Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Mini-Review Article

Infusion of Magnetic Nanocatalyst to Microwave Propped Synthesis of Bioactive Azaheterocycles

Author(s): Pranali Hadole, Sampat Shingda, Aniruddha Mondal, Kundan Lal, Ratiram G. Chaudhary and Sudip Mondal*

Volume 10, Issue 2, 2023

Published on: 04 December, 2023

Page: [180 - 197] Pages: 18

DOI: 10.2174/0122133356269940231116134734

Price: $65

Abstract

Microwave-assisted synthesis is a powerful tool in organic chemistry, providing a rapid and efficient method for the synthesis of bioactive heterocycles. The application of microwaves significantly reduces reaction times and increases percentage yields with high purity of the final product. To make the synthetic protocol greener, the application of the magnetic nanocatalyst is a rapidly growing area of interest nowadays. Magnetic nanocatalyst, with its unique features like magnetic separable facile recovery from the reaction media heterogeneously, makes the overall synthetic strategy cleaner, faster, and cost-effective. Aiming this, in the present review, we will focus on the infusion of Magnetic nanocatalyst to microwave-assisted synthesis of various classes of azaheterocyclic compounds, including pyridines, pyrimidines, quinolines, and benzimidazoles. The synthetic methodologies involved in the preparation of these heterocycles are highlighted, along with their biological activities. Furthermore, in this review, the most recent and advanced strategies to incorporate nanocatalysts in the microwave-assisted synthesis of natural products containing azaheterocyclic moieties in drug discovery programs are elucidated in detail, along with the incoming future scope and challenges.

Graphical Abstract

[1]
Daly, JW.; Garraffo, HM.; Spande, TF. Alkaloids: Chemical and Biological Perspectives;; Pelletier, W.W, Ed.;: Elsevier: New York,, 1999, p. 1.
[http://dx.doi.org/10.1016/S0735-8210(99)80024-7]
[2]
Deng, K.Z.; Jia, W.L.; Ángeles Fernández-Ibáñez, M. Selective Para−C−H alkynylation of aniline derivatives by Pd/S,O‐ligand catalysis. Chemistry, 2022, 28(9), e202104107.
[http://dx.doi.org/10.1002/chem.202104107] [PMID: 34902180]
[3]
Allais, C.; Grassot, J.M.; Rodriguez, J.; Constantieux, T. Metal-free multicomponent syntheses of pyridines. Chem. Rev., 2014, 114(21), 10829-10868.
[http://dx.doi.org/10.1021/cr500099b] [PMID: 25302420]
[4]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem., 2015, 1(1), 1-1.
[5]
Yang, B.; Chen, Y.; Shi, J. Nanocatalytic medicine. Adv. Mater., 2019, 31(39), 1901778.
[http://dx.doi.org/10.1002/adma.201901778] [PMID: 31328844]
[6]
Chen, X.; Xing, H.; Zhou, Z.; Hao, Y.; Zhang, X.; Qi, F.; Zhao, J.; Gao, L.; Wang, X. Correction: Nanozymes go oral: Nanocatalytic medicine facilitates dental health. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(17), 3745.
[http://dx.doi.org/10.1039/D1TB90062E] [PMID: 33890613]
[7]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc., 2012, 16(3), 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[8]
Campos, E.V.R.; do Espirito Santo Pereira, A.; de Oliveira, J.L.; Villarreal, G.P.U.; Fraceto, L.F. Nature-based nanocarrier system: An eco-friendly alternative for improving crop resilience to climate changes. Anthropocene Science, 2022, 1(3), 396-403.
[http://dx.doi.org/10.1007/s44177-022-00029-x]
[9]
Wang, C.Y.; Qin, J.C.; Yang, Y.W. Multifunctional Metal–Organic Framework (MOF)-based nanoplatforms for crop protection and growth promotion. J. Agric. Food Chem., 2023, 71(15)
[http://dx.doi.org/10.1021/acs.jafc.3c01094] [PMID: 37037783]
[10]
Ikram, M.; Khan, M.I.; Raza, A.; Imran, M.; Ul-Hamid, A.; Ali, S. Outstanding performance of silver-decorated MoS2 nanopetals used as nanocatalyst for synthetic dye degradation. Physica E, 2020, 124, 114246.
[http://dx.doi.org/10.1016/j.physe.2020.114246]
[11]
ur Rehman, A.; Aadil, M.; Zulfiqar, S.; Agboola, P.O.; Shakir, I.; Aly Aboud, M.F.; Haider, S.; Warsi, M.F. Fabrication of binary metal doped CuO nanocatalyst and their application for the industrial effluents treatment. Ceram. Int., 2021, 47(5), 5929-5937.
[http://dx.doi.org/10.1016/j.ceramint.2020.11.064]
[12]
Mahmoud, M.E.; Amira, M.F.; Abouelanwar, M.E.; Abdel Salam, M. Green synthesis and surface decoration of silver nanoparticles onto δ-FeOOH-Polymeric nanocomposite as efficient nanocatalyst for dyes degradation. J. Environ. Chem. Eng., 2021, 9(1), 104697.
[http://dx.doi.org/10.1016/j.jece.2020.104697]
[13]
Adekunle, A.S.; Oyekunle, J.A.O.; Durosinmi, L.M.; Oluwafemi, O.S.; Olayanju, D.S.; Akinola, A.S.; Obisesan, O.R.; Akinyele, O.F.; Ajayeoba, T.A. Potential of cobalt and cobalt oxide nanoparticles as nanocatalyst towards dyes degradation in wastewater. Nano-Structures & Nano-Objects, 2020, 21, 100405.
[http://dx.doi.org/10.1016/j.nanoso.2019.100405]
[14]
Koli, P.B.; Kapadnis, K.H.; Deshpande, U.G.; Patil, M.R. Fabrication and characterization of pure and modified Co3O4 nanocatalyst and their application for photocatalytic degradation of eosine blue dye: a comparative study. J. Nanostructure Chem., 2018, 8(4), 453-463.
[http://dx.doi.org/10.1007/s40097-018-0287-0]
[15]
Baig, R.B.N.; Varma, R.S. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides. Chem. Commun., 2012, 48(50), 6220-6222.
[http://dx.doi.org/10.1039/c2cc32566g] [PMID: 22592337]
[16]
Hosseini Nasab, N.; Safari, J. Synthesis of a wide range of biologically important spiropyrans and spiroacenaphthylenes, using NiFe2O4@SiO2@Melamine magnetic nanoparticles as an efficient, green and reusable nanocatalyst. J. Mol. Struct., 2019, 1193, 118-124.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.023]
[17]
Ahankar, H.; Taghavi Fardood, S.; Ramazani, A. One-pot three-component synthesis of tetrahydrobenzo [b]pyrans in the presence of Ni0. 5Cu0. 5Fe2O4 magnetic nanoparticles under microwave irradiation in solvent-free conditions. Iran. J. Catal., 2020, 10(3), 195-201.
[18]
Chouke, P.B.; Shrirame, T.; Potbhare, A.K.; Mondal, A.; Chaudhary, A.R.; Mondal, S.; Thakare, S.R.; Nepovimova, E.; Valis, M.; Kuca, K.; Sharma, R.; Chaudhary, R.G. Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Materials Today Advances, 2022, 16, 100314.
[http://dx.doi.org/10.1016/j.mtadv.2022.100314]
[19]
Singh, R.P.; Rai, A.R.; Abdala, A.; Chaudhary, R.G. , Eds.; Biogenic Sustainable Nanotechnology: Trends and Progress; Elsevier, 2022.
[20]
Mondal, A.; Umekar, M.S.; Bhusari, G.S.; Chouke, P.B.; Lambat, T.; Mondal, S.; Chaudhary, R.G.; Mahmood, S.H. Biogenic synthesis of metal/metal oxide nanostructured materials. Curr. Pharm. Biotechnol., 2021, 22(13), 1782-1793.
[http://dx.doi.org/10.2174/1389201022666210111122911] [PMID: 33430726]
[21]
Chaudhary, R.G.; Sonkusare, V.N.; Bhusari, G.S.; Mondal, A.; Shaik, D.P.M.D.; Juneja, H.D. Microwave-mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance. Res. Chem. Intermed., 2018, 44(3), 2039-2060.
[http://dx.doi.org/10.1007/s11164-017-3213-z]
[22]
Sonkusare, V.N.; Chaudhary, R.G.; Bhusari, G.S.; Rai, A.R.; Juneja, H.D. Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles. Nano-Structures & Nano-Objects., 2018, 13, 121-131.
[http://dx.doi.org/10.1016/j.nanoso.2018.01.002]
[23]
Lambat, T.L.; Chopra, P.K.P.G.; Mahmood, S.H. Microwave: A green contrivance for the synthesis of N-heterocyclic compounds. Curr. Org. Chem., 2020, 24(22), 2527-2554.
[http://dx.doi.org/10.2174/1385272824999200622114919]
[24]
Lambat, T.L.; Mahmood, S.H.; Ledade, P.V.; Banerjee, S. Microwave assisted One‐Pot multicomponent synthesis using ZnO‐β zeolite nanoparticle: An easy access to 7‐Benzodioxolo[4,5‐b]xanthene‐dione and 4‐Oxo‐tetrahydroindole scaffolds. ChemistrySelect, 2020, 5(28), 8864-8874.
[http://dx.doi.org/10.1002/slct.202002160]
[25]
Lambat, T.L. Microwave assisted scolecite as heterogeneous catalyst for multicomponent one-pot synthesis of novel chromene scaffolds with quantitative yields. Journal of the Chinese Advanced Materials Society, 2018, 6(2), 134-144.
[http://dx.doi.org/10.1080/22243682.2018.1426040]
[26]
Salunkhe, N.G.; Ladole, C.A.; Thakare, N.V.; Aswar, A.S. MgFe2O4@SiO2–SO3H: An efficient, reusable catalyst for the microwave-assisted synthesis of benzoxazinone and benzthioxazinone via multicomponent reaction under solvent free condition. Res. Chem. Intermed., 2018, 44(1), 355-372.
[http://dx.doi.org/10.1007/s11164-017-3108-z]
[27]
Ladole, C.A.; Salunkhe, N.G.; Bhaskar, R.S.; Aswar, A.S. A microwave-assisted synthesis of 3,4-dihydropyrimidin-2(1H)-one/thione derivatives using nanocrystalline MgFe2O4 as catalyst. Eur. J. Chem., 2014, 5(1), 122-126.
[http://dx.doi.org/10.5155/eurjchem.5.1.122-126.911]
[28]
Goudarzi, M.; Mousavi-Kamazani, M.; Salavati-Niasari, M. Zinc oxide nanoparticles: Solvent-free synthesis, characterization and application as heterogeneous nanocatalyst for photodegradation of dye from aqueous phase. J. Mater. Sci. Mater. Electron., 2017, 28(12), 8423-8428.
[http://dx.doi.org/10.1007/s10854-017-6560-z]
[29]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem., 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[30]
Kulkarni, P.A.; Kahandal, S.S.; Mirgane, N.A.; Satpati, A.K.; Shendage, S.S. Highly efficient magnetically separable Zn-Ag@l-arginine Fe3O4 catalyst for synthesis of 2-aryl-substituted benzimidazoles and multicomponent synthesis of pyrimidines. Results in Chemistry, 2022, 4, 100655.
[http://dx.doi.org/10.1016/j.rechem.2022.100655]
[31]
Yazdani, H.; Hooshmand, S.E.; Varma, R.S. Gold nanoparticle-catalyzed multicomponent reactions. ACS Sustain. Chem.& Eng., 2021, 9(49), 16556-16569.
[http://dx.doi.org/10.1021/acssuschemeng.1c04361]
[32]
Mousavi, H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int. J. Biol. Macromol., 2021, 186, 1003-1166.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.123] [PMID: 34174311]
[33]
Singh, P.; Srivastava, N.; Mohammad, A.; Lal, B.; Singh, R.; Syed, A.; Elgorban, A.M.; Verma, M.; Mishra, P.K.; Gupta, V.K. Facile pretreatment strategies to biotransform Kans grass into nanocatalyst, cellulolytic enzymes, and fermentable sugars towards sustainable biorefinery applications. Bioresour. Technol., 2023, 386, 129491.
[http://dx.doi.org/10.1016/j.biortech.2023.129491] [PMID: 37463616]
[34]
Mayegowda, SB;; Sureshkumar, K; Yashaswini, R; Ramakrishnappa, T Phytonanotechnology for the removal of pollutants from the contaminated soil environment. In:Phytonanotechnology; Shah, M.P;; Roy, A., Eds.; Springer: Singapore, 2022.
[http://dx.doi.org/10.1007/978-981-19-4811-4_15]
[35]
Jambulingam, R.; Shalma, M.; Shankar, V. Biodiesel production using lipase immobilised functionalized magnetic nanocatalyst from oleaginous fungal lipid. J. Clean. Prod., 2019, 215, 245-258.
[http://dx.doi.org/10.1016/j.jclepro.2018.12.146]
[36]
Bashar, B.S.; Kareem, H.A.; Hasan, Y.M.; Ahmad, N.; Alshehri, A.M.; Al-Majdi, K.; Hadrawi, S.K.; AL, Kubaisy M.M.R.; Qasim, M.T. Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds. Front Chem., 2022, 10, 1014731.
[http://dx.doi.org/10.3389/fchem.2022.1014731] [PMID: 36300031]
[37]
Zhang, Y.; Duan, L.; Esmaeili, H. A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass and Bioenergy, 2022, 158, 106356.
[38]
Safdar, M.; Junejo, Y.; Balouch, A. Efficient degradation of organic dyes by heterogeneous cefdinir derived silver nanocatalyst. J. Ind. Eng. Chem., 2015, 31, 216-222.
[http://dx.doi.org/10.1016/j.jiec.2015.06.026]
[39]
Tamuly, C.; Saikia, I.; Hazarika, M.; Das, M.R. Bio-derived CuO nanocatalyst for oxidation of aldehyde: A greener approach. RSC Advances, 2014, 4(40), 20636-20640.
[http://dx.doi.org/10.1039/C4RA01683A]
[40]
Shet, V.B.; Kumar, P.S.; Vinayagam, R.; Selvaraj, R.; Vibha, C.; Rao, S.; Pawan, S.M.; Poorvika, G.; Quintero, V.M.; Ujwal, P.; Rajesh, K.S.; Dubey, A.; Yumnam, S. Cocoa pod shell mediated silver nanoparticles synthesis, characterization, and their application as nanocatalyst and antifungal agent. Appl. Nanosci., 2023, 13(6), 4235-4245.
[http://dx.doi.org/10.1007/s13204-023-02873-8]
[41]
Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater., 2021, 401, 123401.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123401] [PMID: 32763697]
[42]
Torki, F.; Albadi, J.; Shahrokh, S. Introduction of NiO/ZnO nanocatalyst for the regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles and investigation of their antimicrobial properties. Res. Chem. Intermed., 2023, 49(5), 1925-1940.
[http://dx.doi.org/10.1007/s11164-023-04997-6]
[43]
Ingle, A.P.; Chandel, A.K.; Philippini, R.; Martiniano, S.E.; da Silva, S.S. Advances in nanocatalysts mediated biodiesel production: A critical appraisal. Symmetry, 2020, 12(2), 256.
[http://dx.doi.org/10.3390/sym12020256]
[44]
Sajjadi, M.; Baran, N.Y.; Baran, T.; Nasrollahzadeh, M.; Tahsili, M.R.; Shokouhimehr, M. Palladium nanoparticles stabilized on a novel Schiff base modified Unye bentonite: Highly stable, reusable and efficient nanocatalyst for treating wastewater contaminants and inactivating pathogenic microbes. Separ. Purif. Tech., 2020, 237, 116383.
[http://dx.doi.org/10.1016/j.seppur.2019.116383]
[45]
Lai, W.; Zeng, Q.; Tang, J.; Zhang, M.; Tang, D. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B1 by using enzyme-responsive just-in-time generation of a MnO2 based nanocatalyst. Mikrochim. Acta, 2018, 185(2), 92.
[http://dx.doi.org/10.1007/s00604-017-2651-z] [PMID: 29594447]
[46]
Soni, J.P.; Chemitikanti, K.S.; Joshi, S.V.; Shankaraiah, N. The microwave-assisted syntheses and applications of non-fused single-nitrogen-containing heterocycles. Org. Biomol. Chem., 2020, 18(48), 9737-9761.
[http://dx.doi.org/10.1039/D0OB01779E] [PMID: 33211792]
[47]
Hill, M.D. Direct synthesis of pyridine and pyrimidine derivatives,
[48]
Shirvanimoghaddam, K.; Czech, B.; Abdikheibari, S.; Brodie, G.; Kończak, M.; Krzyszczak, A.; Al-Othman, A.; Naebe, M. Microwave synthesis of biochar for environmental applications. J. Anal. Appl. Pyrolysis, 2022, 161, 105415.
[http://dx.doi.org/10.1016/j.jaap.2021.105415]
[49]
Verendel, J.J.; Zhou, T.; Li, J.Q.; Paptchikhine, A.; Lebedev, O.; Andersson, P.G. Highly flexible synthesis of chiral azacycles via iridium-catalyzed hydrogenation. J. Am. Chem. Soc., 2010, 132(26), 8880-8881.
[http://dx.doi.org/10.1021/ja103901e] [PMID: 20557052]
[50]
Bull, JA; Mousseau, JJ; Pelletier, G; Charette, AB Synthesis of pyridine and dihydropyridine derivatives by regio-and stereoselective addition to N-activated pyridines. Chemical Reviews, 2012, 112(5), 2642-2713.
[51]
Kaur, G.; Devi, P.; Thakur, S.; Kumar, A.; Chandel, R.; Banerjee, B. Magnetically separable transition metal ferrites: versatile heterogeneous nano‐catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2019, 4(7), 2181-2199.
[http://dx.doi.org/10.1002/slct.201803600]
[52]
Banerjee, B. Ultrasound and nano‐catalysts: An ideal and sustainable combination to carry out diverse organic transformations. ChemistrySelect, 2019, 4(8), 2484-2500.
[http://dx.doi.org/10.1002/slct.201803081]
[53]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42(8), 3371-3393.
[http://dx.doi.org/10.1039/c3cs35480f] [PMID: 23420127]
[54]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun., 2013, 49(8), 752-770.
[http://dx.doi.org/10.1039/C2CC35663E] [PMID: 23212208]
[55]
Maleki, A.; Firouzi-Haji, R. L-Proline functionalized magnetic nanoparticles: A novel magnetically reusable nanocatalyst for one-pot synthesis of 2,4,6-triarylpyridines. Sci. Rep., 2018, 8(1), 17303.
[http://dx.doi.org/10.1038/s41598-018-35676-x] [PMID: 30470821]
[56]
Fardood, S.T.; Ramazani, A.; Moradi, S. Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. J. Sol-Gel Sci. Technol., 2017, 82(2), 432-439.
[http://dx.doi.org/10.1007/s10971-017-4310-6]
[57]
Das, S.K. Mondal, S.; Chatterjee, S.; Bhaumik, A. N‐rich porous organic polymer as heterogeneous organocatalyst for the one‐pot synthesis of polyhydroquinoline derivatives through the hantzsch condensation reaction. ChemCatChem, 2018, 10(11), 2488-2495.
[http://dx.doi.org/10.1002/cctc.201702013]
[58]
Bagley, M.; Lubinu, M. Microwave-assisted oxidative aromatization of Hantzsch 1, 4-dihydropyridines using manganese dioxide. Synthesis, 2006, 2006(8), 1283-1288.
[http://dx.doi.org/10.1055/s-2006-926407]
[59]
Ravikumar Naik, T.R.; Shivashankar, S.A. Heterogeneous bimetallic ZnFe2O4 nanopowder catalyzed synthesis of Hantzsch 1,4-dihydropyridines in water. Tetrahedron Lett., 2016, 57(36), 4046-4049.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.071]
[60]
Dandia, A.; Parewa, V.; Gupta, S.L.; Sharma, A.; Rathore, K.S.; Sharma, A.; Jain, A. Microwave-assisted Fe3O4 nanoparticles catalyzed synthesis of chromeno[1,6]naphthyridines in aqueous media. Catal. Commun., 2015, 61, 88-91.
[http://dx.doi.org/10.1016/j.catcom.2014.12.015]
[61]
Afradi, M.; Pour, S.A.; Dolat, M.; Yazdani-Elah-Abadi, A. Nanomagnetically modified vitamin B 3 (Fe 3 O 4 @Niacin): An efficient and reusable green biocatalyst for microwave‐assisted rapid synthesis of 2‐amino‐3‐cyanopyridines in aqueous medium. Appl. Organomet. Chem., 2018, 32(2), e4103.
[http://dx.doi.org/10.1002/aoc.4103]
[62]
Kumari, M.; Jain, Y.; Yadav, P.; Laddha, H.; Gupta, R. Synthesis of Fe 3 O 4-DOPA-Cu magnetically separable nanocatalyst: A versatile and robust catalyst for an array of sustainable multicomponent reactions under microwave irradiation. Catal. Lett., 2019, 149(8), 2180-2194.
[http://dx.doi.org/10.1007/s10562-019-02794-8]
[63]
Kidwai, M.; Jain, A.; Bhardwaj, S. Magnetic nanoparticles catalyzed synthesis of diverse N-Heterocycles. Mol. Divers., 2012, 16(1), 121-128.
[http://dx.doi.org/10.1007/s11030-011-9336-z] [PMID: 22057791]
[64]
Zarnegar, Z.; Safari, J. Magnetic nanoparticles supported imidazolium-based ionic liquids as nanocatalyst in microwave-mediated solvent-free Biginelli reaction. J. Nanopart. Res., 2014, 16(8), 2509.
[http://dx.doi.org/10.1007/s11051-014-2509-9]
[65]
Norouzi, F.H.; Foroughifar, N.; Khajeh-Amiri, A.; Pasdar, H. A novel superparamagnetic powerful guanidine-functionalized γ-Fe2O3 based sulfonic acid recyclable and efficient heterogeneous catalyst for microwave-assisted rapid synthesis of quinazolin-4(3 H)-one derivatives in Green media. RSC Advances, 2021, 11(48), 29948-29959.
[http://dx.doi.org/10.1039/D1RA05560G] [PMID: 35480261]
[66]
Akbarzadeh, P.; Koukabi, N.; Kolvari, E. Three-component solvent-free synthesis of 5-substituted-1H-tetrazoles catalyzed by unmodified nanomagnetite with microwave irradiation or conventional heating. Res. Chem. Intermed., 2019, 45(3), 1009-1024.
[http://dx.doi.org/10.1007/s11164-018-3657-9]
[67]
Guo, D.; Huang, H.; Zhou, Y.; Xu, J.; Jiang, H.; Chen, K.; Liu, H. Ligand-free iron/copper cocatalyzed N-arylations of aryl halides with amines under microwave irradiation. Green Chem., 2010, 12(2), 276-281.
[http://dx.doi.org/10.1039/B917010C]
[68]
Polshettiwar, V.; Varma, R.S. Nano-organocatalyst: Magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis. Tetrahedron, 2010, 66(5), 1091-1097.
[http://dx.doi.org/10.1016/j.tet.2009.11.015]
[69]
Vaddula, B.R.; Saha, A.; Leazer, J.; Varma, R.S. A simple and facile Heck-type arylation of alkenes with diaryliodonium salts using magnetically recoverable Pd-catalyst. Green Chem., 2012, 14(8), 2133-2136.
[http://dx.doi.org/10.1039/c2gc35673b]
[70]
Vaddula, B.R.; Varma, R.S.; Leazer, J. Mixing with microwaves: Solvent-free and catalyst-free synthesis of pyrazoles and diazepines. Tetrahedron Lett., 2013, 54(12), 1538-1541.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.029]
[71]
Steward, K.F. The relationship between physiological stress response and variation in omics data, Doctor of Philosophy in Biochemistry Montana State University: Bozeman, Montana; , 2021.
[72]
Baig, R.B.N.; Varma, R.S. Stereo- and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β-amino triazoles. Chem. Commun., 2012, 48(47), 5853-5855.
[http://dx.doi.org/10.1039/c2cc32392c] [PMID: 22572790]
[73]
Rangaswamy, A.; Prasad, A.; Reddy, B. Cu-based solid catalysts: Applications in organic transformations for nheterocyclic compounds. Curr. Org. Chem., 2017, 21(8), 660-673.
[http://dx.doi.org/10.2174/1385272820666160804155409]
[74]
Baig, R.B.N.; Varma, R.S. Copper on chitosan: A recyclable heterogeneous catalyst for azide–alkyne cycloaddition reactions in water. Green Chem., 2013, 15(7), 1839-1843.
[http://dx.doi.org/10.1039/c3gc40401c]
[75]
Bhuyan, P.; Bhorali, P.; Islam, I.; Bhuyan, A.J.; Saikia, L. Magnetically recoverable copper ferrite catalyzed cascade synthesis of 4-Aryl-1H-1,2,3-triazoles under microwave irradiation. Tetrahedron Lett., 2018, 59(16), 1587-1591.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.032]
[76]
Qu, G.R.; Xin, P.Y.; Niu, H.Y.; Jin, X.; Guo, X.T.; Yang, X.N.; Guo, H.M. Microwave promoted palladium-catalyzed Suzuki–Miyaura cross-coupling reactions of 6-chloropurines with sodium tetraarylborate in water. Tetrahedron, 2011, 67(47), 9099-9103.
[http://dx.doi.org/10.1016/j.tet.2011.09.082]
[77]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Magnetic nanoparticle-supported glutathione: A conceptually sustainable organocatalyst. Chem. Commun., 2009, (14), 1837-1839.
[http://dx.doi.org/10.1039/b900784a] [PMID: 19319418]
[78]
Ghotbinejad, M.; Khosropour, A.R.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. SPIONs-bis(NHC)-palladium(II): A novel, powerful and efficient catalyst for Mizoroki–Heck and Suzuki–Miyaura C–C coupling reactions. J. Mol. Catal. Chem., 2014, 385, 78-84.
[http://dx.doi.org/10.1016/j.molcata.2014.01.001]
[79]
Tambe, A.; Gadhave, A.; Pathare, A.; Shirole, G. Novel Pumice@SO3H catalyzed efficient synthesis of 2,4,5-triarylimidazoles and acridine-1,8-diones under microwave assisted solvent-free path. Sustain. Chem. Pharm., 2021, 22, 100485.
[http://dx.doi.org/10.1016/j.scp.2021.100485]
[80]
Bankar, S.R. Nano-Fe3O4@ L-cysteine as an efficient recyclable organocatalyst for the green synthesis of bis (indolyl) methanes under microwave irradiation. Curr. Organocatal., 2018, 5(1), 42-50.
[http://dx.doi.org/10.2174/2213337205666180611112941]
[81]
Esmaeilpour, M.; Javidi, J.; Zandi, M. One-pot synthesis of multisubstituted imidazoles under solvent-free conditions and microwave irradiation using Fe3O4 @SiO 2–imid–PMA n magnetic porous nanospheres as a recyclable catalyst. New J. Chem., 2015, 39(5), 3388-3398.
[http://dx.doi.org/10.1039/C5NJ00050E]
[82]
Yıldız, Y.; Esirden, İ.; Erken, E.; Demir, E.; Kaya, M.; Şen, F. Microwave (Mw)‐assisted synthesis of 5‐Substituted 1 H‐Tetrazoles via [3+2] cycloaddition catalyzed by Mw‐Pd/Co nanoparticles decorated on multi‐walled carbon nanotubes. ChemistrySelect, 2016, 1(8), 1695-1701.
[http://dx.doi.org/10.1002/slct.201600265]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy