Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Mini-Review Article

Deciphering the Function of New Therapeutic Targets and Prospective Biomarkers in the Management of Psoriasis

Author(s): Japneet Singh Purewal and Gaurav Mahesh Doshi*

Volume 24, Issue 16, 2023

Published on: 30 November, 2023

Page: [1224 - 1238] Pages: 15

DOI: 10.2174/0113894501277656231128060242

Price: $65

Abstract

Psoriasis is an immune-mediated skin condition affecting people worldwide, presenting at any age, and leading to a substantial burden physically and mentally. The innate and adaptive immune systems interact intricately with the pathomechanisms that underlie disease. T cells can interact with keratinocytes, macrophages, and dendritic cells through the cytokines they secrete. According to recent research, psoriasis flare-ups can cause systemic inflammation and various other co-morbidities, including depression, psoriatic arthritis, and cardio-metabolic syndrome. Additionally, several auto-inflammatory and auto-immune illnesses may be linked to psoriasis. Although psoriasis has no proven treatment, care must strive by treating patients as soon as the disease surfaces, finding and preventing concurrent multimorbidity, recognising and reducing bodily and psychological distress, requiring behavioural modifications, and treating each patient individually. Biomarkers are traits that are assessed at any time along the clinical continuum, from the early stages of a disease through the beginning of treatment (the foundation of precision medicine) to the late stages of treatment (outcomes and endpoints). Systemic therapies that are frequently used to treat psoriasis provide a variety of outcomes. Targeted therapy selection, better patient outcomes, and more cost-effective healthcare would be made possible by biomarkers that reliably predict effectiveness and safety. This review is an attempt to understand the role of Antimicrobial peptides (AMP), Interleukin-38 (IL-38), autophagy 5 (ATG5) protein and squamous cell carcinoma antigen (SCCA) as biomarkers of psoriasis.

Graphical Abstract

[1]
Parab S, Doshi G. An update on emerging immunological targets and their inhibitors in the treatment of psoriasis. Int Immunopharmacol 2022; 113((PA)): 109341.
[http://dx.doi.org/10.1016/j.intimp.2022.109341]
[2]
Damiani G, Bragazzi NL, Karimkhani Aksut C, et al. The global, regional, and national burden of psoriasis: Results and insights from the global burden of disease 2019 Study. Front Med 2021; 8: 743180.
[http://dx.doi.org/10.3389/fmed.2021.743180] [PMID: 34977058]
[3]
Global report on psoriasis. Available from:https://apps.who.int/iris/handle/10665/204417 (Cited 2023 Jun 13).
[4]
Honma M, Nozaki H. Molecular pathogenesis of psoriasis and biomarkers reflecting disease activity. J Clin Med 2021; 10(15): 3199.
[http://dx.doi.org/10.3390/jcm10153199] [PMID: 34361983]
[5]
Napolitano M, Megna M, Monfrecola G. Insulin resistance and skin diseases. Sci World J 2015; 2015: 479354.
[http://dx.doi.org/10.1155/2015/479354]
[6]
Frank Nestle PO, Kaplan DH, Barker J. Psoriasis. N Engl J Med 2009; 361(5): 496-509.
[http://dx.doi.org/10.1056/NEJMra0804595]
[7]
Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014; 32(1): 227-55.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120225] [PMID: 24655295]
[8]
Yamazaki F. Psoriasis: Comorbidities. J Dermatol 2021; 48(6): 732-40.
[http://dx.doi.org/10.1111/1346-8138.15840] [PMID: 33763899]
[9]
Korman NJ. Management of psoriasis as a systemic disease: What is the evidence? Br J Dermatol 2020; 182(4): 840-8.
[http://dx.doi.org/10.1111/bjd.18245] [PMID: 31225638]
[10]
Kim WB, Jerome D, Yeung J. Diagnosis and management of psoriasis. Can Fam Physician 2017; 63(4): 278-85.
[PMID: 28404701]
[11]
Parisi R, Symmons DPM, Griffiths CEM, Ashcroft DM. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol 2013; 133(2): 377-85.
[http://dx.doi.org/10.1038/jid.2012.339] [PMID: 23014338]
[12]
Petit RG, Cano A, Ortiz A, et al. Psoriasis: From pathogenesis to pharmacological and nano-technological-based therapeutics. Int J Mol Sci 2021; 22(9): 4983.
[http://dx.doi.org/10.3390/ijms22094983] [PMID: 34067151]
[13]
Kamiya K, Kishimoto M, Sugai J, Komine M, Ohtsuki M. Risk factors for the development of psoriasis. Int J Mol Sci 2019; 20(18): 4347.
[http://dx.doi.org/10.3390/ijms20184347] [PMID: 31491865]
[14]
Dand N, Mahil S, Capon F, Smith C, Simpson M, Barker J. Psoriasis and genetics. Acta Derm Venereol 2020; 100(3): 55-65.
[http://dx.doi.org/10.2340/00015555-3384] [PMID: 31971603]
[15]
Ogawa K, Okada Y. The current landscape of psoriasis genetics in 2020. J Dermatol Sci 2020; 99(1): 2-8.
[http://dx.doi.org/10.1016/j.jdermsci.2020.05.008] [PMID: 32536600]
[16]
Hwang ST, Nijsten T, Elder JT. Recent highlights in psoriasis research. J Invest Dermatol 2017; 137(3): 550-6.
[http://dx.doi.org/10.1016/j.jid.2016.11.007] [PMID: 28063651]
[17]
Tveit KS. Effect of herring roe lipids on mild psoriasis. Nordic Cong Dermatol Venereol 2019; 63(April): 278-85.
[18]
Jiang S, Hinchliffe TE, Wu T. Biomarkers of an autoimmune skin disease-psoriasis. Genomics Proteom Bioinform 2015; 13(4): 224-33.
[http://dx.doi.org/10.1016/j.gpb.2015.04.002] [PMID: 26362816]
[19]
Cagney DN, Sul J, Huang RY, Ligon KL, Wen PY, Alexander BM. The FDA NIH biomarkers, endpointS, and other Tools (BEST) resource in neuro-oncology. Neuro-oncol 2018; 20(9): 1162-72.
[http://dx.doi.org/10.1093/neuonc/nox242] [PMID: 29294069]
[20]
Langley RGB, Krueger GG, Griffiths CEM. Psoriasis: Epidemiology, clinical features, and quality of life. Ann Rheum Dis 2005; 64(Suppl 2): ii18-23.
[http://dx.doi.org/10.1136/ard.2004.033217] [PMID: 15708928]
[21]
Chung HJ, Marley-Kemp D, Keller M, St C. Rupioid psoriasis and other skin diseases with rupioid manifestations. Cutis 2014; 94(3): 119-21.
[PMID: 25279472]
[22]
Feldman SR, Brown KL, Heald P. ‘Coral reef’ psoriasis: A marker of resistance to topical treatment. J Dermatolog Treat 2008; 19(5): 257-8.
[http://dx.doi.org/10.1080/09546630802032611] [PMID: 18608734]
[23]
Gul Mert G, Incecik F, Gunasti S, Herguner O, Altunbasak S. Psoriasiform drug eruption associated with sodium valproate. Case Rep Pediatr 2013; 2013: 1-3.
[http://dx.doi.org/10.1155/2013/823469] [PMID: 24324909]
[24]
Gómez-Arias PJ, García-Nieto AJV. Rupioid psoriasis on the hands. CMAJ 2020; 192(45): E1407.
[http://dx.doi.org/10.1503/cmaj.200517] [PMID: 33168763]
[25]
Yang Y, Lyu X. Lithium-associated generalized ostraceous psoriasis treated with adalimumab: A case report. Clin Cosmet Investig Dermatol 2023; 16: 947-50.
[http://dx.doi.org/10.2147/CCID.S408245] [PMID: 37051588]
[26]
Rowawi R, Dwipangestu G, Suwarsa O, et al. A successful treatment of ostraceous psoriasis associated with psoriatic arthritis in children: A case report. Psoriasis 2020; 10: 61-6.
[http://dx.doi.org/10.2147/PTT.S285832] [PMID: 33409134]
[27]
Park M, Park MJ, Choi MS, et al. A case of ostraceous psoriasis with psoriatic arthritis in an AIDS patient. Indian J Dermatol 2018; 63(6): 512-4.
[PMID: 30504983]
[28]
Badri T, Kumar P, Oakley AM. Plaque psoriasis. Pract Nurs 2023; 19(11): 560-5.
[PMID: 28613629]
[29]
Dhabale A, Nagpure S. Types of psoriasis and their effects on the immune system. Cureus 2022; 14(9): e29536.
[http://dx.doi.org/10.7759/cureus.29536] [PMID: 36312680]
[30]
Micali G, Verzì AE, Giuffrida G, Panebianco E, Musumeci ML, Lacarrubba F. Inverse psoriasis: From diagnosis to current treatment options. Clin Cosmet Investig Dermatol 2020; 12: 953-9.
[http://dx.doi.org/10.2147/CCID.S189000] [PMID: 32099435]
[31]
Hong JJ, Mosca ML, Hadeler EK, Brownstone ND, Bhutani T, Liao WJ. Genital and inverse/intertriginous psoriasis: An updated review of therapies and recommendations for practical management. Dermatol Ther 2021; 11(3): 833-44.
[http://dx.doi.org/10.1007/s13555-021-00536-6] [PMID: 33914293]
[32]
Dopytalska K, Sobolewski P, Błaszczak A, Szymańska E, Walecka I. Psoriasis in special localizations. Reumatologia 2018; 56(6): 392-8.
[http://dx.doi.org/10.5114/reum.2018.80718] [PMID: 30647487]
[33]
Chalmers R, O’sullivan T, Owen CM, Griffiths CEM. Interventions for guttate psoriasis. Cochrane Database Syst Rev 2019; 4: CD001213.
[http://dx.doi.org/10.1002/14651858.CD001213.pub2]
[34]
Saleh D, Tanner LS. Guttate Psoriasis. StatPearls Publishing 2022.
[35]
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[36]
Uppala R, Tsoi LC, Harms PW, et al. “Autoinflammatory psoriasis”-genetics and biology of pustular psoriasis. Cell Mol Immunol 2021; 18(2): 307-17.
[http://dx.doi.org/10.1038/s41423-020-0519-3] [PMID: 32814870]
[37]
Lo Y, Tsai TF. Updates on the treatment of erythrodermic psoriasis. Psoriasis 2021; 11: 59-73.
[http://dx.doi.org/10.2147/PTT.S288345] [PMID: 34136373]
[38]
Stinco G, Errichetti E. Erythrodermic psoriasis: Current and future role of biologicals. BioDrugs 2015; 29(2): 91-101.
[http://dx.doi.org/10.1007/s40259-015-0119-4] [PMID: 25752640]
[39]
Neema S, Sandhu S, Gupta A, Jagadeesan S, Vasudevan B. Unconventional treatment options in psoriasis: A review. Indian J Dermatol Venereol Leprol 2021; 88(2): 137-43.
[http://dx.doi.org/10.25259/IJDVL_22_2021] [PMID: 34623042]
[40]
Mascarenhas-Melo F, Carvalho A, Gonçalves MBS, Paiva-Santos AC, Veiga F. Nanocarriers for the topical treatment of psoriasis - pathophysiology, conventional treatments, nanotechnology, regulatory and toxicology. Eur J Pharm Biopharm 2022; 176: 95-107.
[http://dx.doi.org/10.1016/j.ejpb.2022.05.012] [PMID: 35605927]
[41]
Tokuyama M, Mabuchi T. New treatment addressing the pathogenesis of psoriasis. Int J Mol Sci 2020; 21(20): 7488.
[http://dx.doi.org/10.3390/ijms21207488] [PMID: 33050592]
[42]
Menter A, Korman NJ, Elmets CA, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis. J Am Acad Dermatol 2009; 61(3): 451-85.
[http://dx.doi.org/10.1016/j.jaad.2009.03.027] [PMID: 19493586]
[43]
Barros NM, Sbroglio LL, Buffara MO, Baka JLCS, Pessoa AS, Azulay-Abulafia L. Phototherapy. An Bras Dermatol 2021; 96(4): 397-407.
[http://dx.doi.org/10.1016/j.abd.2021.03.001] [PMID: 33849754]
[44]
Zhang P, Wu MX. A clinical review of phototherapy for psoriasis. Lasers Med Sci 2018; 33(1): 173-80.
[http://dx.doi.org/10.1007/s10103-017-2360-1] [PMID: 29067616]
[45]
Nolan BV, Yentzer BA, Feldman SR. A review of home phototherapy for psoriasis. Dermatol Online J 2010; 16(2): 1.
[http://dx.doi.org/10.5070/D39R12N60X] [PMID: 20178697]
[46]
Michielsens CAJ, van Muijen ME, Verhoef LM, van den Reek JMPA, de Jong EMGJ. Dose tapering of biologics in patients with psoriasis: A scoping review. Drugs 2021; 81(3): 349-66.
[http://dx.doi.org/10.1007/s40265-020-01448-z] [PMID: 33453052]
[47]
Caputo V, Strafella C, Cosio T, et al. Pharmacogenomics: An update on biologics and small-molecule drugs in the treatment of psoriasis. Genes 2021; 12(9): 1398.
[http://dx.doi.org/10.3390/genes12091398] [PMID: 34573380]
[48]
Kamata M, Tada Y. Efficacy and safety of biologics for psoriasis and psoriatic arthritis and their impact on comorbidities: A literature review. Int J Mol Sci 2020; 21(5): 1690.
[http://dx.doi.org/10.3390/ijms21051690] [PMID: 32121574]
[49]
Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K. Current developments in the immunology of psoriasis. Yale J Biol Med 2020; 93(1): 97-110.
[PMID: 32226340]
[50]
Blair HA. Secukinumab: A review in moderate to severe pediatric plaque psoriasis. Paediatr Drugs 2021; 23(6): 601-8.
[http://dx.doi.org/10.1007/s40272-021-00476-w] [PMID: 34665445]
[51]
Ruggiero A, Picone V, Martora F, Fabbrocini G, Megna M. Guselkumab, risankizumab, and tildrakizumab in the management of psoriasis: A review of the real-world evidence. Clin Cosmet Investig Dermatol 2022; 15: 1649-58.
[http://dx.doi.org/10.2147/CCID.S364640] [PMID: 35996400]
[52]
Jiang Y, Chen Y, Yu Q, Shi Y. Biologic and small-molecule therapies for moderate-to-severe psoriasis: Focus on psoriasis comorbidities. BioDrugs 2023; 37(1): 35-55.
[http://dx.doi.org/10.1007/s40259-022-00569-z] [PMID: 36592323]
[53]
Focus Area: Biomarkers | FDA. Available from:https://www.fda.gov/science-research/focus-areas-regulatory-science-report/focus-area-biomarkers (Cited 2023 Jul 23).
[54]
Biomarkers. Available from:https://www.niehs.nih.gov/health/topics/science/biomarkers/index.cfm (Cited 2023 Jul 22).
[55]
Yun YM, Apolipoprotein B. Apolipoprotein B, Non-HDL cholesterol, and ldl cholesterol as markers for atherosclerotic cardiovascular disease risk assessment. Ann Lab Med 2023; 43(3): 221-2.
[http://dx.doi.org/10.3343/alm.2023.43.3.221] [PMID: 36544332]
[56]
Ahn C, Kang C, Ahn HJ, et al. Serum total cholesterol level as a potential predictive biomarker for neurological outcomes in cardiac arrest survivors who underwent target temperature management. Medicine 2022; 101(46): e31909.
[http://dx.doi.org/10.1097/MD.0000000000031909] [PMID: 36401387]
[57]
Califf RM. Biomarker definitions and their applications. Exp Biol Med 2018; 243(3): 213-21.
[http://dx.doi.org/10.1177/1535370217750088] [PMID: 29405771]
[58]
Kunc P, Fabry J, Lucanska M, Pecova R. Biomarkers of bronchial asthma. Physiol Res 2020; 69(Suppl. 1): S29-34.
[http://dx.doi.org/10.33549/physiolres.934398] [PMID: 32228009]
[59]
About Biomarkers and Qualification | FDA. Available from:https://www.fda.gov/drugs/biomarker-qualification-program/about-biomarkers-and-qualification (Cited 2023 Jul 23).
[60]
Ramessur R, Corbett M, Marshall D, et al. Biomarkers of disease progression in people with psoriasis: A scoping review. Br J Dermatol 2022; 187(4): 481-93.
[http://dx.doi.org/10.1111/bjd.21627] [PMID: 35482474]
[61]
Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci 2021; 22(21): 11401.
[http://dx.doi.org/10.3390/ijms222111401] [PMID: 34768832]
[62]
Wang G, Li X, Wang Z. APD2: The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2009; 37(Database issue): D933-7.
[http://dx.doi.org/10.1093/nar/gkn823] [PMID: 18957441]
[63]
Kuroda K, Okumura K, Isogai H, Isogai E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front Oncol 2015; 5(JUN): 144.
[http://dx.doi.org/10.3389/fonc.2015.00144] [PMID: 26175965]
[64]
Agakidou E, Agakidis C, Kontou A, Chotas W, Sarafidis K. Antimicrobial peptides in early-life host defense, perinatal infections, and necrotizing enterocolitis-an update. J Clin Med 2022; 11(17): 5074.
[http://dx.doi.org/10.3390/jcm11175074] [PMID: 36079001]
[65]
Kaur-Boparai J, Sharma PK. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 2020; 27(1): 4-16.
[http://dx.doi.org/10.2174/18755305MTAwENDE80] [PMID: 31438824]
[66]
Bakare OO, Gokul A, Fadaka AO, et al. Plant Antimicrobial Peptides (PAMPs): Features, applications, production, expression, and challenges. Molecules 2022; 27(12): 3703.
[http://dx.doi.org/10.3390/molecules27123703] [PMID: 35744828]
[67]
Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, et al. Antimicrobial peptides in marine invertebrate health and disease. Phil Transac Royal Soc B: Biol Sci 1695; 371: 1695.
[68]
Kumar P, Kizhakkedathu J, Straus S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018; 8(1): 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[69]
Branisteanu D, Cojocaru C, Diaconu R, et al. Update on the etiopathogenesis of psoriasis (Review). Exp Ther Med 2022; 23(3): 201.
[http://dx.doi.org/10.3892/etm.2022.11124] [PMID: 35126704]
[70]
Büchau AS, Gallo RL. Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol 2007; 25(6): 616-24.
[http://dx.doi.org/10.1016/j.clindermatol.2007.08.016] [PMID: 18021900]
[71]
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial peptides: An update on classifications and databases. Int J Mol Sci 2021; 22(21): 11691.
[http://dx.doi.org/10.3390/ijms222111691] [PMID: 34769122]
[72]
Harder J, Schröder JM. Psoriatic scales: A promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 2005; 77(4): 476-86.
[http://dx.doi.org/10.1189/jlb.0704409] [PMID: 15629886]
[73]
Penberthy WT, Chari S, Cole AL, Cole AM. Retrocyclins and their activity against HIV-1. Cell Mol Life Sci 2011; 68(13): 2231-42.
[http://dx.doi.org/10.1007/s00018-011-0715-5] [PMID: 21553001]
[74]
Xu C, Wang A, Marin M, et al. Human defensins inhibit SARS-CoV-2 infection by blocking viral entry. Viruses 2021; 13(7): 1246.
[http://dx.doi.org/10.3390/v13071246] [PMID: 34206990]
[75]
Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol 2013; 425(24): 4965-80.
[http://dx.doi.org/10.1016/j.jmb.2013.09.038] [PMID: 24095897]
[76]
Takahashi T, Yamasaki K. Psoriasis and antimicrobial peptides. Int J Mol Sci 2020; 21(18): 6791.
[http://dx.doi.org/10.3390/ijms21186791] [PMID: 32947991]
[77]
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: Defenders of human reproductive health. Hum Reprod Update 2023; 29(1): 126-54.
[http://dx.doi.org/10.1093/humupd/dmac032] [PMID: 36130055]
[78]
Kudryashova E, Seveau SM, Kudryashov DS. Targeting and inactivation of bacterial toxins by human defensins. Biol Chem 2017; 398(10): 1069-85.
[http://dx.doi.org/10.1515/hsz-2017-0106] [PMID: 28593905]
[79]
Chen X, Zou X, Qi G, et al. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell Physiol Biochem 2018; 47(3): 1060-73.
[http://dx.doi.org/10.1159/000490183] [PMID: 29843147]
[80]
Zhang Q, Ul Ain Q, Schulz C, Pircher J. Role of antimicrobial peptide cathelicidin in thrombosis and thromboinflammation. Front Immunol 2023; 14: 1151926.
[http://dx.doi.org/10.3389/fimmu.2023.1151926] [PMID: 37090695]
[81]
Aloul KM, Nielsen JE, Defensor EB, et al. Upregulating human cathelicidin antimicrobial peptide LL-37 expression may prevent severe COVID-19 inflammatory responses and reduce microthrombosis. Front Immunol 2022; 13: 880961.
[http://dx.doi.org/10.3389/fimmu.2022.880961] [PMID: 35634307]
[82]
Schrumpf JA, van Sterkenburg MAJA, Verhoosel RM, Zuyderduyn S, Hiemstra PS. Interleukin 13 exposure enhances vitamin D-mediated expression of the human cathelicidin antimicrobial peptide 18/LL-37 in bronchial epithelial cells. Infect Immun 2012; 80(12): 4485-94.
[http://dx.doi.org/10.1128/IAI.06224-11] [PMID: 23045480]
[83]
Zhang L, Guerrero-Juarez CF, Hata T, et al. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 2015; 347(6217): 67-71.
[http://dx.doi.org/10.1126/science.1260972] [PMID: 25554785]
[84]
Yang D, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000; 192(7): 1069-74.
[http://dx.doi.org/10.1084/jem.192.7.1069] [PMID: 11015447]
[85]
Tripathi S, Verma A, Kim EJ, White MR, Hartshorn KL. LL-37 modulates human neutrophil responses to influenza A virus. J Leukoc Biol 2014; 96(5): 931-8.
[http://dx.doi.org/10.1189/jlb.4A1113-604RR] [PMID: 25082153]
[86]
Zeng J, Lei L, Zeng Q, et al. Ozone therapy attenuates NF-κB-mediated local inflammatory response and activation of TH17 cells in treatment for psoriasis. Int J Biol Sci 2020; 16(11): 1833-45.
[http://dx.doi.org/10.7150/ijbs.41940] [PMID: 32398953]
[87]
Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res 2020; 1867(6): 118677.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118677] [PMID: 32057918]
[88]
Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D, Lee K. S100 proteins in the epidermis. J Invest Dermatol 2004; 123(1): 23-33.
[http://dx.doi.org/10.1111/j.0022-202X.2004.22719.x] [PMID: 15191538]
[89]
Liang H, Li J, Zhang K. Pathogenic role of S100 proteins in psoriasis. Front Immunol 2023; 14: 1191645.
[http://dx.doi.org/10.3389/fimmu.2023.1191645] [PMID: 37346040]
[90]
Broome AM, Ryan D, Eckert RL. S100 protein subcellular localization during epidermal differentiation and psoriasis. J Histochem Cytochem 2003; 51(5): 675-85.
[http://dx.doi.org/10.1177/002215540305100513] [PMID: 12704215]
[91]
Lallyett C, Yeung CYC, Nielson RH, et al. Changes in S100 proteins identified in healthy skin following electrical stimulation: relevance for wound healing. Adv Skin Wound Care 2018; 31(7): 322-7.
[http://dx.doi.org/10.1097/01.ASW.0000533722.06780.03] [PMID: 29923902]
[92]
Zimmer DB, Weber DJ. The calcium-dependent interaction of s100b with its protein targets. Cardiovasc Psychiatry Neurol 2010; 2010: 1-17.
[http://dx.doi.org/10.1155/2010/728052] [PMID: 20827422]
[93]
Kurpet K, Chwatko G. S100 proteins as novel therapeutic targets in psoriasis and other autoimmune diseases. Molecules 2022; 27(19): 6640.
[http://dx.doi.org/10.3390/molecules27196640] [PMID: 36235175]
[94]
Chen Y, Wang C, Song J, Xu R, Ruze R, Zhao Y. S100A2 is a prognostic biomarker involved in immune infiltration and predict immunotherapy response in pancreatic cancer. Front Immunol 2021; 12: 758004.
[http://dx.doi.org/10.3389/fimmu.2021.758004] [PMID: 34887861]
[95]
Chow KH, Park HJ, George J, et al. S100A4 is a biomarker and regulator of glioma stem cells that is critical for mesenchymal transition in glioblastoma. Cancer Res 2017; 77(19): 5360-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1294] [PMID: 28807938]
[96]
Turnier JL, Fall N, Thornton S, et al. Urine S100 proteins as potential biomarkers of lupus nephritis activity. Arthritis Res Ther 2017; 19(1): 242.
[http://dx.doi.org/10.1186/s13075-017-1444-4] [PMID: 29065913]
[97]
Qian L, Gong J, Ma W, et al. Circulating S100A4 as a prognostic biomarker for patients with nonparoxysmal atrial fibrillation after catheter ablation. Ann Transl Med 2021; 9(18): 1400-0.
[http://dx.doi.org/10.21037/atm-21-1101] [PMID: 34733952]
[98]
Loosen SH, Benz F, Niedeggen J, et al. Serum levels of S100A6 are unaltered in patients with resectable cholangiocarcinoma. Clin Transl Med 2016; 5(1): e39.
[http://dx.doi.org/10.1186/s40169-016-0120-7] [PMID: 27709523]
[99]
Onsurathum S, Haonon O, Pinlaor P, et al. Proteomics detection of S100A6 in tumor tissue interstitial fluid and evaluation of its potential as a biomarker of cholangiocarcinoma. Tumour Biol 2018; 40(4)
[http://dx.doi.org/10.1177/1010428318767195] [PMID: 29629840]
[100]
Borsky P, Fiala Z, Andrys C, et al. Alarmins HMGB1, IL-33, S100A7, and S100A12 in psoriasis vulgaris. Mediat Inflamm 2020; 2020(7): 1-7.
[http://dx.doi.org/10.1155/2020/8465083] [PMID: 32377165]
[101]
Lu Z, Zheng S, Liu C, et al. S100A7 as a potential diagnostic and prognostic biomarker of esophageal squamous cell carcinoma promotes M2 macrophage infiltration and angiogenesis. Clin Transl Med 2021; 11(7): e459.
[http://dx.doi.org/10.1002/ctm2.459] [PMID: 34323409]
[102]
Liu G, Wu Q, Liu G, Song X, Zhang J. Retraction Note: Psoriasin (S100A7) is a novel biomarker for lung squamous cell carcinoma in humans. Cancer Cell Int 2016; 16(1): 40.
[http://dx.doi.org/10.1186/s12935-016-0316-3] [PMID: 27252596]
[103]
Qin W, Ho L, Wang J, Peskind E, Pasinetti GM. S100A7, a novel Alzheimer’s disease biomarker with non-amyloidogenic α-secretase activity acts via selective promotion of ADAM-10. PLoS One 2009; 4(1): e4183.
[http://dx.doi.org/10.1371/journal.pone.0004183] [PMID: 19159013]
[104]
Duvetorp A, Söderman J, Assarsson M, Skarstedt M, Svensson Å, Seifert O. Observational study on Swedish plaque psoriasis patients receiving narrowband-UVB treatment show decreased S100A8/A9 protein and gene expression levels in lesional psoriasis skin but no effect on S100A8/A9 protein levels in serum. PLoS One 2019; 14(3): e0213344.
[http://dx.doi.org/10.1371/journal.pone.0213344] [PMID: 30865695]
[105]
Hansson C, Eriksson C, Alenius GM. S-Calprotectin (S100A8/S100A9): A potential marker of inflammation in patients with psoriatic arthritis. J Immunol Res 2014; 2014
[106]
Jarlborg M, Courvoisier DS, Lamacchia C, et al. Serum calprotectin: A promising biomarker in rheumatoid arthritis and axial spondyloarthritis. Arthritis Res Ther 2020; 22(1): 105.
[http://dx.doi.org/10.1186/s13075-020-02190-3] [PMID: 32375861]
[107]
Li Y, He Y, Chen S, et al. S100A12 as biomarker of disease severity and prognosis in patients with idiopathic pulmonary fibrosis. Front Immunol 2022; 13: 810338.
[http://dx.doi.org/10.3389/fimmu.2022.810338] [PMID: 35185901]
[108]
Xie J, Luo C, Mo B, et al. Inflammation and oxidative stress role of s100a12 as a potential diagnostic and therapeutic biomarker in acute myocardial infarction. Oxid Med Cell Longev 2022; 2022: 2633123.
[http://dx.doi.org/10.1155/2022/2633123]
[109]
Wang X, Sun Z, Tian W, et al. S100A12 is a promising biomarker in papillary thyroid cancer. Sci Rep 2020; 10(1): 1724.
[http://dx.doi.org/10.1038/s41598-020-58534-1] [PMID: 32015423]
[110]
Witarto BS, Visuddho V, Witarto AP, Sampurna MTA, Irzaldy A. Performance of fecal S100A12 as a novel non-invasive diagnostic biomarker for pediatric inflammatory bowel disease: A systematic review and meta-analysis. J Pediatr 2023; 99(5): 432-42.
[http://dx.doi.org/10.1016/j.jped.2023.03.002] [PMID: 37094752]
[111]
Batycka-Baran A, Matusiak Ł, Nowicka-Suszko D, Szepietowski JC, Baran W. Increased serum levels of S100A4 and S100A15 in individuals suffering from hidradenitis suppurativa. J Clin Med 2021; 10(22): 5320.
[http://dx.doi.org/10.3390/jcm10225320] [PMID: 34830597]
[112]
Awad SM, Attallah DA, Salama RH, Mahran AM, Abu El-Hamed E. Serum levels of psoriasin (S100A7) and koebnerisin (S100A15) as potential markers of atherosclerosis in patients with psoriasis. Clin Exp Dermatol 2018; 43(3): 262-7.
[http://dx.doi.org/10.1111/ced.13370] [PMID: 29333662]
[113]
Oris C, Kahouadji S, Durif J, Bouvier D, Sapin V. S100B, actor and biomarker of mild traumatic brain injury. Int J Mol Sci 2023; 24(7): 6602.
[http://dx.doi.org/10.3390/ijms24076602] [PMID: 37047574]
[114]
Wang KK, Yang Z, Zhu T, et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 2018; 18(2): 165-80.
[http://dx.doi.org/10.1080/14737159.2018.1428089] [PMID: 29338452]
[115]
Michetti F, D’Ambrosi N, Toesca A, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2019; 148(2): 168-87.
[http://dx.doi.org/10.1111/jnc.14574] [PMID: 30144068]
[116]
Langeh U, Singh S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr Neuropharmacol 2021; 19(2): 265-77.
[http://dx.doi.org/10.2174/18756190MTA44NjEs3] [PMID: 32727332]
[117]
Papuć E, Rejdak K. Increased cerebrospinal fluid S100B and NSE reflect neuronal and glial damage in parkinson’s disease. Front Aging Neurosci 2020; 12: 156.
[http://dx.doi.org/10.3389/fnagi.2020.00156] [PMID: 32792937]
[118]
Dinarello CA. Introduction to the interleukin-1 family of cytokines and receptors: Drivers of innate inflammation and acquired immunity. Immunol Rev 2018; 281(1): 5-7.
[http://dx.doi.org/10.1111/imr.12624] [PMID: 29248001]
[119]
Luo Y, Zheng SG. Hall of fame among pro-inflammatory cytokines: Interleukin-6 gene and its transcriptional regulation mechanisms. Front Immunol 2016; 7(DEC): 604.
[http://dx.doi.org/10.3389/fimmu.2016.00604] [PMID: 28066415]
[120]
Gao Y, Tang J, Chen W, et al. Inflammation negatively regulates FOXP3 and regulatory T-cell function via DBC1. Proc Natl Acad Sci 2015; 112(25): E3246-54.
[http://dx.doi.org/10.1073/pnas.1421463112] [PMID: 26060310]
[121]
Tan Z, Jiang R, Wang X, et al. RORγt+IL-17+ neutrophils play a critical role in hepatic ischemia–reperfusion injury. J Mol Cell Biol 2013; 5(2): 143-6.
[http://dx.doi.org/10.1093/jmcb/mjs065] [PMID: 23362310]
[122]
Lu L, Lan Q, Li Z, et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci 2014; 111(33): E3432-40.
[http://dx.doi.org/10.1073/pnas.1408780111] [PMID: 25099355]
[123]
Xie L, Huang Z, Li H, Liu X, Zheng S, Su W. IL-38: A new player in inflammatory autoimmune disorders. Biomolecules 2019; 9(8): 345.
[http://dx.doi.org/10.3390/biom9080345] [PMID: 31387327]
[124]
Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J Biol Chem 2004; 279(14): 13677-88.
[http://dx.doi.org/10.1074/jbc.M400117200] [PMID: 14734551]
[125]
Dinarello C, Arend W, Sims J, et al. IL-1 family nomenclature. Nat Immunol 2010; 11(11): 973.
[http://dx.doi.org/10.1038/ni1110-973] [PMID: 20959797]
[126]
Watanabe S, Iwata Y, Fukushima H, Saito K, Tanaka Y, Hasegawa Y, et al. Neutrophil extracellular traps are induced in a psoriasis model of interleukin-36 receptor antagonist-deficient mice. Sci Reports 2020; 10(1): 1-11.
[http://dx.doi.org/10.1038/s41598-020-76864-y]
[127]
Li JM, Lu R, Zhang Y, et al. IL-36α/IL-36RA/IL-38 signaling mediates inflammation and barrier disruption in human corneal epithelial cells under hyperosmotic stress. Ocul Surf 2021; 22: 163-71.
[http://dx.doi.org/10.1016/j.jtos.2021.08.012] [PMID: 34428579]
[128]
Tortola L, Rosenwald E, Abel B, et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest 2012; 122(11): 3965-76.
[http://dx.doi.org/10.1172/JCI63451] [PMID: 23064362]
[129]
Mercurio L, Morelli M, Scarponi C, et al. IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell Death Dis 2018; 9(11): 1104.
[http://dx.doi.org/10.1038/s41419-018-1143-3] [PMID: 30377293]
[130]
Bachmann M, Scheiermann P, Härdle L, Pfeilschifter J, Mühl H. IL-36γ/IL-1F9, an innate T-bet target in myeloid cells. J Biol Chem 2012; 287(50): 41684-96.
[http://dx.doi.org/10.1074/jbc.M112.385443] [PMID: 23095752]
[131]
van de Veerdonk FL, Stoeckman AK, Wu G, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci 2012; 109(8): 3001-5.
[http://dx.doi.org/10.1073/pnas.1121534109] [PMID: 22315422]
[132]
Li Z, Ding Y, Peng Y, et al. Effects of IL-38 on macrophages and myocardial ischemic injury. Front Immunol 2022; 13: 894002.
[http://dx.doi.org/10.3389/fimmu.2022.894002] [PMID: 35634320]
[133]
Shaik Y, Sabatino G, Maccauro G, et al. IL-36 receptor antagonist with special emphasis on IL-38. Int J Immunopathol Pharmacol 2013; 26(1): 27-36.
[http://dx.doi.org/10.1177/039463201302600103] [PMID: 23527706]
[134]
de Graaf DM, Teufel LU, Joosten LAB, Dinarello CA. Interleukin-38 in health and disease. Cytokine 2022; 152: 155824.
[http://dx.doi.org/10.1016/j.cyto.2022.155824] [PMID: 35220115]
[135]
Boutet M-A, Bart G, Penhoat M, et al. Distinct expression of interleukin (IL)-36 α, β and γ, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol 2016; 184(2): 159-73.
[http://dx.doi.org/10.1111/cei.12761] [PMID: 26701127]
[136]
Li H, Zhu L, Wang R, et al. Therapeutic effect of IL-38 on experimental autoimmune uveitis: Reprogrammed immune cell landscape and reduced Th17 cell pathogenicity. Invest Ophthalmol Vis Sci 2021; 62(15): 31.
[http://dx.doi.org/10.1167/iovs.62.15.31] [PMID: 34967854]
[137]
Boutet MA, Nerviani A, Pitzalis C. IL-36, IL-37, and IL-38 cytokines in skin and joint inflammation: A comprehensive review of their therapeutic potential. Int J Mol Sci 2019; 20(6): 1257.
[http://dx.doi.org/10.3390/ijms20061257] [PMID: 30871134]
[138]
Palomo J, Troccaz S, Talabot-Ayer D, Rodriguez E, Palmer G. The severity of imiquimod-induced mouse skin inflammation is independent of endogenous IL-38 expression. PLoS One 2018; 13(3): e0194667.
[http://dx.doi.org/10.1371/journal.pone.0194667] [PMID: 29554104]
[139]
Xu WD, Huang AF. Role of interleukin-38 in chronic inflammatory diseases: A comprehensive review. Front Immunol 2018; 9(JUN): 1462.
[http://dx.doi.org/10.3389/fimmu.2018.01462] [PMID: 29988385]
[140]
Definition of autophagy - NCI Dictionary of Cancer Terms - NCI. Available form:https://www.cancer.gov/publications/dictionaries/cancer-terms/def/autophagy (Cited 2023 Jul 27).
[141]
Misrielal C, Mauthe M, Reggiori F, Eggen BJL. Autophagy in multiple sclerosis: Two sides of the same coin. Front Cell Neurosci 2020; 14: 603710.
[http://dx.doi.org/10.3389/fncel.2020.603710] [PMID: 33328897]
[142]
Lahiri V, Hawkins WD, Klionsky DJ. Watch What You (Self-) Eat: Autophagic mechanisms that modulate metabolism. Cell Metab 2019; 29(4): 803-26.
[http://dx.doi.org/10.1016/j.cmet.2019.03.003] [PMID: 30943392]
[143]
Mizushima N, Komatsu M. Autophagy: Renovation of cells and tissues. Cell 2011; 147(4): 728-41.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[144]
Ye X, Zhou XJ, Zhang H. Exploring the role of autophagy-related gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front Immunol 2018; 9(OCT): 2334.
[http://dx.doi.org/10.3389/fimmu.2018.02334] [PMID: 30386331]
[145]
Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ. Atg41/Icy2 regulates autophagosome formation. Autophagy 2015; 11(12): 2288-99.
[http://dx.doi.org/10.1080/15548627.2015.1107692] [PMID: 26565778]
[146]
Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015; 72(24): 4721-57.
[http://dx.doi.org/10.1007/s00018-015-2034-8] [PMID: 26390974]
[147]
Alirezaei M, Fox HS, Flynn CT, et al. Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy 2009; 5(2): 152-8.
[http://dx.doi.org/10.4161/auto.5.2.7348] [PMID: 19066443]
[148]
Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007; 128(5): 931-46.
[http://dx.doi.org/10.1016/j.cell.2006.12.044] [PMID: 17350577]
[149]
Pierdominici M, Vomero M, Barbati C, et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J 2012; 26(4): 1400-12.
[http://dx.doi.org/10.1096/fj.11-194175] [PMID: 22247332]
[150]
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469(7330): 323-35.
[http://dx.doi.org/10.1038/nature09782] [PMID: 21248839]
[151]
Levine B, Kroemer G. Biological functions of autophagy genes: A disease perspective. Cell 2019; 176(1-2): 11-42.
[http://dx.doi.org/10.1016/j.cell.2018.09.048] [PMID: 30633901]
[152]
Wu DJ, Adamopoulos ie. Autophagy and autoimmunity. Clin Immunol 2017; 176: 55-62.
[http://dx.doi.org/10.1016/j.clim.2017.01.007] [PMID: 28095319]
[153]
Shen D, Liu K, Wang H, Wang H. Autophagy modulation in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2022; 209(2): 140-50.
[http://dx.doi.org/10.1093/cei/uxac017] [PMID: 35641229]
[154]
Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, autophagy, NETosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis. Front Immunol 2021; 12: 809806.
[http://dx.doi.org/10.3389/fimmu.2021.809806] [PMID: 35003139]
[155]
Frangou E, Chrysanthopoulou A, Mitsios A, et al. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann Rheum Dis 2019; 78(2): 238-48.
[http://dx.doi.org/10.1136/annrheumdis-2018-213181] [PMID: 30563869]
[156]
Mayes MD, Bossini-Castillo L, Gorlova O, et al. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet 2014; 94(1): 47-61.
[http://dx.doi.org/10.1016/j.ajhg.2013.12.002] [PMID: 24387989]
[157]
Mitchell JS, Li N, Weinhold N, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat Commun 2016; 7(1): 12050.
[http://dx.doi.org/10.1038/ncomms12050] [PMID: 27363682]
[158]
Wang Z, Zhou H, Zheng H, et al. Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation. Autophagy 2021; 17(2): 529-52.
[http://dx.doi.org/10.1080/15548627.2020.1725381] [PMID: 32019420]
[159]
Zhang Q, Shi H, Zhang J, Jiang C, Zhou C. The paeonol target gene autophagy-related 5 has a potential therapeutic value in psoriasis treatment. PeerJ 2021; 9: e11278.
[http://dx.doi.org/10.7717/peerj.11278] [PMID: 34113484]
[160]
Klapan K, Simon D, Karaulov A, et al. Autophagy and skin diseases. Front Pharmacol 2022; 13: 844756.
[http://dx.doi.org/10.3389/fphar.2022.844756] [PMID: 35370701]
[161]
Kim HJ, Park J, Kim SK, Park H, Kim JE, Lee S. Autophagy: Guardian of skin barrier. Biomedicines 2022; 10(8): 1817.
[http://dx.doi.org/10.3390/biomedicines10081817] [PMID: 36009363]
[162]
Chechlinska M, Kowalewska M, Brzoska-Wojtowicz E, et al. Squamous cell carcinoma antigen 1 and 2 expression in cultured normal peripheral blood mononuclear cells and in vulvar squamous cell carcinoma. Tumour Biol 2010; 31(6): 559-67.
[http://dx.doi.org/10.1007/s13277-010-0069-x] [PMID: 20589490]
[163]
Ghonemy S, Mohamed B, Elkashishy K, Ibrahim AM. Squamous cell carcinoma antigen in psoriasis: An immunohistochemical study. J Clin Aesthet Dermatol 2021; 14(9): 50-3.
[PMID: 34980972]
[164]
Gonzalez M, March AR. Tongue Cancer.
[165]
Sun Y, Sheshadri N, Zong WX. SERPINB3 and B4: From biochemistry to biology. Semin Cell Dev Biol 2017; 62: 170-7.
[http://dx.doi.org/10.1016/j.semcdb.2016.09.005] [PMID: 27637160]
[166]
Schneider SS, Schick C, Fish KE, et al. A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. Proc Natl Acad Sci 1995; 92(8): 3147-51.
[http://dx.doi.org/10.1073/pnas.92.8.3147] [PMID: 7724531]
[167]
Karaaslan C, Birben E, Keskin O, Sahiner U, Sackesen C, Kalayci O. The role of SCCA1 in asthma related physiological events in the airway epithelium and the effect of promoter variants on asthma and gene function. Respir Med 2013; 107(3): 368-79.
[http://dx.doi.org/10.1016/j.rmed.2012.11.003] [PMID: 23199842]
[168]
Izuhara K, Yamaguchi Y, Ohta S, et al. Squamous cell carcinoma antigen 2 (SCCA2, SERPINB4): An emerging biomarker for skin inflammatory diseases. Int J Mol Sci 2018; 19(4): 1102.
[http://dx.doi.org/10.3390/ijms19041102] [PMID: 29642409]
[169]
Watanabe Y, Yamaguchi Y, Komitsu N, et al. Elevation of serum squamous cell carcinoma antigen 2 in patients with psoriasis: Associations with disease severity and response to the treatment. Br J Dermatol 2016; 174(6): 1327-36.
[http://dx.doi.org/10.1111/bjd.14426] [PMID: 26822223]
[170]
Takeda A, Higuchi D, Takahashi T, et al. Overexpression of serpin squamous cell carcinoma antigens in psoriatic skin. J Invest Dermatol 2002; 118(1): 147-54.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01610.x] [PMID: 11851888]
[171]
El-Rachkidy RG, Young HS, Griffiths CEM, Camp RDR. Humoral autoimmune responses to the squamous cell carcinoma antigen protein family in psoriasis. J Invest Dermatol 2008; 128(9): 2219-24.
[http://dx.doi.org/10.1038/jid.2008.71] [PMID: 18385761]
[172]
Gudjonsson JE, Ding J, Johnston A, et al. Assessment of the psoriatic transcriptome in a large sample: Additional regulated genes and comparisons with in vitro models. J Invest Dermatol 2010; 130(7): 1829-40.
[http://dx.doi.org/10.1038/jid.2010.36] [PMID: 20220767]
[173]
Karmelić I, Salarić I, Baždarić K, et al. Salivary Scca1, Scca2 and Trop2 in oral cancer patients-a cross-sectional pilot study. Dent J 2022; 10: 4.
[174]
Okoye JO, Erinle C, Ngokere AA, Jimoh A. Low CD4 cells and viral co-infection increase the risk of VaIN: Use of SCCA1 and Ki67 as diagno-prognostic biomarkers. Pathophysiology 2018; 25(1): 51-6.
[http://dx.doi.org/10.1016/j.pathophys.2017.09.004] [PMID: 29269193]
[175]
Zhou Z, Li W, Zhang F, Hu K. The value of squamous cell carcinoma antigen (SCCa) to determine the lymph nodal metastasis in cervical cancer: A meta-analysis and literature review. PLoS One 2017; 12(12): e0186165.
[http://dx.doi.org/10.1371/journal.pone.0186165] [PMID: 29227998]
[176]
Zhu H. Squamous cell carcinoma antigen: Clinical application and research status. Diagnostics 2022; 12(5): 1065.
[http://dx.doi.org/10.3390/diagnostics12051065] [PMID: 35626221]
[177]
Chen H, Tian L, Chen J, et al. Evaluation of 2 commercially systems for detection of serum squamous cell carcinoma antigen in pan squamous cell carcinoma. Cancer Control 2020; 27(1): 1073274820983025.
[178]
Study Record | Beta. Exploratory Evaluation of Biomarkers Associated With Treatment Response to Cosentyx (Secukinumab) in Psoriasis Patients (BIOMARKER). NCT03149900, 2019.
[179]
Interleukin 38 as a Biomarker for Metabolic Syndrome in Psoriatic Patients. NCT05076812, 2021.
[180]
ATG5 as a Serum Marker of Autophagy in Psoriatic Patient. NCT05279638, 2022.
[181]
Utility of Squamous Cell Carcinoma Antigen (SCCA) in Psoriasis (SCCAPSO). NCT04308616, 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy