Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Epigenetic Diversity Underlying Seasonal and Annual Variations in Brown Planthopper (BPH) Populations as Revealed by Methylationsensitive Restriction Assay

Author(s): Ayushi Gupta and Suresh Nair*

Volume 24, Issue 6, 2023

Published on: 07 December, 2023

Page: [354 - 367] Pages: 14

DOI: 10.2174/0113892029276542231205065843

Price: $65

Abstract

Background: The brown planthopper (BPH) is a monophagous sap-sucking insect pest of rice that is responsible for massive yield loss. BPH populations, even when genetically homogenous, can display a vast range of phenotypes, and the development of effective pest-management strategies requires a good understanding of what generates this phenotypic variation. One potential source could be epigenetic differences.

Methods: With this premise, we explored epigenetic diversity, structure and differentiation in field populations of BPH collected across the rice-growing seasons over a period of two consecutive years. Using a modified methylation-sensitive restriction assay (MSRA) and CpG island amplification- representational difference analysis, site-specific cytosine methylation of five stress-responsive genes (CYP6AY1, CYP6ER1, Carboxylesterase, Endoglucanase, Tf2-transposon) was estimated, for identifying methylation-based epiallelic markers and epigenetic variation across BPH populations.

Results: Using a cost-effective and rapid protocol, our study, for the first time, revealed the epigenetic component of phenotypic variations in the wild populations of BPH. Besides, results showed that morphologically indistinguishable populations of BPH can be epigenetically distinct.

Conclusion: Screening field-collected BPH populations revealed the presence of previously unreported epigenetic polymorphisms and provided a platform for future studies aimed at investigating their significance for BPH. Furthermore, these findings can form the basis for understanding the contribution(s) of DNA methylation in providing phenotypic plasticity to BPH.

Graphical Abstract

[1]
Liu, Y.; Chen, L.; Liu, Y.; Dai, H.; He, J.; Kang, H.; Pan, G.; Huang, J.; Qiu, Z.; Wang, Q.; Hu, J.; Liu, L.; Chen, Y.; Cheng, X.; Jiang, L.; Wan, J. Marker assisted pyramiding of two brown planthopper resistance genes, Bph3 and Bph27 (t), into elite rice cultivars. Rice, 2016, 9(1), 27.
[http://dx.doi.org/10.1186/s12284-016-0096-3] [PMID: 27246014]
[2]
Bentur, J.S.; Sain, M.; Kalode, M.B. Studies on egg and nymphal parasites of rice planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horvath). Proc. Indian Acad. Sci. Anim. Sci., 1982, 91, 165-176.
[3]
Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol., 2009, 2(1), 1-12.
[http://dx.doi.org/10.2478/v10102-009-0001-7] [PMID: 21217838]
[4]
Hawkins, N.J.; Bass, C.; Dixon, A.; Neve, P. The evolutionary origins of pesticide resistance. Biol. Rev. Camb. Philos. Soc., 2019, 94(1), 135-155.
[http://dx.doi.org/10.1111/brv.12440] [PMID: 29971903]
[5]
Zhang, X.; Liu, X.; Zhu, F.; Li, J.; You, H.; Lu, P. Field evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) in China. Crop Prot., 2014, 58, 61-66.
[http://dx.doi.org/10.1016/j.cropro.2013.12.026]
[6]
Rosenberg, L.J.; Magor, J.I. Predicting windborne displacements of the brown planthopper, Nilaparvata lugens from synoptic weather data: Long-distance displacements in the North-East monsoon. J. Anim. Ecol., 1987, 56(1), 39.
[http://dx.doi.org/10.2307/4798]
[7]
Barnes, L. Insect developmental plasticity: The role in a changing environment. Cardinal Edge, 2021, 1(1), 28.
[http://dx.doi.org/10.18297/tce/vol1/iss1/28]
[8]
Pender, J. Migration of the brown planthopper, Nilaparvata lugens (Stal.) with special reference to synoptic meteorology. Grana, 2009, 33, 1994.
[9]
Gupta, A.; Nair, S. Heritable epigenomic modifications influence stress resilience and rapid adaptations in the brown planthopper (Nilaparvata lugens). Int. J. Mol. Sci., 2022, 23(15), 8728.
[http://dx.doi.org/10.3390/ijms23158728] [PMID: 35955860]
[10]
Satpathi, C.R.; Katti, G.; Prasad, Y.G.; Krishi Viswavidyalaya, C.; Mohanpur, P.O. Effect of seasonal variation on life table of brown planthopper Nilaparvata lugens Stål on rice plant in Eastern India. Middle East J. Sci. Res., 2011, 10, 370-373.
[11]
Claridge, M.F.; Hollander, J.D.; Morgan, J.C. The status of weed-associated populations of the brown planthopper, Nilaparvata lugens (Stål) - host race or biological species? Zool. J. Linn. Soc., 1985, 84(1), 77-90.
[http://dx.doi.org/10.1111/j.1096-3642.1985.tb01717.x]
[12]
Nagata, T.; Masuda, T. Insecticide susceptibility and wing-form ratio of the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) and the white backed planthopper, Sogatella furcifera (Horvath) (Hemiptera: Delphacidae) of Southeast Asia. Appl. Entomol. Zool., 1980, 15(1), 10-19.
[http://dx.doi.org/10.1303/aez.15.10]
[13]
Matsumura, M.; Takeuchi, H.; Satoh, M.; Sanada-Morimura, S.; Otuka, A.; Watanabe, T.; Van Thanh, D. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Manag. Sci., 2008, 64(11), 1115-1121.
[http://dx.doi.org/10.1002/ps.1641] [PMID: 18803329]
[14]
Wada, T.; Ito, K.; Takahashi, A.; Tang, J. Variation of pre-ovipositional period in the brown planthopper, Nilaparvata lugens, collected in tropical, subtropical and temperate Asia. J. Appl. Entomol., 2007, 131(9-10), 698-703.
[http://dx.doi.org/10.1111/j.1439-0418.2007.01185.x]
[15]
Matsumoto, Y.; Matsumura, M.; Sanada-Morimura, S.; Hirai, Y.; Sato, Y.; Noda, H. Mitochondrial cox sequences of Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae): low specificity among Asian planthopper populations. Bull. Entomol. Res., 2013, 103(4), 382-392.
[http://dx.doi.org/10.1017/S000748531200082X] [PMID: 23537548]
[16]
Moczek, A.P. Phenotypic plasticity and diversity in insects. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2010, 365(1540), 593-603.
[http://dx.doi.org/10.1098/rstb.2009.0263] [PMID: 20083635]
[17]
Fusco, G.; Minelli, A. Phenotypic plasticity in development and evolution: facts and concepts. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2010, 365(1540), 547-556.
[http://dx.doi.org/10.1098/rstb.2009.0267] [PMID: 20083631]
[18]
Whitman, D.W.; Agrawal, A.A. What is phenotypic plasticity and why is it important? In: Phenotypic Plasticity of Insects; Whitman, D.W., Ed.; CRC Press: Boca Raton, USA, 2009.
[http://dx.doi.org/10.1201/b10201-2]
[19]
Hochkirch, A.; Deppermann, J.; Gröning, J. Phenotypic plasticity in insects: The effects of substrate color on the coloration of two ground-hopper species. Evol. Dev., 2008, 10(3), 350-359.
[http://dx.doi.org/10.1111/j.1525-142X.2008.00243.x] [PMID: 18460096]
[20]
Srinivasa, N.; Chander, S.; Twinkle; Chandel, R.K. Genetic homogeneity in brown planthopper, Nilaparvata lugens (Stål) as revealed from mitochondrial cytochrome oxidase I. Curr. Sci., 2020, 119(6), 1045-1050.
[http://dx.doi.org/10.18520/cs/v119/i6/1045-1050]
[21]
Gupta, A.; Sinha, D.K.; Nair, S. Shifts in Pseudomonas species diversity influence adaptation of brown planthopper to changing climates and geographical locations. iScience, 2022, 25(7), 104550.
[http://dx.doi.org/10.1016/j.isci.2022.104550] [PMID: 35754716]
[22]
Glastad, K.M.; Hunt, B.G.; Goodisman, M.A.D. Epigenetics in insects: Genome regulation and the generation of phenotypic diversity. Annu. Rev. Entomol., 2019, 64(1), 185-203.
[http://dx.doi.org/10.1146/annurev-ento-011118-111914] [PMID: 30285490]
[23]
Lo, N.; Simpson, S.J.; Sword, G.A. Epigenetics and developmental plasticity in orthopteroid insects. Curr. Opin. Insect Sci., 2018, 25, 25-34.
[http://dx.doi.org/10.1016/j.cois.2017.11.003] [PMID: 29602359]
[24]
Jing, S.; Zhang, L.; Ma, Y.; Liu, B.; Zhao, Y.; Yu, H.; Zhou, X.; Qin, R.; Zhu, L.; He, G. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance. PLoS One, 2014, 9(6), e98911.
[http://dx.doi.org/10.1371/journal.pone.0098911] [PMID: 24911169]
[25]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[26]
Provataris, P.; Meusemann, K.; Niehuis, O.; Grath, S.; Misof, B. Signatures of DNA methylation across insects suggest reduced DNA methylation levels in Holometabola. Genome Biol. Evol., 2018, 10(4), 1185-1197.
[http://dx.doi.org/10.1093/gbe/evy066] [PMID: 29697817]
[27]
Bewick, A.J.; Vogel, K.J.; Moore, A.J.; Schmitz, R.J. Evolution of DNA methylation across insects. Mol. Biol. Evol., 2017, 34(3), 654-665.
[PMID: 28025279]
[28]
Zhang, J.; Xing, Y.; Li, Y.; Yin, C.; Ge, C.; Li, F. DNA methyltransferases have an essential role in female fecundity in brown planthopper, Nilaparvata lugens. Biochem. Biophys. Res. Commun., 2015, 464(1), 83-88.
[http://dx.doi.org/10.1016/j.bbrc.2015.05.114] [PMID: 26043687]
[29]
Nguyen, N.D.; Matsuura, T.; Kato, Y.; Watanabe, H. DNMT3.1 controls trade-offs between growth, reproduction, and life span under starved conditions in Daphnia magna. Sci. Rep., 2021, 11(1), 7326.
[http://dx.doi.org/10.1038/s41598-021-86578-4] [PMID: 33795753]
[30]
Loughland, I.; Little, A.; Seebacher, F. DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biol., 2021, 19(1), 11.
[http://dx.doi.org/10.1186/s12915-020-00942-w] [PMID: 33478487]
[31]
Gupta, A.; Nair, S. Methylation patterns of Tf2 retrotransposons linked to rapid adaptive stress response in the brown planthopper (Nilaparvata lugens). Genomics, 2021, 113(6), 4214-4226.
[http://dx.doi.org/10.1016/j.ygeno.2021.11.007] [PMID: 34774681]
[32]
Cao, J.X.; Zhang, H.P.; Du, L.X. Influence of environmental factors on DNA methylation. Yi Chuan, 2013, 35(7), 839-846.
[http://dx.doi.org/10.3724/SP.J.1005.2013.00839] [PMID: 23853354]
[33]
Pegoraro, M.; Bafna, A.; Davies, N.J.; Shuker, D.M.; Tauber, E. DNA methylation changes induced by long and short photoperiods in Nasonia. Genome Res., 2016, 26(2), 203-210.
[http://dx.doi.org/10.1101/gr.196204.115] [PMID: 26672019]
[34]
Lafuente, E.; Beldade, P. Genomics of developmental plasticity in animals. Front. Genet., 2019, 10, 720.
[http://dx.doi.org/10.3389/fgene.2019.00720] [PMID: 31481970]
[35]
Ashe, A.; Colot, V.; Oldroyd, B.P. How does epigenetics influence the course of evolution? Philos. Trans. R. Soc. Lond. B Biol. Sci., 2021, 376(1826), 20200111.
[http://dx.doi.org/10.1098/rstb.2020.0111] [PMID: 33866814]
[36]
Singer-Sam, J.; Grant, M.; LeBon, J.M.; Okuyama, K.; Chapman, V.; Monk, M.; Riggs, A.D. Use of a HpaII-polymerase chain reaction assay to study DNA methylation in the Pgk-1 CpG island of mouse embryos at the time of X-chromosome inactivation. Mol. Cell. Biol., 1990, 10(9), 4987-4989.
[PMID: 1697035]
[37]
Herman, J.G.; Graff, J.R.; Myöhänen, S.; Nelkin, B.D.; Baylin, S.B. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA, 1996, 93(18), 9821-9826.
[http://dx.doi.org/10.1073/pnas.93.18.9821] [PMID: 8790415]
[38]
Oakes, C.C.; La Salle, S.; Robaire, B.; Trasler, J.M. Evaluation of a quantitative DNA methylation analysis technique using methylation-sensitive/dependent restriction enzymes and real-time PCR. Epigenetics, 2006, 1(3), 146-152.
[http://dx.doi.org/10.4161/epi.1.3.3392] [PMID: 17965615]
[39]
Beikircher, G.; Pulverer, W.; Hofner, M.; Noehammer, C.; Weinhaeusel, A. Multiplexed and sensitive DNA methylation testing using methylation-sensitive restriction enzymes “MSRE-qPCR”. Methods Mol. Biol., 2018, 1708, 407-424.
[http://dx.doi.org/10.1007/978-1-4939-7481-8_21] [PMID: 29224156]
[40]
Perry, N.; Wasko, K.; Cheng, J.; Tabbaa, D.; Marco, E.; Giannoukos, G.; Albright, C.F.; Borges, C.M. Methylation-sensitive restriction enzyme quantitative polymerase chain reaction enables rapid, accurate, and precise detection of methylation status of the regulatory t cell (treg)-specific demethylation region in primary human tregs. J. Immunol., 2021, 206(2), 446-451.
[http://dx.doi.org/10.4049/jimmunol.1901275] [PMID: 33277386]
[41]
Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular cloning. A laboratory manual. In: Biochemical education; Wood, E.J., Ed.; Cold Spring Harbor Laboratory: New York, USA, 1982; p. 545.
[42]
Fulneček, J.; Kovařík, A. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles? BMC Genet., 2014, 15(1), 2.
[http://dx.doi.org/10.1186/1471-2156-15-2] [PMID: 24393618]
[43]
Bonasio, R.; Li, Q.; Lian, J.; Mutti, N.S.; Jin, L.; Zhao, H.; Zhang, P.; Wen, P.; Xiang, H.; Ding, Y.; Jin, Z.; Shen, S.S.; Wang, Z.; Wang, W.; Wang, J.; Berger, S.L.; Liebig, J.; Zhang, G.; Reinberg, D. Genome-wide and caste-specific DNA methylomes of the ants. Camponotus floridanus and Harpegnathos saltator. Curr. Biol., 2012, 22(19), 1755-1764.
[http://dx.doi.org/10.1016/j.cub.2012.07.042] [PMID: 22885060]
[44]
Xu, G.; Lyu, H.; Yi, Y.; Peng, Y.; Feng, Q.; Song, Q.; Gong, C.; Peng, X.; Palli, S.R.; Zheng, S. Intragenic DNA methylation regulates insect gene expression and reproduction through the MBD/Tip60 complex. iScience, 2021, 24(2), 102040.
[http://dx.doi.org/10.1016/j.isci.2021.102040] [PMID: 33521602]
[45]
Choi, J.Y.; Lee, Y.C.G. Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements. PLoS Genet., 2020, 16(7), e1008872.
[http://dx.doi.org/10.1371/journal.pgen.1008872] [PMID: 32673310]
[46]
Chown, S.L.; Terblanche, J.S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Physiol., 2006, 33, 50-152.
[http://dx.doi.org/10.1016/S0065-2806(06)33002-0] [PMID: 19212462]
[47]
Bao, H.; Gao, H.; Zhang, Y.; Fan, D.; Fang, J.; Liu, Z. The roles of CYP6AY1 and CYP6ER1 in imidacloprid resistance in the brown planthopper: Expression levels and detoxification efficiency. Pestic. Biochem. Physiol., 2016, 129, 70-74.
[http://dx.doi.org/10.1016/j.pestbp.2015.10.020] [PMID: 27017884]
[48]
Pang, R.; Chen, M.; Liang, Z.; Yue, X.; Ge, H.; Zhang, W. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens. Sci. Rep., 2016, 6(1), 34992.
[http://dx.doi.org/10.1038/srep34992] [PMID: 27721443]
[49]
Ji, R.; Ye, W.; Chen, H.; Zeng, J.; Li, H.; Yu, H.; Li, J.; Lou, Y. A salivary endo-β-1,4-glucanase acts as an effector that enables the brown planthopper to feed on rice. Plant Physiol., 2017, 173(3), 1920-1932.
[http://dx.doi.org/10.1104/pp.16.01493] [PMID: 28126846]
[50]
Mao, K.; Ren, Z.; Li, W.; Cai, T.; Qin, X.; Wan, H.; Jin, B.R.; He, S.; Li, J. Carboxylesterase genes in nitenpyram-resistant brown planthoppers, Nilaparvata lugens. Insect Sci., 2021, 28(4), 1049-1060.
[http://dx.doi.org/10.1111/1744-7917.12829] [PMID: 32495409]
[51]
Smallwood, S.A.; Lee, H.J.; Angermueller, C.; Krueger, F.; Saadeh, H.; Peat, J.; Andrews, S.R.; Stegle, O.; Reik, W.; Kelsey, G. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods, 2014, 11(8), 817-820.
[http://dx.doi.org/10.1038/nmeth.3035] [PMID: 25042786]
[52]
Huan, Q.; Zhang, Y.; Wu, S.; Qian, W. HeteroMeth: A database of cell-to-cell heterogeneity in DNA methylation. Genomics Proteomics Bioinformatics, 2018, 16(4), 234-243.
[http://dx.doi.org/10.1016/j.gpb.2018.07.002] [PMID: 30196115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy