Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: Augmenting concern towards effective utilization of agro waste into useful products has formented the scientific community to look for alternate sources of materials. On a circular economy contemplation, natural fibers extricated from agro waste have a potential headway towards the evolution of newer materials.
Methods: The current research activity is focused on the optimization of influential parameters, namely fiber volume, load, sliding distance and sliding velocity on the wear characteristics of inflorescence fiber-fortified epoxy composites. Coconut Inflorescence fiber is selected as reinforcement material for the present work. NaOH treatment at 5% wt/vol for 1 hour towards removal of amorphous contents present in the fibers. Taguchi-inspired L16 orthogonal array is used for the design of experiments using Minitab software. The control factors chosen for the optimization study are namely fiber content (10 mm, 15 mm, 20 mm and 25 mm), a load of (5 N, 10N, 15 N and 20 N), a sliding distance of (200 m, 400 m, 600 m and 800 m) and sliding velocity of (6 m/s, 12 m/s, 18 m/s and 24 m/s).
Results: The optimal combination of parameters, namely fiber content of 20 wt%, load of 5N, a sliding distance of 600 m and sliding velocity of 24 m/s, contributed to the merest wear rate of 4.328 m3 /N.m. Morphological evaluation of the composites revealed agglomeration of fibers in the matrix, thereby, the matrix was not able to transfer load uniformly.
Conclusion: Leading to failure of composites as a result of wear rate increase. Thus, inflorescence fiber-fortified epoxy composites fabricated on the above-mentioned control factors will have better wear rate for futuristic applications.