Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Quantitative HPLC-based Metabolomics Approach for the Discrimination of Processed Rhizomes of Atractylodes Macrocephala

Author(s): Cao Thanh Hai, Nguyen Thu Uyen, Do Hoang Giang, Nguyen Thi Thu Minh, Hoang Thuy Duong, Bui Thi Nhat Le, Nguyen Trung Thanh, Truong Ngoc Minh and Nguyen Tien Dat*

Volume 20, Issue 1, 2024

Published on: 06 December, 2023

Page: [41 - 51] Pages: 11

DOI: 10.2174/0115734110283469231204061131

Price: $65

Abstract

Background: The current study presents a method for the simultaneous quantification of atractylenolide I, II, and III, together with syringin, syringaresinol-4-O-β-D-glucoside and caffeine in Atractylode macrocephala (AM) rhizomes. Contents of the metabolites, in combination with the metabolomics approach, were used to discriminate AM rhizomes, which were processed by different methods.

Methods: An HPLC Agilent 1100 system with a Thermo Hypersil BDS C18 column (L × I.D. 250 mm × 4.6 mm, 5.0 µm particle size) was used for the quantification of the compounds in the AM samples. The detection wavelengths were set up at 220 nm and 280 nm, respectively. A gradient of acetonitrile and water was utilized as the mobile phase. From the quantification results, the process AM rhizomes were discriminated using multivariate statistical methods, such as Principle component analysis and Hierarchical clustering analysis.

Results: The contents of atractylenolide I, II, and III, syringin, syringaresinol-4-O-β-D-glucoside, and caffeine in the AM samples were simultaneously quantified. The linear range of each reference compound was selected from 5 to 100 μg/mL, the linearity with R2 values varied from 0.9990 to 0.9997, the limits of quantification (LOD) ranged from 0.1 to 0.9 μg/mL, LOQ ranged from 0.2 to 2.6 μg/mL, while the intra- and inter-day recovery distributed between 96.0% and 104.8% indicated the precision and accuracy of the quantification method. These satisfied the criteria FDA standards for bioanalytical method validation. Multivariate statistical results revealed that atractylenolide I was the marker of the alcohol presoaking samples, syringaresinol-4-O-β-D-glucoside, and atractylenolide III were representative compounds for the terra stirring AM rhizomes

Conclusion: For the first time, six investigated bioactive compounds in Atractylodes macrocephala were simultaneously quantified using the HPLC-DAD method. About 30 samples in four types of processed rhizomes of A. macrocephala were discriminated using the quantification results in combination with multivariate statistical methods. These results revealed a promising method for discrimination and quality assurance of products from processed AM rhizomes.

Graphical Abstract

[1]
Kou, N.; Cho, H.; Kim, H.E.; Sun, Q.; Ahn, K.; Ji, H.; Choi, H.; Kim, O. Anti-cancer effect of Atractylodes macrocephala extract by double induction of apoptotic and autophagic cell death in head and neck cancer cells. Bangladesh J. Pharmacol., 2017, 12(2), 140-146.
[http://dx.doi.org/10.3329/bjp.v12i2.31238]
[2]
Hoang, L.S.; Tran, M.H.; Lee, J.S.; Ngo, Q.M.T.; Woo, M.H.; Min, B.S. Inflammatory inhibitory activity of sesquiterpenoids from Atractylodes macrocephala rhizomes. Chem. Pharm. Bull., 2016, 64(5), 507-511.
[http://dx.doi.org/10.1248/cpb.c15-00805] [PMID: 27150484]
[3]
Kemper, F.H. Handbook of Chinese medicinal plants. Phytomedicine, 2011, 18(14), 1291.
[http://dx.doi.org/10.1016/j.phymed.2011.08.062]
[4]
Jeong, D.; Dong, G.Z.; Lee, H.J.; Ryu, J.H. Anti-Inflammatory compounds from Atractylodes macrocephala. Molecules, 2019, 24(10), 24101859.
[http://dx.doi.org/10.3390/molecules24101859]
[5]
Zhu, B.; Zhang, Q.; Hua, J.; Cheng, W.; Qin, L. The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz.: A review. J. Ethnopharmacol., 2018, 226, 143-167.
[http://dx.doi.org/10.1016/j.jep.2018.08.023] [PMID: 30130541]
[6]
Yao, C.M.; Yang, X.W. Bioactivity-guided isolation of polyacetylenes with inhibitory activity against NO production in LPS-activated RAW264.7 macrophages from the rhizomes of Atractylodes macrocephala. J. Ethnopharmacol., 2014, 151(2), 791-799.
[http://dx.doi.org/10.1016/j.jep.2013.10.005] [PMID: 24296088]
[7]
Wang, C.C.; Lin, S.Y.; Cheng, H.C.; Hou, W.C. Pro-oxidant and cytotoxic activities of atractylenolide I in human promyeloleukemic HL-60 cells. Food Chem. Toxicol., 2006, 44(8), 1308-1315.
[http://dx.doi.org/10.1016/j.fct.2006.02.008] [PMID: 16624472]
[8]
Chen, G.; Li, K.K.; Fung, C.H.; Liu, C.L.; Wong, H.L.; Leung, P.C.; Ko, C.H. Er-Miao-San, a traditional herbal formula containing Rhizoma Atractylodis and Cortex Phellodendri inhibits inflammatory mediators in LPS-stimulated RAW264.7 macrophages through inhibition of NF-κB pathway and MAPKs activation. J. Ethnopharmacol., 2014, 154(3), 711-718.
[http://dx.doi.org/10.1016/j.jep.2014.04.042] [PMID: 24815219]
[9]
Dong, H.; He, L.; Huang, M.; Dong, Y. Anti-inflammatory components isolated from Atractylodes macrocephala Koidz. Nat. Prod. Res., 2008, 22(16), 1418-1427.
[http://dx.doi.org/10.1080/14786410801931629] [PMID: 19023804]
[10]
Chinese Pharmacopoeia, 11th ed; China Medical Science Technology Press: Beijing, 2020.
[11]
Liu, Y.; Li, X.; Chen, C.; Leng, A.; Qu, J. Effect of mineral excipients on processing traditional Chinese medicines: An insight into the components, pharmacodynamics and mechanism. Chin. Med., 2021, 16(1), 143.
[http://dx.doi.org/10.1186/s13020-021-00554-8] [PMID: 34952619]
[12]
Shan, G.S.; Zhang, L.X.; Zhao, Q.M.; Xiao, H.B.; Zhuo, R.J.; Xu, G.; Jiang, H.; You, X.M.; Jia, T.Z. Metabolomic study of raw and processed Atractylodes macrocephala Koidz by LC–MS. J. Pharm. Biomed. Anal., 2014, 98, 74-84.
[http://dx.doi.org/10.1016/j.jpba.2014.05.010] [PMID: 24893211]
[13]
Gu, S.; Li, L.; Huang, H.; Wang, B.; Zhang, T. Antitumor, antiviral, and anti-inflammatory efficacy of essential oils from Atractylodes macrocephala koidz. Produced with different processing methods. Molecules, 2019, 24(16), 24162956.
[http://dx.doi.org/10.3390/molecules24162956]
[14]
Cai, Q.; Xiao-Wen, C.; Chen-Xi, X.; Yu-Qiang, L. Determination and pharmacokinetic comparisons of atractylodin after oral administration of crude and processed Atractylodis rhizoma. Pharmacogn. Mag., 2016, 12(45), 80-83.
[http://dx.doi.org/10.4103/0973-1296.176062] [PMID: 27019565]
[15]
Hai, C.T.; Luyen, N.T.; Giang, D.H.; Minh, B.Q.; Trung, N.Q.; Chinh, P.T.; Hau, D.V.; Dat, N.T. Atractylodes macrocephala rhizomes contain anti-inflammatory sesquiterpenes. Chem. Pharm. Bull., 2023, 71(6), 451-453.
[http://dx.doi.org/10.1248/cpb.c22-00779] [PMID: 36948639]
[16]
Hai, C.T.; Luyen, N.T.; Chinh, P.T.; Ngan, N.T.T.; Vy, N.T.; Dat, N.T.; Hau, D.V. Phenolic glycoside constituents from the rhizomes of Atractylodes macrocephala koidz. J. Med. Mater, 2022, 27, 5.
[17]
Kim, J.H.; Lee, Y.; Lee, G.; Doh, E.J.; Hong, S. Quantitative interrelation between atractylenolide I, II, and III in Atractylodes japonica koidzumi rhizomes, and evaluation of their oxidative transformation using a biomimetic kinetic model. ACS Omega, 2018, 3(11), 14833-14840.
[http://dx.doi.org/10.1021/acsomega.8b02005] [PMID: 30555992]
[18]
Li, Y.; Zhang, Y.; Wang, Z.; Zhu, J.; Tian, Y.; Chen, B. Quantitative analysis of atractylenolide I in rat plasma by LC–MS/MS method and its application to pharmacokinetic study. J. Pharm. Biomed. Anal., 2012, 58, 172-176.
[http://dx.doi.org/10.1016/j.jpba.2011.09.023] [PMID: 22014654]
[19]
Chen, Q.; Li, P.; Zheng, F.; He, J.; Yi, Y. Validated method for the quantification of atractylenolide III in different processed products of rhizoma Atractylodes Macrocephalae. Phytochem. Anal., 2011, 22(1), 10-13.
[http://dx.doi.org/10.1002/pca.1243] [PMID: 20799268]
[20]
Vietnam ministry of health. Circular No. 30/2017/TT-BYT guiding the processing methods of traditional medicines. 2017.
[21]
VFood and drug administration (FDA). Bioanalytical methods validation: Guidance for industry. 2018.
[22]
Yoo, N.H.; Kwon, Y.; Kim, M.J. Establishment of HPLC-UV analysis method validation for simultaneous analysis of standard compounds of oplopanax elatus nakai stem. Korean J. Pharmacogn., 2019, 50(2), 133-140.
[23]
Roman, M.C.; Hildreth, J.; Bannister, S. Determination of catechins and caffeine in camillia sinensis raw materials, extracts, and dietary supplements by HPLC-uv: single-laboratory validation. J. AOAC Int., 2013, 96(5), 933-941.
[http://dx.doi.org/10.5740/jaoacint.10-488] [PMID: 24282928]
[24]
Jang, W.H.; Lee, W.Y.; Lee, B.J.; Kim, J.M.; Park, S.J. Validation of simultaneous analysis method of standard compounds in fermented kalopanax pictus nakai by bioconversion. Korean J. Food Nutr., 2019, 32(2), 148-154.
[http://dx.doi.org/10.9799/ksfan.2019.32.2.148]
[25]
Zheng, C.; Li, W.; Yao, Y.; Zhou, Y. Quality evaluation of atractylodis macrocephalae rhizoma based on combinative method of hplc fingerprint, quantitative analysis of multi-components and chemical pattern recognition analysis. Molecules, 2021, 26(23), 7124.
[http://dx.doi.org/10.3390/molecules26237124]
[26]
Niu, H.S.; Liu, I.M.; Cheng, J.T.; Lin, C.L.; Hsu, F.L. Hypoglycemic effect of syringin from Eleutherococcus senticosus in streptozotocin-induced diabetic rats. Planta Med., 2008, 74(2), 109-113.
[http://dx.doi.org/10.1055/s-2008-1034275] [PMID: 18203055]
[27]
Liu, K.Y.; Wu, Y.C.; Liu, I.M.; Yu, W.C.; Cheng, J.T. Release of acetylcholine by syringin, an active principle of Eleutherococcus senticosus, to raise insulin secretion in Wistar rats. Neurosci. Lett., 2008, 434(2), 195-199.
[http://dx.doi.org/10.1016/j.neulet.2008.01.054] [PMID: 18304730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy