova Olga, N.; Burakov Anton, V.; Nadezhdina Elena, S. Centrosome-derived microtubule radial array, PCM-1 protein, and primary cilia formation. Protoplasma, 2019, 256(5), 1361-1373.
[http://dx.doi.org/10.1007/s00709-019-01385-z] [PMID: 31079229]
[60]
Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; Ramaswamy, S.; Futreal, P.A.; Haber, D.A.; Stratton, M.R.; Benes, C.; McDermott, U.; Garnett, M.J. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res., 2013, 41(Database issue), D955-D961.
[PMID: 23180760]
[61]
Pozdeyev, N.; Yoo, M.; Mackie, R.; Schweppe, R.E.; Tan, A.C.; Haugen, B.R. Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies. Oncotarget, 2016, 7(32), 51619-51625.
[http://dx.doi.org/10.18632/oncotarget.10010] [PMID: 27322211]
[62]
Münch, M.M.; van de Wiel, M.A.; Richardson, S.; Leday, G.G.R. Drug sensitivity prediction with normal inverse Gaussian shrinkage informed by external data. Biom. J., 2021, 63(2), 289-304.
[http://dx.doi.org/10.1002/bimj.201900371] [PMID: 33155717]
[63]
Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.; Navani, S.; Szigyarto, C.A.K.; Odeberg, J.; Djureinovic, D.; Takanen, J.O.; Hober, S.; Alm, T.; Edqvist, P.H.; Berling, H.; Tegel, H.; Mulder, J.; Rockberg, J.; Nilsson, P.; Schwenk, J.M.; Hamsten, M.; von Feilitzen, K.; Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; von Heijne, G.; Nielsen, J.; Pontén, F. Tissue-based map of the human proteome. Science, 2015, 347(6220), 1260419.
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[64]
Digre, A.; Lindskog, C. The human protein atlas—spatial localization of the human proteome in health and disease. Protein Sci., 2021, 30(1), 218-233.
[http://dx.doi.org/10.1002/pro.3987] [PMID: 33146890]
[65]
Ouyang, W.; Winsnes, C.F.; Hjelmare, M.; Cesnik, A.J.; Åkesson, L.; Xu, H.; Sullivan, D.P.; Dai, S.; Lan, J.; Jinmo, P.; Galib, S.M.; Henkel, C.; Hwang, K.; Poplavskiy, D.; Tunguz, B.; Wolfinger, R.D.; Gu, Y.; Li, C.; Xie, J.; Buslov, D.; Fironov, S.; Kiselev, A.; Panchenko, D.; Cao, X.; Wei, R.; Wu, Y.; Zhu, X.; Tseng, K.L.; Gao, Z.; Ju, C.; Yi, X.; Zheng, H.; Kappel, C.; Lundberg, E. Analysis of the human protein atlas image classification competition. Nat. Methods, 2019, 16(12), 1254-1261.
[http://dx.doi.org/10.1038/s41592-019-0658-6] [PMID: 31780840]
[66]
Persson, A.; Hober, S.; Uhlén, M. A human protein atlas based on antibody proteomics. Curr. Opin. Mol. Ther., 2006, 8(3), 185-190.
[PMID: 16774037]
[67]
Liu, Y.; Fan, J.; Xu, T.; Ahmadinejad, N.; Hess, K.; Lin, S.H.; Zhang, J.; Liu, X.; Liu, L.; Ning, B.; Liao, Z.; Hu, T.Y. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non–small cell lung cancer after concurrent chemoradiation. Sci. Adv., 2020, 6(11), eaaz6162.
[http://dx.doi.org/10.1126/sciadv.aaz6162] [PMID: 32195353]
[68]
Zhai, K.; Jiang, N.; Wen, J.F.; Zhang, X.; Liu, T.; Long, K.J.; Ke, X.X.; Xu, G.; Chen, C. Overexpression of TWF1 promotes lung adenocarcinoma progression and is associated with poor prognosis in cancer patients through the MMP1 signaling pathway. J. Thorac. Dis., 2023, 15(5), 2644-2658.
[http://dx.doi.org/10.21037/jtd-23-395] [PMID: 37324107]
[69]
Tang, M.; Sun, J.; Cai, Z. PCK2 inhibits lung adenocarcinoma tumor cell immune escape through oxidative stress-induced senescence as a potential therapeutic target. J. Thorac. Dis., 2023, 15(5), 2601-2615.
[http://dx.doi.org/10.21037/jtd-23-542] [PMID: 37324064]
[70]
Monroe, T.O.; Garrett, M.E.; Kousi, M.; Rodriguiz, R.M.; Moon, S.; Bai, Y.; Brodar, S.C.; Soldano, K.L.; Savage, J.; Hansen, T.F.; Muzny, D.M.; Gibbs, R.A.; Barak, L.; Sullivan, P.F.; Ashley-Koch, A.E.; Sawa, A.; Wetsel, W.C.; Werge, T.; Katsanis, N. PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia. Nat. Commun., 2020, 11(1), 5903.
[http://dx.doi.org/10.1038/s41467-020-19637-5] [PMID: 33214552]
[71]
Winje, I.M.; Bengtsen, M.; Eftestøl, E.; Juvkam, I.; Bruusgaard, J.C.; Gundersen, K. Specific labelling of myonuclei by an antibody against pericentriolar material 1 on skeletal muscle tissue sections. Acta Physiol., 2018, 223(4), e13034.
[http://dx.doi.org/10.1111/apha.13034] [PMID: 29330928]
[72]
Tasca, A.; Helmstädter, M.; Brislinger, M.M.; Haas, M.; Mitchell, B.; Walentek, P. Notch signaling induces either apoptosis or cell fate change in multiciliated cells during mucociliary tissue remodeling. Dev. Cell, 2021, 56(4), 525-539.e6.
[http://dx.doi.org/10.1016/j.devcel.2020.12.005] [PMID: 33400913]
[73]
Hoang-Minh, L.B.; Deleyrolle, L.P.; Nakamura, N.S.; Parker, A.K.; Martuscello, R.T.; Reynolds, B.A.; Sarkisian, M.R. PCM1 depletion inhibits glioblastoma cell ciliogenesis and increases cell death and sensitivity to temozolomide. Transl. Oncol., 2016, 9(5), 392-402.
[http://dx.doi.org/10.1016/j.tranon.2016.08.006] [PMID: 27661404]
[74]
Li, M.; Zhang, J.; Zhou, H.; Xiang, R. Related pathways moderate the development and therapy resistance of glioblastoma. Front Oncol, 2021, 11, 718995.
[http://dx.doi.org/10.3389/fonc.2021.718995]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy