Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Recent Update on Pathophysiology and Therapeutic Interventions of Alzheimer’s Disease

Author(s): Mohd. Kashif, Prathibha Sivaprakasam, Poornima Vijendra, Mohammad Waseem and Ashok Kumar Pandurangan*

Volume 29, Issue 43, 2023

Published on: 30 November, 2023

Page: [3428 - 3441] Pages: 14

DOI: 10.2174/0113816128264355231121064704

Price: $65

Abstract

Aim: Alzheimer’s disease (AD) has been identified as a progressive brain disorder associated with memory dysfunction and the accumulation of β-amyloid plaques and neurofibrillary tangles of τ protein. Mitochondria is crucial in maintaining cell survival, cell death, calcium regulation, and ATP synthesis. Mitochondrial dysfunction and linked calcium overload have been involved in the pathogenesis of AD. CRM2 (Collapsin response mediator protein-2) is involved in endosomal lysosomal trafficking as well as autophagy, and their reduced level is also a primary culprit in the progression of AD. In addition, Cholinergic neurotransmission and neuroinflammation are two other mechanisms implicated in AD onset and might be protective targets to attenuate disease progression. The microbiota-gut-brain axis (MGBA) is another crucial target for AD treatment. Crosstalk between gut microbiota and brain mutually benefitted each other, dysbiosis in gut microbiota affects the brain functions and leads to AD progression with increased AD-causing biomarkers. Despite the complexity of AD, treatment is only limited to symptomatic management. Therefore, there is an urgent demand for novel therapeutics that target associated pathways responsible for AD pathology. This review explores the role of different mechanisms involved in AD and possible therapeutic targets to protect against disease progression.

Background: Amidst various age-related diseases, AD is the most deleterious neurodegenerative disorder that affects more than 24 million people globally. Every year, approximately 7.7 million new cases of dementia have been reported. However, to date, no novel disease-modifying therapies are available to treat AD.

Objective: The aim of writing this review is to highlight the role of key biomarker proteins and possible therapeutic interventions that could play a crucial role in mitigating the ongoing prognosis of Alzheimer’s disease.

Materials and Methods: The available information about the disease was collected through multiple search engines, including PubMed, Science Direct, Clinical Trials, and Google Scholar.

Results: Accumulated pieces of evidence reveal that extracellular aggregation of β-amyloid plaques and intracellular tangles of τ protein are peculiar features of perpetuated Alzheimer’s disease (AD). Further, the significant role of mitochondria, calcium, and cholinergic pathways in the pathogenesis of AD makes the respiratory cell organelle a crucial therapeutic target in this neurodegenerative disease. All currently available drugs either delay the clinical damage to cells or temporarily attenuate some symptoms of Alzheimer’s disease.

Conclusion: The pathological features of AD are extracellular deposition of β-amyloid, acetylcholinesterase deregulation, and intracellular tangles of τ protein. The multifactorial heterogeneity of disease demands more research work in this field to find new therapeutic biological targets.

[1]
Alzheimer’s disease and related dementias. Available from: https://www.cdc.gov/aging/aginginfo/alzheimers.htm
[2]
Tripathi SM, Murray AD. Alzheimer’s dementia: The emerging role of positron emission tomography. Neuroscientist 2022; 28(5): 507-19.
[3]
Hatami A, Monjazeb S, Milton S, Glabe CG. Familial Alzheimer’s disease mutations within the amyloid precursor protein alter the aggregation and conformation of the amyloid-β peptide. J Biol Chem 2017; 292(8): 3172-85.
[http://dx.doi.org/10.1074/jbc.M116.755264] [PMID: 28049728]
[4]
Vadukul DM, Gbajumo O, Marshall KE, Serpell LC. Amyloidogenicity and toxicity of the reverse and scrambled variants of amyloid‐β 1‐42. FEBS Lett 2017; 591(5): 822-30.
[http://dx.doi.org/10.1002/1873-3468.12590] [PMID: 28185264]
[5]
Karisetty BC, Bhatnagar A, Armour EM, Beaver M, Zhang H, Elefant F. Amyloid-β peptide impact on synaptic function and neuroepigenetic gene control reveal new therapeutic strategies for Alzheimer’s disease. Front Mol Neurosci 2020; 13: 577622.
[6]
Hampel H, Hardy J, Blennow K, et al. The amyloid-β pathway in Alzheimer’s disease Mol Psychiatry 2021; 26(10): 5481-503.
[7]
Roda A, Serra-Mir G, Montoliu-Gaya L, Tiessler L, Villegas S. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen Res 2022; 17(8): 1666-74.
[8]
Kashif M, Waseem M, Vijendra PD, Pandurangan AK. Protective effects of cannabis in neuroinflammation-mediated Alzheimer’s disease. Medical Cannabis and the Effects of Cannabinoids on Fighting Cancer, Multiple Sclerosis, Epilepsy, Parkinson’s, and Other Neurodegenerative Diseases. IGI Global 2023; pp. 48-75.
[http://dx.doi.org/10.4018/978-1-6684-5652-1.ch002]
[9]
Seixas da Silva GS, Melo HM, Lourenco MV, et al. Amyloid-β oligomers transiently inhibit AMP-activated kinase and cause metabolic defects in hippocampal neurons. J Biol Chem 2017; 292(18): 7395-406.
[http://dx.doi.org/10.1074/jbc.M116.753525] [PMID: 28302722]
[10]
Burnouf S, Gorsky MK, Dols J, Grönke S, Partridge L. Aβ43 is neurotoxic and primes aggregation of Aβ40 in vivo. Acta Neuropathol 2015; 130(1): 35-47.
[http://dx.doi.org/10.1007/s00401-015-1419-y] [PMID: 25862636]
[11]
Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer’s disease. Neurotherapeutics. Springer Science and Business Media Deutschland GmbH 2022; 19: pp. 173-85.
[12]
Pascoal TA, Mathotaarachchi S, Mohades S, et al. Amyloid-β and hyperphosphorylated tau synergy drives metabolic decline in preclinical Alzheimer’s disease. Mol Psychiatry 2017; 22(2): 306-11.
[http://dx.doi.org/10.1038/mp.2016.37] [PMID: 27021814]
[13]
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol 2016; 15(7): 673-84.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[14]
Papanikolopoulou K, Skoulakis EMC. The power and richness of modelling tauopathies in Drosophila. Mol Neurobiol 2011; 44(1): 122-33.
[http://dx.doi.org/10.1007/s12035-011-8193-1] [PMID: 21681411]
[15]
Ferrari A, Hoerndli F, Baechi T, Nitsch RM, Götz J. β-amyloid induces paired helical filament-like tau filaments in tissue culture. J Biol Chem 2003; 278(41): 40162-8.
[http://dx.doi.org/10.1074/jbc.M308243200] [PMID: 12893817]
[16]
Peters F, Salihoglu H, Pratsch K, et al. Tau deletion reduces plaque‐associated BACE 1 accumulation and decelerates plaque formation in a mouse model of Alzheimer’s disease. EMBO J 2019; 38(23): e102345.
[http://dx.doi.org/10.15252/embj.2019102345] [PMID: 31701556]
[17]
Reddy PH, Reddy TP. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 2011; 8(4): 393-409.
[http://dx.doi.org/10.2174/156720511795745401]
[18]
De Castro IP, Martins LM, Loh SHY. Mitochondrial quality control and Parkinson’s disease: A pathway unfolds. Mol Neurobiol 2011; 43(2): 80-6.
[19]
Zhou Y, Zhen Y, Wang G, Liu B. Deconvoluting the complexity of reactive oxygen species (ROS) in neurodegenerative diseases. Front Neuroanat 2022; 16: 910427.
[http://dx.doi.org/10.3389/fnana.2022.910427] [PMID: 35756499]
[20]
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 2017; 39(1): 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711]
[21]
Huang JK, Ma PL, Ji SY, et al. Age-dependent alterations in the presynaptic active zone in a drosophila model of Alzheimer’s disease. Neurobiol Dis 2013; 51: 161-7.
[http://dx.doi.org/10.1016/j.nbd.2012.11.006] [PMID: 23149068]
[22]
Baek SH, Park SJ, Jeong JI, et al. Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer’s disease model. J Neurosci 2017; 37(20): 5099-110.
[http://dx.doi.org/10.1523/JNEUROSCI.2385-16.2017] [PMID: 28432138]
[23]
Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci 2012; 125(Pt 9): 2095-104.
[PMID: 22619228]
[24]
Varughese JT, Buchanan SK, Pitt AS. The role of voltage-dependent anion channel in mitochondrial dysfunction and human disease. Cells 2021; 10(7): 737.
[25]
Camara AKS, Zhou YF, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A key gatekeeper as potential therapeutic target. Front Physiol 2017; 8: 460.
[26]
Wu M, Zhang M, Yin X, et al. The role of pathological tau in synaptic dysfunction in Alzheimer’s diseases. Transl Neurodegener 2021; 10(1): 45.
[27]
Kruppa AJ, Buss F. Motor proteins at the mitochondria–cytoskeleton interface. J Cell Sci 2021; 134(7): jcs226084.
[http://dx.doi.org/10.1242/jcs.226084]
[28]
Cai Q, Tammineni P. Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimers Dis 2017; 57(4): 1087-103.
[http://dx.doi.org/10.3233/JAD-160726]
[29]
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11: 1094356.
[30]
Kamer KJ, Mootha VK. The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 2015; 16(9): 545-53.
[31]
Patron M, Granatiero V, Espino J, Rizzuto R, De Stefani D. MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death Differ 2019; 26(1): 179-95.
[http://dx.doi.org/10.1038/s41418-018-0113-8] [PMID: 29725115]
[32]
Pan X, Liu J, Nguyen T, et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 2013; 15(12): 1464-72.
[http://dx.doi.org/10.1038/ncb2868] [PMID: 24212091]
[33]
Drago I, Davis RL. Inhibiting the mitochondrial calcium uniporter during development impairs memory in adult drosophila. Cell Rep 2016; 16(10): 2763-76.
[http://dx.doi.org/10.1016/j.celrep.2016.08.017] [PMID: 27568554]
[34]
Rozenfeld M, Azoulay IS, Ben Kasus Nissim T, et al. Essential role of the mitochondrial Na+/Ca2+ exchanger NCLX in mediating PDE2-dependent neuronal survival and learning. Cell Rep 2022; 41(10): 111772.
[http://dx.doi.org/10.1016/j.celrep.2022.111772] [PMID: 36476859]
[35]
Palty R, Silverman WF, Hershfinkel M, et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 2010; 107(1): 436-41.
[http://dx.doi.org/10.1073/pnas.0908099107] [PMID: 20018762]
[36]
Luongo TS, Lambert JP, Gross P, et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature 2017; 545(7652): 93-7.
[http://dx.doi.org/10.1038/nature22082] [PMID: 28445457]
[37]
Kostic M, Ludtmann MHR, Bading H, et al. PKA phosphorylation of NCLX reverses mitochondrial calcium overload and depolarization, promoting survival of PINK1-deficient dopaminergic neurons. Cell Rep 2015; 13(2): 376-86.
[http://dx.doi.org/10.1016/j.celrep.2015.08.079] [PMID: 26440884]
[38]
Wood-Kaczmar A, Deas E, Wood NW, Abramov AY. The role of the mitochondrial NCX in the mechanism of neurodegeneration in Parkinson’s disease. Adv Exp Med Biol 2013; 961: 241-9.
[39]
Gobbi P, Castaldo P, Minelli A, et al. Mitochondrial localization of Na+/Ca2+ exchangers NCX1–3 in neurons and astrocytes of adult rat brain in situ. Pharmacol Res 2007; 56(6): 556-65.
[http://dx.doi.org/10.1016/j.phrs.2007.10.005] [PMID: 18024055]
[40]
Briston T, Selwood DL, Szabadkai G, Duchen MR. Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci 2019; 40(1): 50-70.
[41]
Angelova PR, Esteras N, Abramov AY. Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Med Res Rev 2021; 41(2): 770-84.
[42]
Hansson Petersen CA, Alikhani N, Behbahani H, et al. The amyloid-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. 2008. Available from: www.pnas.org/cgi/content/full/
[43]
Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1998; 1(5): 366-73.
[http://dx.doi.org/10.1038/1577] [PMID: 10196525]
[44]
Qiu J, Tan YW, Hagenston AM, et al. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun 2013; 4(1): 2034.
[http://dx.doi.org/10.1038/ncomms3034] [PMID: 23774321]
[45]
Shevtsova EF, Angelova PR, Stelmashchuk OA, et al. Pharmacological sequestration of mitochondrial calcium uptake protects against dementia and β-amyloid neurotoxicity. Sci Rep 2022; 12(1): 12766.
[http://dx.doi.org/10.1038/s41598-022-16817-9] [PMID: 35896565]
[46]
García-Ayllón MS, Small DH, Avila J, Sáez-Valero J. Revisiting the role of acetylcholinesterase in Alzheimers disease: Cross-talk with β-tau and p-amyloid. Front Mol Neurosci 2011; 4: 22.
[47]
De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry 2001; 40(35): 10447-57.
[http://dx.doi.org/10.1021/bi0101392] [PMID: 11523986]
[48]
Wikström M, Sharma V. Proton pumping by cytochrome c oxidase – A 40 year anniversary. Biochim Biophys Acta Bioenerg 2018; 1859(9): 692-8.
[49]
Atamna H, Boyle K. Amyloid-peptide binds with heme to form a peroxidase: Relationship to the cytopa-thologies of Alzheimer’s disease 2006. Available from: www.pnas.orgcgidoi10.1073pnas. 0600134103
[50]
Pickrell AM, Fukui H, Moraes CT. The role of cytochrome c oxidase deficiency in ROS and amyloid plaque formation. J Bioenerg Biomembr 2009; 41(5): 453-6.
[http://dx.doi.org/10.1007/s10863-009-9245-3] [PMID: 19795195]
[51]
Cardoso SM, Proença MT, Santos S, Santana I, Oliveira CR. Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging 2004; 25(1): 105-10.
[http://dx.doi.org/10.1016/S0197-4580(03)00033-2] [PMID: 14675736]
[52]
Dumont M, Stack C, Elipenahli C, et al. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. FASEB J 2011; 25(11): 4063-72.
[http://dx.doi.org/10.1096/fj.11-186650] [PMID: 21825035]
[53]
Pecina P, Čapková M, Chowdhury SKR, et al. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2003; 1639(1): 53-63.
[http://dx.doi.org/10.1016/S0925-4439(03)00127-3] [PMID: 12943968]
[54]
Lane N. Hot mitochondria? PLoS Biol 2018; 16(1): e2005113.
[http://dx.doi.org/10.1371/journal.pbio.2005113]
[55]
Campagna J, Vadivel K, Jagodzinska B, et al. Evaluation of an allosteric BACE inhibitor peptide to identify mimetics that can interact with the loop f region of the enzyme and prevent APP cleavage. J Mol Biol 2018; 430(11): 1566-76.
[http://dx.doi.org/10.1016/j.jmb.2018.04.002] [PMID: 29649434]
[56]
Pacheco-Quinto J, Herdt A, Eckman CB, Eckman EA. Endothelin-converting enzymes and related metalloproteases in Alzheimer’s disease. J Alzheimers Dis 2013; 33(Suppl 1): S101-10.
[57]
Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 2005; 120(1): 137-49.
[http://dx.doi.org/10.1016/j.cell.2004.11.012] [PMID: 15652488]
[58]
Runeberg-Roos P, Virtanen H, Saarma M. RET(MEN 2B) is active in the endoplasmic reticulum before reaching the cell surface. Oncogene 2007; 26(57): 7909-15.
[http://dx.doi.org/10.1038/sj.onc.1210591] [PMID: 17599050]
[59]
Caberlotto L, Carboni L, Zanderigo F, et al. Differential effects of glycogen synthase kinase 3 (GSK3) inhibition by lithium or selective inhibitors in the central nervous system. Naunyn Schmiedebergs Arch Pharmacol 2013; 386(10): 893-903.
[http://dx.doi.org/10.1007/s00210-013-0893-9] [PMID: 23793101]
[60]
Maccioni RB, Rojo LE, Fernández JA, Kuljis RO. The role of neuroimmunomodulation in Alzheimer’s disease. Ann N Y Acad Sci 2009; 1153: 240-6.
[http://dx.doi.org/10.1111/j.1749-6632.2008.03972.x]
[61]
Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, Tremblay MÈ. Surveillance, phagocytosis, and inflammation: How never-resting microglia influence adult hippocampal neurogenesis. Neural Plast 2014; 2014: 610343.
[62]
Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol 2010; 6(4): 193-201.
[http://dx.doi.org/10.1038/nrneurol.2010.17] [PMID: 20234358]
[63]
Dai XM, Ryan GR, Hapel AJ, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. 2002. Available from: www.bloodjournal.org
[64]
Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2005; 2(1): 22.
[http://dx.doi.org/10.1186/1742-2094-2-22] [PMID: 16212664]
[65]
Zhang Y, Zhao Y, Zhang J, Yang G. Mechanisms of NLRP3 inflammasome activation: Its role in the treatment of Alzheimer’s disease. Neurochem Res 2020; 45(11): 2560-72.
[66]
Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer’s disease. Adv Protein Chem Struct Biol 2017; 108: 33-57.
[http://dx.doi.org/10.1016/bs.apcsb.2017.02.001] [PMID: 28427563]
[67]
Wang B, Huang X, Pan X, et al. Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain Behav Immun 2020; 88: 132-43.
[http://dx.doi.org/10.1016/j.bbi.2020.06.019] [PMID: 32553784]
[68]
Carabotti M, Scirocco A, Antonietta Maselli M, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[69]
Wang HX, Wang YP. Gut microbiota-brain axis. Chin Med J 2016; 129(19): 2373-80.
[http://dx.doi.org/10.4103/0366-6999.190667]
[70]
Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: Paradigm shift in neuroscience. J Neurosci 2014; 34(46): 15490-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3299-14.2014] [PMID: 25392516]
[71]
Hugon P, Dufour JC, Colson P, Fournier PE, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect Dis 2015; 15(10): 1211-9.
[72]
Nguyen NM, Cho J, Lee C. Gut microbiota and Alzheimer’s disease: How to study and apply their relationship. Int J Mol Sci 2023; 24(4): 4047.
[73]
Janeiro MH, Ramírez MJ, Solas M. Dysbiosis and Alzheimer’s disease: Cause or treatment opportunity? Cell Mol Neurobiol 2022; 42(2): 377-87.
[74]
Shabbir U, Arshad MS, Sameen A, Oh DH. Crosstalk between gut and brain in Alzheimer’s disease: The role of gut microbiota modulation strategies. Nutrients 2021; 13: 1-23.
[75]
Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016; 74(10): 624-34.
[http://dx.doi.org/10.1093/nutrit/nuw023] [PMID: 27634977]
[76]
Haran JP, Bhattarai SK, Foley SE, et al. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. MBio 2019; 10(3): e00632-19.
[http://dx.doi.org/10.1128/mBio.00632-19] [PMID: 31064831]
[77]
FDA’s decision to approve new treatment for Alzheimer’s disease Available from: https://www.fda.gov/drugs/news-events-human-drugs/fdas-decision-approve-new-treatment-alzheimers Accessed on June 7, 2021.
[78]
Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimer's Dis 2017; 57: 1041-8.
[http://dx.doi.org/10.3233/JAD-160763]
[79]
Cummings J, Apostolova L, Rabinovici GD, et al. Lecanemab: Appropriate use recommendations. J Prev Alzheimers Dis 2023; 10(3): 362-77.
[80]
Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med 2021; 384(18): 1691-704.
[http://dx.doi.org/10.1056/NEJMoa2100708] [PMID: 33720637]
[81]
Palanimuthu D, Poon R, Sahni S, et al. A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer’s disease. Eur J Med Chem 2017; 139: 612-32.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.021] [PMID: 28841514]
[82]
Grasso GI, Bellia F, Arena G, Satriano C, Vecchio G, Rizzarelli E. Multitarget trehalose-carnosine conjugates inhibit Aβ aggregation, tune copper(II) activity and decrease acrolein toxicity. Eur J Med Chem 2017; 135: 447-57.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.060] [PMID: 28475972]
[83]
Kaufmann WE, Sprouse J, Rebowe N, Hanania T, Klamer D, Missling CU. ANAVEX®2-73 (blarcamesine), a Sigma-1 receptor agonist, ameliorates neurologic impairments in a mouse model of Rett syndrome. Pharmacol Biochem Behav 2019; 187: 172796.
[http://dx.doi.org/10.1016/j.pbb.2019.172796] [PMID: 31704481]
[84]
Blarcamesine phase 2b/3 Alzheimer study exceeds enrollment goal. Available from: https://www.neurologylive.com/view/blarcamesine-phase-2b-3-alzheimer-study-exceeds-enrollment-goal (Accessed on 20th June 2021).
[85]
Press DZ, Musaeus CS, Zhao L, et al. Levetiracetam increases hippocampal blood flow in Alzheimer’s disease as measured by arterial spin labelling mri. J Alzheimer's Dis 2023; 93(3): 939-48.
[http://dx.doi.org/10.3233/JAD-220614]
[86]
A study to evaluate the efficacy and safety of abbv-8e12 in subjects with early Alzheimer’s disease. Available from: https://clinicaltrials.gov/ct2/show/NCT02880956 (Last Update Posted: May 6, 2021).
[87]
A study to confirm safety and efficacy of Lecanemab in participants with early Alzheimer’s disease (Clarity AD). Available from: https://clinicaltrials.gov/ct2/show/NCT03887455 (Last Update Posted: April 9, 2021).
[88]
Benfotiamine in Alzheimer’s disease: A pilot study (Benfotiamine). Available from: https://clinicaltrials.gov/ct2/show/NCT02292238 (Last Update Posted: July 16, 2020).
[89]
Candesartan’s effects on Alzheimer’s disease and related biomarkers (CEDAR). Available from: https://clinicaltrials.gov/ct2/show/NCT02646982 (Last Update Posted: Jan 13, 2021).
[90]
A trial of Cilostazol in patients with mild cognitive impairment (COMCID). Available from: https://clinicaltrials.gov/ct2/show/NCT02491268 (Last Up-date Posted: Dec 4, 2020).
[91]
A study of crenezumab versus placebo to evaluate the efficacy and safety in partic-ipants with prodromal to mild Alzheimer’s disease (AD) (CREAD 2). Available from: https://clinicaltrials.gov/ct2/show/NCT03114657. (Last Update Posted: July 16, 2020).
[92]
Study of daratumumab in patients with mild to moderate Alzheimer’s disease (DARZAD). Available from: https://clinicaltrials.gov/ct2/show/NCT04070378 (Last Update Posted: July 21, 2020).
[93]
Curcumin and yoga therapy for those at risk for Alzheimer’s disease. Available from: https://clinicaltrials.gov/ct2/show/NCT01811381.Curcumin (Last Update Posted: Sep. 17, 2020).
[94]
Allopregnanolone regenerative therapeutic for early Alzheimer’s disease: Intramuscular study (Allo-IM). Available from: https://clinicaltrials.gov/ct2/show/NCT03748303 (Last update posted: April 27, 2021).
[95]
BDPP Treatment for mild cognitive impairment (MCI) and prediabetes or type 2 diabetes mellitus (T2DM) (BDPP). Available from: https://clinicaltrials.gov/ct2/show/NCT02502253 (Last update posted: June 9, 2021).
[96]
A novel therapeutic target for Alzheimer’s disease in men and women 50-85 years of age. Available from: https://clinicaltrials.gov/ct2/show/NCT03752294 (Last update posted: November 23, 2021).
[97]
Efavirenz for patients with Alzheimer’s disease (EPAD). Available from: https://clinicaltrials.gov/ct2/show/NCT03706885 (Last update posted: Dec 22, 2020).
[98]
Huxley RR, Neil H A W. The relation between dietary flavonol intake and coronary heart disease mortality: A meta-analysis of prospective cohort studies. Eur J Clin Nutr 2003; 57(8): 904-8.
[http://dx.doi.org/10.1038/sj.ejcn.1601624] [PMID: 12879084]
[99]
Khan MTH, Orhan I, Şenol FS, et al. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem Biol Interact 2009; 181(3): 383-9.
[http://dx.doi.org/10.1016/j.cbi.2009.06.024] [PMID: 19596285]
[100]
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin - A mini-review. Life Sci 2014; 113(1-2): 1-6.
[http://dx.doi.org/10.1016/j.lfs.2014.07.029] [PMID: 25109791]
[101]
Cunha BA, Baron J, Cunha CB. Similarities and differences between doxycycline and minocycline: Clinical and antimicrobial stewardship considerations. Eur J Clin Microbiol Infect Dis 2018; 37(1): 15-20.
[http://dx.doi.org/10.1007/s10096-017-3081-x]
[102]
Henehan M, Montuno M, De Benedetto A. Doxycycline as an anti-inflammatory agent: Updates in dermatology. J Eur Acad Dermatol Venereol 2017; 31(11): 1800-8.
[http://dx.doi.org/10.1111/jdv.14345]
[103]
Costa R, Speretta E, Crowther DC, Cardoso I. Testing the therapeutic potential of doxycycline in a Drosophila melanogaster model of Alzheimer disease. J Biol Chem 2011; 286(48): 41647-55.
[http://dx.doi.org/10.1074/jbc.M111.274548] [PMID: 21998304]
[104]
Cheng Y, Feng Z, Zhang Q, Zhang J. Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin 2006; 27(2): 129-39.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00267.x] [PMID: 16412260]
[105]
Onozuka H, Nakajima A, Matsuzaki K, et al. Nobiletin, a citrus flavonoid, improves memory impairment and Abeta pathology in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(3): 739-44.
[http://dx.doi.org/10.1124/jpet.108.140293] [PMID: 18544674]
[106]
Jun D, Musilova L, Pohanka M, Jung YS, Bostik P, Kuca K. Reactivation of human acetylcholinesterase and butyrylcholinesterase inhibited by leptophosoxon with different oxime reactivators in vitro. Int J Mol Sci 2010; 11(8): 2856-63.
[http://dx.doi.org/10.3390/ijms11082856] [PMID: 21152278]
[107]
Sato M, Murakami K, Uno M, et al. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem 2013; 288(32): 23212-24.
[http://dx.doi.org/10.1074/jbc.M113.464222] [PMID: 23792961]
[108]
Lopez JE, Krishnavajhala A, Garcia MN, Bermudez S. Erratum: Tick-borne relapsing fever spirochetes in the Americas. Vet Sci. 2019; 3: p. (3)16.
[http://dx.doi.org/10.3390/vetsci3030016]
[109]
Belkacemi A, Doggui S, Dao L, Ramassamy C. Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev Mol Med 2011; 13: e34.
[http://dx.doi.org/10.1017/S1462399411002055] [PMID: 22051121]
[110]
Guo AJY, Xie HQ, Choi RCY, et al. Galangin, a flavonol derived from Rhizoma Alpiniae officinarum, inhibits acetylcholinesterase activity in vitro. Chem Biol Interact 2010; 187(1-3): 246-8.
[http://dx.doi.org/10.1016/j.cbi.2010.05.002] [PMID: 20452337]
[111]
Beg T, Jyoti S, Naz F, et al. Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2018; 17(6): 421-9.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[112]
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol 2021; 910: 174492.
[http://dx.doi.org/10.1016/j.ejphar.2021.174492] [PMID: 34516952]
[113]
Wang S, Wang YJ, Su Y, et al. Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology 2012; 33(3): 482-90.
[http://dx.doi.org/10.1016/j.neuro.2012.03.003] [PMID: 22445961]
[114]
Lawal M, Olotu FA, Soliman MES. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Comput Biol Med 2018; 98: 168-77.
[http://dx.doi.org/10.1016/j.compbiomed.2018.05.012] [PMID: 29860210]
[115]
Nafar F, Clarke JP, Mearow KM. Coconut oil protects cortical neurons from amyloid beta toxicity by enhancing signaling of cell survival pathways. Neurochem Int 2017; 105: 64-79.
[http://dx.doi.org/10.1016/j.neuint.2017.01.008] [PMID: 28126466]
[116]
Ge W, Ren C, Xing L, et al. Aβ pathology in 5×FAD mice. Technol Chin 2021; 13
[117]
Zhao C, Su P, Lv C, et al. Berberine alleviates amyloid β-induced mitochondrial dysfunction and synaptic loss. Oxid Med Cell Longev 2019; 2019: 7593608.
[http://dx.doi.org/10.1155/2019/7593608]
[118]
Sanz-Blasco S, Valero RA, Rodríguez-Crespo I, Villalobos C, Núñez L. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 2008; 3(7): e2718.
[http://dx.doi.org/10.1371/journal.pone.0002718] [PMID: 18648507]
[119]
Calvo-Rodríguez M, García-Durillo M, Villalobos C, Núñez L. Aging enables Ca2+ overload and apoptosis induced by amyloid-β oligomers in rat hippocampal neurons: Neuroprotection by non-steroidal anti-inflammatory drugs and r-flurbiprofen in aging neurons. J Alzheimers Dis 2016; 54(1): 207-21.
[http://dx.doi.org/10.3233/JAD-151189] [PMID: 27447424]
[120]
Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, et al. Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol 2010; 79(2): 239-50.
[http://dx.doi.org/10.1016/j.bcp.2009.07.028] [PMID: 19682437]
[121]
Naga KK, Geddes JW. Dimebon inhibits calcium-induced swelling of rat brain mitochondria but does not alter calcium retention or cytochrome C release. Neuromolecular Med 2011; 13(1): 31-6.
[http://dx.doi.org/10.1007/s12017-010-8130-x] [PMID: 20625939]
[122]
Sabogal-Guáqueta AM, Hobbie F, Keerthi A, et al. Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed Pharmacother 2019; 118: 109295.
[http://dx.doi.org/10.1016/j.biopha.2019.109295] [PMID: 31545255]
[123]
Ruiz A, Alberdi E, Matute C. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis 2014; 5(4): e1156.
[http://dx.doi.org/10.1038/cddis.2014.134] [PMID: 24722281]
[124]
Chi CW, Wang CN, Lin YL, Chen CF, Shiao YJ. Tournefolic acid B methyl ester attenuates glutamate-induced toxicity by blockade of ROS accumulation and abrogating the activation of caspases and JNK in rat cortical neurons. J Neurochem 2005; 92(3): 692-700.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02912.x] [PMID: 15659238]
[125]
Park JE, Elkamhawy A, Hassan AHE, et al. Synthesis and evaluation of new pyridyl/pyrazinyl thiourea derivatives: Neuroprotection against amyloid-β-induced toxicity. Eur J Med Chem 2017; 141: 322-44.
[126]
Calvo-Rodriguez M, Hou SS, Snyder AC, et al. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat Commun 2020; 11(1): 2146.
[http://dx.doi.org/10.1038/s41467-020-16074-2] [PMID: 32358564]
[127]
Xie N, Wu C, Wang C, et al. Inhibition of the mitochondrial calcium uniporter inhibits Aβ-induced apoptosis by reducing reactive oxygen species-mediated endoplasmic reticulum stress in cultured microglia. Brain Res 2017; 1676: 100-6.
[http://dx.doi.org/10.1016/j.brainres.2017.08.035] [PMID: 28939404]
[128]
Jaruszewski KM, Ramakrishnan S, Poduslo JF, Kandimalla KK. Chitosan enhances the stability and targeting of immunonanovehicles to cerebro-vascular deposits of Alzheimer’s disease amyloid protein. Nanomedicine 2012; 8(2): 250-60.
[http://dx.doi.org/10.1016/j.nano.2011.06.008] [PMID: 21704598]
[129]
Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 2014; 35(1): 456-65.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.063] [PMID: 24099709]
[130]
Lazar AN, Mourtas S, Youssef I, et al. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. Nanomedicine 2013; 9(5): 712-21.
[http://dx.doi.org/10.1016/j.nano.2012.11.004] [PMID: 23220328]
[131]
Bernardi A, Frozza RL, Meneghetti A, et al. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models. Int J Nanomedicine 2012; 7: 4927-42.
[http://dx.doi.org/10.2147/IJN.S35333] [PMID: 23028221]
[132]
Song Q, Huang M, Yao L, et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 2014; 8(3): 2345-59.
[http://dx.doi.org/10.1021/nn4058215] [PMID: 24527692]
[133]
Vaz M, Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur J Pharmacol 2020; 887: 173554.
[http://dx.doi.org/10.1016/j.ejphar.2020.173554] [PMID: 32941929]
[134]
Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian spice curcumin against Amyloid-ß in Alzheimer’s disease. J Alzheimer's Dis 2018; 61: 843-66.
[135]
den Haan J, Morrema THJ, Rozemuller AJ, Bouwman FH, Hoozemans JJM. Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimer’s disease brains: Implications for in-vivo diagnostics. Acta Neuropathol Commun 2018; 6(1): 75.
[http://dx.doi.org/10.1186/s40478-018-0577-2] [PMID: 30092839]
[136]
Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s-amyloid fibrils. In Vitro J Neurosci Res 2004; 75(6): 742-50.
[137]
Das S, Dowding JM, Klump KE, Mcginnis JF, Self W, Seal S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine 2013; 8(9): 1483-508.
[138]
Elnaggar Y, Etman S, Abdelmonsif D, Abdallah O. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: Pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 2015; 10: 5459-73.
[http://dx.doi.org/10.2147/IJN.S87336] [PMID: 26346130]
[139]
Chen Q, Du Y, Zhang K, et al. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano 2018; 12(2): 1321-38.
[http://dx.doi.org/10.1021/acsnano.7b07625] [PMID: 29364648]
[140]
Igartúa DE, Martinez CS, Temprana CF, Alonso SV, Prieto MJ. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int J Pharm 2018; 544(1): 191-202.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.032] [PMID: 29678547]
[141]
Aso E, Martinsson I, Appelhans D, et al. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine 2019; 17: 198-209.
[http://dx.doi.org/10.1016/j.nano.2019.01.010] [PMID: 30708052]
[142]
Ferreira LM, Cervi VF, Gehrcke M, et al. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: Selective antiglioma formulation for intravenous administration. Colloids Surf B Biointerfaces 2015; 130: 272-7.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.023] [PMID: 25935266]
[143]
Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int J Biol Macromol 2018; 118(Pt A): 1211-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.190] [PMID: 30001606]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy