Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Anti-Gene IGF-I Vaccines in Cancer Gene Therapy: A Review of a Case of Glioblastoma

Author(s): Annabelle Trojan, Yu-Chun Lone, Ignacio Briceno and Jerzy Trojan*

Volume 31, Issue 15, 2024

Published on: 28 November, 2023

Page: [1983 - 2002] Pages: 20

DOI: 10.2174/0109298673237968231106095141

Price: $65

Abstract

Objective: Vaccines for the deadliest brain tumor - glioblastoma (GBM) - are generally based on targeting growth factors or their receptors, often using antibodies. The vaccines described in the review were prepared to suppress the principal cancer growth factor - IGF-I, using anti-gene approaches either of antisense (AS) or of triple helix (TH) type. Our objective was to increase the median survival of patients treated with AS and TH cell vaccines.

Methodology: The cells were transfected in vitro by both constructed IGF-I AS and IGF-I TH expression episomal vectors; part of these cells was co-cultured with plant phytochemicals, modulating IGF-I expression. Both AS and TH approaches completely suppressed IGF-I expression and induced MHC-1 / B7 immunogenicity related to the IGF-I receptor signal.

Results: This immunogenicity proved to be stronger in IGF-I TH than in IGF-I AS-prepared cell vaccines, especially in TH / phytochemical cells. The AS and TH vaccines generated an important TCD8+ and TCD8+CD11b- immune response in treated GBM patients and increased the median survival of patients up to 17-18 months, particularly using TH vaccines; in some cases, 2- and 3-year survival was reported. These clinical results were compared with those obtained in therapies targeting other growth factors.

Conclusion: The anti-gene IGF-I vaccines continue to be applied in current GBM personalized medicine. Technical improvements in the preparation of AS and TH vaccines to increase MHC-1 and B7 immunogenicity have, in parallel, allowed to increase in the median survival of patients.

[2]
Anderson, W.F.; Blaese, R.M.; Culver, K. The ADA human gene therapy clinical protocol: Points to consider response with clinical protocol, July 6, 1990. Hum. Gene Ther., 1990, 1(3), 331-362.
[http://dx.doi.org/10.1089/hum.1990.1.3-331] [PMID: 11642817]
[3]
Trojan, J.; Johnson, T.R.; Rudin, S.D.; Ilan, J.; Tykocinski, M.L.; Ilan, J. Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA. Science, 1993, 259(5091), 94-97.
[http://dx.doi.org/10.1126/science.8418502] [PMID: 8418502]
[4]
Habib, N.A. Cancer Gene Therapy - Post Achievements and Future Challenges, 1st ed; Kluwer Academic/Plenum Publishers: New York, 2002.
[http://dx.doi.org/10.1007/b113267]
[5]
You, Y. Targets in Gene Therapy, 1st ed.; TechOpen: Vienna / Riyeka, Austria, 2011.
[http://dx.doi.org/10.5772/1012]
[6]
Libutti, S.K. Recording 25 years of progress in cancer gene therapy. Cancer Gene Ther., 2019, 26(11-12), 345-346.
[http://dx.doi.org/10.1038/s41417-019-0121-y] [PMID: 31285540]
[7]
Giamas, G. Cancer gene therapy: Vision and strategy for the new decade. Cancer Gene Ther., 2020, 27(3-4), 115.
[http://dx.doi.org/10.1038/s41417-020-0169-8] [PMID: 32066853]
[8]
Trojan, J.; Cloix, J-F.; Ardourel, M-Y.; Chatel, M.; Anthony, D.D. IGF-I biology and targeting in malignant glioma. Neurosci., 2007, 145(3), 795-811.
[http://dx.doi.org/10.1016/j.neuroscience.2007.01.021]
[9]
Townsend, S.E.; Allison, J.P. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science, 1993, 259(5093), 368-370.
[http://dx.doi.org/10.1126/science.7678351] [PMID: 7678351]
[10]
Guo, Y.; Wu, M.; Chen, H.; Wang, X.; Liu, G.; Li, G.; Ma, J.; Sy, M.S. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science, 1994, 263(5146), 518-520.
[http://dx.doi.org/10.1126/science.7507262] [PMID: 7507262]
[11]
Sampson, J.H.; Archer, G.E.; Mitchell, D.A.; Heimberger, A.B.; Herndon, J.E., II; Lally-Goss, D.; McGehee-Norman, S.; Paolino, A.; Reardon, D.A.; Friedman, A.H.; Friedman, H.S.; Bigner, D.D. An epidermal growth factor receptor variant III–targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol. Cancer Ther., 2009, 8(10), 2773-2779.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0124] [PMID: 19825799]
[12]
Dietrich, P.Y.; Dutoit, V.; Tran Thang, N.N.; Walker, P.R. T-cell immunotherapy for malignant glioma: Toward a combined approach. Curr. Opin. Oncol., 2010, 22(6), 604-610.
[http://dx.doi.org/10.1097/CCO.0b013e32833dead8] [PMID: 20739889]
[13]
Baumeister, S.H.; Freeman, G.J.; Dranoff, G.; Sharpe, A.H. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol., 2016, 34(1), 539-573.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112049] [PMID: 26927206]
[14]
Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; Smylie, M.; Dummer, R.; Hill, A.; Hogg, D.; Haanen, J.; Carlino, M.S.; Bechter, O.; Maio, M.; Marquez-Rodas, I.; Guidoboni, M.; McArthur, G.; Lebbé, C.; Ascierto, P.A.; Long, G.V.; Cebon, J.; Sosman, J.; Postow, M.A.; Callahan, M.K.; Walker, D.; Rollin, L.; Bhore, R.; Hodi, F.S.; Larkin, J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2017, 377(14), 1345-1356.
[http://dx.doi.org/10.1056/NEJMoa1709684] [PMID: 28889792]
[15]
Daughaday, W.H.; Hall, K.; Raben, M.S.; Salmon, W.D., Jr; Leo Van Den Brande, J.; Van Wyk, J.J. Somatomedin: Proposed designation for sulphation factor. Nature, 1972, 235(5333), 107.
[http://dx.doi.org/10.1038/235107a0] [PMID: 4550398]
[16]
Trojan, J.; Johnson, T.R.; Rudin, S.D.; Blossey, B.K.; Kelley, K.M.; Shevelev, A.; Abdul-Karim, F.W.; Anthony, D.D.; Tykocinski, M.L.; Ilan, J.; Ilan, J. Gene therapy of murine teratocarcinoma: Separate functions for insulin-like growth factors I and II in immunogenicity and differentiation. Proc. Natl. Acad. Sci. USA, 1994, 91(13), 6088-6092.
[http://dx.doi.org/10.1073/pnas.91.13.6088] [PMID: 8016120]
[17]
Pollak, M.N.; Schernhammer, E.S.; Hankinson, S.E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer, 2004, 4(7), 505-518.
[http://dx.doi.org/10.1038/nrc1387] [PMID: 15229476]
[18]
Rubenstein, J.L.; Nicolas, J.F.; Jacob, F. Nonsense RNA: A tool for specifically inhibiting the expression of a gene in vivo. C. R. Acad. Sci. III, 1984, 299(8), 271-274.
[PMID: 6210135]
[19]
Weintraub, H.; Izant, J.; Harland, R. Antisense RNA as a molecular tool for genetic analysis. Trends Genet., 1985, 1(1), 23-25.
[20]
Dervan, P.B. Reagents for the site-specific cleavage of megabase DNA. Nature, 1992, 359(6390), 87-88.
[http://dx.doi.org/10.1038/359087a0] [PMID: 1522894]
[21]
Hélène, C. Control of oncogene expression by antisense nucleic acid. Eur. J. Cancer, 1994, 30A(11), 1721-6.
[22]
Anthony, D.D.; Pan, Y.X.; Wu, S.G.; Shen, F.; Guo, Y.J. Ex vivo and in vivo IGF-I antisense RNA strategies for treatment of cancer in humans. Adv. Exp. Med. Biol., 1998, 451, 27-34.
[http://dx.doi.org/10.1007/978-1-4615-5357-1_5] [PMID: 10026846]
[23]
Kasprzak, H.A.; Trojan, J.; Bierwagen, M.; Kopiński, P.; Jarocki, P.; Bartczak, K.; Czapiewska, J. Usefulness of the antisense and triplex anti-IGF-1 techniques for postoperative cellular gene therapy of malignant gliomas expressing IGF-1. Neurol. Neurochir. Pol., 2006, 40(6), 509-515.
[PMID: 17199177]
[24]
Ly, A.; Bouchaud, A.; Henin, D.; Sanson, M.; Delattre, J-Y.; Pan, Y.; Anthony, D.D.; Duc, H.T.; Evrard, P.; Trojan, J. Expression of IGF-I in glioma cells is associated with change in both immunogenicity and apoptosis. Neurosci. Lett., 2000, 281, 13-16.
[http://dx.doi.org/10.1016/S0304-3940(00)00758-8] [PMID: 10686404]
[25]
Pan, Y.; Trojan, J.; Guo, Y.; Anthony, D.D. Rescue of MHC-1 antigen processing machinery by down-regulation in expression of IGF-1 in human glioblastoma cells. PLoS One, 2013, 8(3), e58428.
[http://dx.doi.org/10.1371/journal.pone.0058428] [PMID: 23526983]
[26]
Hakuno, F.; Takahashi, S.I. 40 years of IGF1: IGF1 receptor signaling pathways. J. Mol. Endocrinol., 2018, 61(1), T69-T86.
[http://dx.doi.org/10.1530/JME-17-0311] [PMID: 29535161]
[27]
Laidlaw, B.J.; Craft, J.E.; Kaech, S.M. The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat. Rev. Immunol., 2016, 16(2), 102-111.
[http://dx.doi.org/10.1038/nri.2015.10] [PMID: 26781939]
[28]
Deyhim, F.; Smith, B.J.; Soung, D.Y.; Juma, S.; Devareddy, L.; Arjmandi, B.H. Ipriflavone modulates IGF-I but is unable to restore bone in rats. Phytother. Res., 2005, 19(2), 116-120.
[http://dx.doi.org/10.1002/ptr.1615] [PMID: 15852487]
[29]
Wu, H.L.; Zhou, H.J. Astragalus membranaceus promote expression of insulin-like growth factor 1 in rat model of olivo-cerebellar degeneration. Zhongguo Zhongyao Zazhi, 2007, 32(3), 242-245.
[PMID: 17432149]
[30]
Salehi, B.; Fokou, P.V.T.; Yamthe, L.R.T.; Tali, B.T.; Adetunji, C.O.; Rahavian, A.; Mudau, F.N.; Martorell, M.; Setzer, W.N.; Rodrigues, C.F.; Martins, N.; Cho, W.C.; Sharifi-Rad, J. Phytochemicals in prostate cancer: From bioactive molecules to upcoming therapeutic agents. Nutrients, 2019, 11(7), 1483.
[http://dx.doi.org/10.3390/nu11071483] [PMID: 31261861]
[31]
Jeiter, J.; Hilger, H.H.; Smets, E.F.; Weigend, M. The relationship between nectaries and floral architecture: A case study in Geraniaceae and Hypseocharitaceae. Ann. Bot. (Lond.), 2017, 120(5), 791-803.
[http://dx.doi.org/10.1093/aob/mcx101] [PMID: 28961907]
[32]
de Freitas-Blanco, V.; Monteiro, K.; de Oliveira, P.; de Oliveira, E.; de Oliveira Braga, L.; de Carvalho, J.; Ferreira Rodrigues, R. Spilanthol, the principal alkylamide from Acmella oleracea, attenuates 5-fluorouracil-induced intestinal mucositis in mice. Planta Med., 2019, 85(3), 203-209.
[http://dx.doi.org/10.1055/a-0715-2002] [PMID: 30153691]
[33]
Reyna-Margarita, H.R.; Irais, C.M.; Mario-Alberto, R.G.; Agustina, R.M.; Luis-Benjamín, S.G.; David, P.E. Plant phenolics and lectins as vaccine adjuvants. Curr. Pharm. Biotechnol., 2019, 20(15), 1236-1243.
[http://dx.doi.org/10.2174/1389201020666190716110705] [PMID: 31333121]
[34]
Irais, C.M.; María-de-la-Luz, S.G.; Dealmy, D.G.; Agustina, R.M.; Nidia, C.H.; Mario-Alberto, R.G.; Luis-Benjamín, S.G.; María-del-Carmen, V.M.; David, P.E. Sevilla-González, M.; Delgadillo-Guzmán, D.; Ramírez-Moreno, A.; Cabral-Hipólito, N.; Rivera-Guillén, M-A.; Serrano-Gallardo, L-B.; Vega-Menchaca, M.; Pedroza-Escobar, D. Plant phenolics as pathogen-carrier immunogenicity modulator haptens. Curr. Pharm. Biotechnol., 2020, 21(10), 897-905.
[http://dx.doi.org/10.2174/1389201021666200121130313] [PMID: 31965941]
[35]
Ozawa, T.; Holland, E.C. Rethinking glioma treatment strategy. Oncotarget, 2014, 5(20), 9532-9533.
[http://dx.doi.org/10.18632/oncotarget.2619] [PMID: 25393981]
[36]
Gállego Pérez-Larraya, J.; Delattre, J.Y. Management of elderly patients with gliomas. Oncologist, 2014, 19(12), 1258-1267.
[http://dx.doi.org/10.1634/theoncologist.2014-0170] [PMID: 25342314]
[37]
Cimino, P.J.; Holland, E.C. The molecular landscape of adult diffuse gliomas and relevance to clinical trials. Oncotarget, 2019, 10(19), 1758-1759.
[http://dx.doi.org/10.18632/oncotarget.26750] [PMID: 30956755]
[38]
Sampson, J.H.; Gunn, M.D.; Fecci, P.E.; Ashley, D.M. Brain immunology and immunotherapy in brain tumours. Nat. Rev. Cancer, 2020, 20(1), 12-25.
[http://dx.doi.org/10.1038/s41568-019-0224-7] [PMID: 31806885]
[39]
Mizejewski, G.J. Biological role of α-fetoprotein in cancer: Prospects for anticancer therapy. Expert Rev. Anticancer Ther., 2002, 2(6), 709-735.
[http://dx.doi.org/10.1586/14737140.2.6.709] [PMID: 12503217]
[40]
Shevelev, A.; Burfeind, P.; Schulze, E.; Rininsland, F.; Johnson, T.R.; Trojan, J.; Chernicky, C.L.; Hélène, C.; Ilan, J.; Ilan, J. Potential triple helix-mediated inhibition of IGF-I gene expression significantly reduces tumorigenicity of glioblastoma in an animal model. Cancer Gene Ther., 1997, 4(2), 105-112.
[PMID: 9080119]
[41]
Schlingensiepen, K.H.; Jaschinski, F.; Lang, S.A.; Moser, C.; Geissler, E.K.; Schlitt, H.J.; Kielmanowicz, M.; Schneider, A. Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in pancreatic cancer. Cancer Sci., 2011, 102(6), 1193-1200.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01917.x] [PMID: 21366804]
[42]
Zhao, Q.; Tran, H.; Dimitrov, D.S.; Cheung, N.K.V. A dual-specific anti- IGF-1/IGF-2 human monoclonal antibody alone and in combination with temsirolimus for therapy of neuroblastoma. Int. J. Cancer, 2015, 137(9), 2243-2252.
[http://dx.doi.org/10.1002/ijc.29588] [PMID: 25924852]
[43]
Qu, X.; Wu, Z.; Dong, W.; Zhang, T.; Wang, L.; Pang, Z.; Ma, W.; Du, J. Update of IGF-1 receptor inhibitor (ganitumab, dalotuzumab, cixutumumab, teprotumumab and figitumumab) effects on cancer therapy. Oncotarget, 2017, 8(17), 29501-29518.
[http://dx.doi.org/10.18632/oncotarget.15704] [PMID: 28427155]
[44]
An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene, 2018, 37(12), 1561-1575.
[http://dx.doi.org/10.1038/s41388-017-0045-7] [PMID: 29321659]
[45]
Sun, M.; Marconi, L.; Eisen, T.; Escudier, B.; Giles, R.H.; Haas, N.B.; Harshman, L.C.; Quinn, D.I.; Larkin, J.; Pal, S.K.; Powles, T.; Ryan, C.W.; Sternberg, C.N.; Uzzo, R.; Choueiri, T.K.; Bex, A. Adjuvant vascular endothelial growth factor-targeted therapy in renal cell carcinoma: A systematic review and pooled analysis. Eur. Urol., 2018, 74(5), 611-620.
[http://dx.doi.org/10.1016/j.eururo.2018.05.002] [PMID: 29784193]
[46]
Ostrom, Q.T.; Gittleman, H.; Xu, J.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2009-2013. Neuro. Neuro-oncol., 2016, 18(5)(Suppl. 5), v1-v75.
[http://dx.doi.org/10.1093/neuonc/now207] [PMID: 28475809]
[47]
Dziadek, M.; Adamson, E. Localization and synthesis of alphafoetoprotein in post-implantation mouse embryos. Development, 1978, 43(1), 289-313.
[http://dx.doi.org/10.1242/dev.43.1.289] [PMID: 75937]
[48]
Damjanov, I.; Solter, D. Experimental teratoma. Curr. Top. Pathol., 1974, 59, 69-129.
[http://dx.doi.org/10.1007/978-3-642-65857-0_2] [PMID: 4611693]
[49]
Trojan, J.; Uriel, J.; Deugnier, M.A.; Gaillard, J. Immunocytochemical quantitative study of alpha-fetoprotein in normal and neoplastic neural development. Dev. Neurosci., 1983-1984, 6(4-5), 251-259.
[http://dx.doi.org/10.1159/000112352] [PMID: 6083861]
[50]
Roith, D.L. The insulin-like growth factor system. Exp. Diabesity Res., 2003, 4(4), 205-212.
[http://dx.doi.org/10.1155/EDR.2003.205] [PMID: 14668044]
[51]
Baserga, R. The insulin-like growth factor-I receptor as a target for cancer therapy. Expert Opin. Ther. Targets, 2005, 9(4), 753-768.
[http://dx.doi.org/10.1517/14728222.9.4.753] [PMID: 16083341]
[52]
Zumkeller, W. IGFs and IGF-binding proteins as diagnostic markers and biological modulators in brain tumors. Expert Rev. Mol. Diagn., 2002, 2(5), 473-477.
[http://dx.doi.org/10.1586/14737159.2.5.473] [PMID: 12271818]
[53]
Kiess, W.; Lee, L.; Graham, D.; Greenstein, L.; Tseng, L.H.; Rechler, M.M.; Nissley, S.P. Rat C6 glial cells synthesize insulin-like growth factor I (IGF-I) and express IGF-I receptors and IGF-II/mannose 6-phosphate receptors. Endocrinology, 1989, 124(4), 1727-1736.
[http://dx.doi.org/10.1210/endo-124-4-1727] [PMID: 2538309]
[54]
Trojan, J.; Blossey, B.K.; Johnson, T.R.; Rudin, S.D.; Tykocinski, M.; Ilan, J.; Ilan, J. Loss of tumorigenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of insulin-like growth factor I. Proc. Natl. Acad. Sci. USA, 1992, 89(11), 4874-4878.
[http://dx.doi.org/10.1073/pnas.89.11.4874] [PMID: 1594587]
[55]
Trojan, J. Establishment of cancer gene therapy; Cambridge Scholars Publishing: UK, 2023, pp. 87-109. https://www.cambridgescholars.com/product/978-1-5275-9389-3
[56]
Arshad, N.M.; In, L.L.A.; Soh, T.L.; Azmi, M.N.; Ibrahim, H.; Awang, K.; Dudich, E.; Tatulov, E.; Nagoor, N.H. Recombinant human alpha fetoprotein synergistically potentiates the anti-cancer effects of 1′-S-1′-acetoxychavicol acetate when used as a complex against human tumours harbouring AFP-receptors. Oncotarget, 2015, 6(18), 16151-16167.
[http://dx.doi.org/10.18632/oncotarget.3951] [PMID: 26158863]
[57]
Pak, V.N. The use of alpha-fetoprotein for the treatment of autoimmune diseases and cancer. Ther. Deliv., 2018, 9(1), 37-46.
[http://dx.doi.org/10.4155/tde-2017-0073] [PMID: 29216804]
[58]
Hajeri-Germond, M.; Naval, J.; Trojan, J.; Uriel, J. The uptake of alpha-foetoprotein by C-1300 mouse neuroblastoma cells. Br. J. Cancer, 1985, 51(6), 791-797.
[http://dx.doi.org/10.1038/bjc.1985.123] [PMID: 2408647]
[59]
Dias, N.; Stein, C.A. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther., 2002, 1(5), 347-355.
[PMID: 12489851]
[60]
Upegui-Gonzalez, L.C.; Ly, A.; Sierzega, M.; Jarocki, P.; Trojan, L.; Duc, H.T.; Pan, Y.; Shevelev, A.; Henin, D.; Anthony, D.; Nowak, W.; Popiela, T.; Trojan, J. IGF-I triple helix strategy in hepatoma treatment. Hepatogastroenterology, 2001, 48(39), 660-666.
[PMID: 11462897]
[61]
Dalotto-Moreno, T.; Blidner, A.G.; Girotti, M.R.; Maller, S.M.; Rabinovich, G.A. Immunotherapy in cancer. Current prospects, challenges and new horizons. Medicina (B. Aires), 2018, 78(5), 336-348.
[PMID: 30285926]
[62]
Mishra, L.; Bass, B.; Ooi, B.S.; Sidawy, A.; Kormanet, L. Role of IGF-I-R, IGF-I, and IGF BP-2 in human colorectal cancers. Growth Horm. IGF Res., 1998, 8(6), 743-749.
[http://dx.doi.org/10.1016/S1096-6374(98)80300-6] [PMID: 10985759]
[63]
Giovannucci, E. Insulin-like growth factor-I and binding protein-3 and risk of cancer. Horm. Res., 1999, 51(3)(Suppl. 3), 34-41.
[PMID: 10592442]
[64]
Shi, R.; Yu, H.; McLarty, J.; Glass, J. IGF-I and breast cancer: A meta-analysis. Int. J. Cancer, 2004, 111(3), 418-423.
[http://dx.doi.org/10.1002/ijc.20233] [PMID: 15221971]
[65]
Lima, G.A.B.; Corrêa, L.L.; Gabrich, R.; Miranda, L.C.D.; Gadelha, M.R. IGF-I, insulin and prostate cancer. Arq. Bras. Endocrinol. Metabol, 2009, 53(8), 969-975.
[http://dx.doi.org/10.1590/S0004-27302009000800010] [PMID: 20126849]
[66]
Mourmouras, N.; Philippou, A.; Christopoulos, P.; Kostoglou, K.; Grivaki, C.; Konstantinidis, C.; Serafetinides, E.; Delakas, D.; Koutsilieris, M. Differential expression of IGF-I transcripts in bladder cancer. Anticancer Res., 2018, 38(6), 3453-3459.
[http://dx.doi.org/10.21873/anticanres.12614] [PMID: 29848696]
[67]
Karagiannis, A.K.; Philippou, A.; Tseleni-Balafouta, S.; Zevolis, E.; Nakouti, T.; Tsopanomichalou-Gklotsou, M.; Psarras, V.; Koutsilieris, M. IGF-I Ec expression is associated with advanced differentiated thyroid cancer. Anticancer Res., 2019, 39(6), 2811-2819.
[http://dx.doi.org/10.21873/anticanres.13409] [PMID: 31177118]
[68]
Froesch, E.R.; Schmid, C.; Schwander, J.; Zapf, J. Actions of insulin-like growth factors. Annu. Rev. Physiol., 1985, 47(1), 443-467.
[http://dx.doi.org/10.1146/annurev.ph.47.030185.002303] [PMID: 2986538]
[69]
Han, V.K.M.; D’Ercole, A.J.; Lund, P.K. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science, 1987, 236(4798), 193-197.
[http://dx.doi.org/10.1126/science.3563497] [PMID: 3563497]
[70]
Yu, H.; Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst., 2000, 92(18), 1472-1489.
[http://dx.doi.org/10.1093/jnci/92.18.1472] [PMID: 10995803]
[71]
Kurmasheva, R.T.; Houghton, P.J. IGF-I mediated survival pathways in normal and malignant cells. Biochim. Biophys. Acta, 2006, 1766(1), 1-22.
[PMID: 16844299]
[72]
Delaney, C.L.; Cheng, H.L.; Feldman, E.L. Insulin-like growth factor-I prevents caspase-mediated apoptosis in Schwann cells. J. Neurobiol., 1999, 41(4), 540-548.
[http://dx.doi.org/10.1002/(SICI)1097-4695(199912)41:4<540::AID-NEU9>3.0.CO;2-P] [PMID: 10590177]
[73]
Mason, J.L.; Ye, P.; Suzuki, K.; D’Ercole, A.J.; Matsushima, G.K. Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyelination. J. Neurosci., 2000, 20(15), 5703-5708.
[http://dx.doi.org/10.1523/JNEUROSCI.20-15-05703.2000] [PMID: 10908609]
[74]
Chrysis, D.; Calikoglu, A.S.; Ye, P.; D’Ercole, A.J. Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. J. Neurosci., 2001, 21(5), 1481-1489.
[http://dx.doi.org/10.1523/JNEUROSCI.21-05-01481.2001] [PMID: 11222638]
[75]
Premkumar, D.R.; Arnold, B.; Jane, E.P.; Pollack, I.F. Synergistic interaction between 17-AAG and phosphatidylinositol 3-kinase inhibition in human malignant glioma cells. Mol. Carcinog., 2006, 45(1), 47-59.
[http://dx.doi.org/10.1002/mc.20152] [PMID: 16267832]
[76]
Adhami, V.M.; Afaq, F.; Mukhtar, H. Insulin-like growth factor-I axis as a pathway for cancer chemoprevention. Clin. Cancer Res., 2006, 12(19), 5611-5614.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1564] [PMID: 17020962]
[77]
Laviola, L.; Natalicchio, A.; Giorgino, F. The IGF-I signaling pathway. Curr. Pharm. Des., 2007, 13(7), 663-669.
[http://dx.doi.org/10.2174/138161207780249146] [PMID: 17346182]
[78]
Ellouk-Achard, S.; Djenabi, S.; De Oliveira, G.A.; Desauty, G.; Thien Duc, H.; Zohair, M.; Trojan, J.; Claude, J.R.; Sarasin, A.; Lafarge-Frayssinet, C. Induction of apoptosis in rat hepatocarcinoma cells by expression of IGF-I antisense c-DNA. J. Hepatol., 1998, 29(5), 807-818.
[http://dx.doi.org/10.1016/S0168-8278(98)80263-8] [PMID: 9833920]
[79]
Kooijman, R. Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine Growth Factor Rev., 2006, 17(4), 305-323.
[http://dx.doi.org/10.1016/j.cytogfr.2006.02.002] [PMID: 16621671]
[80]
Lafarge-Frayssinet, C.; Duc, H.T.; Frayssinet, C.; Sarasin, A.; Anthony, D.D.; Guo, Y.; Trojan, J. Antisense IGF-I transfer into a rat hepatoma cell line inhibits tumorigenesis by modulatig MHC-I. Cancer Gene Ther., 1997, 4(5), 276-285.
[PMID: 9345599]
[81]
Arcaro, A. Targeting the insulin-like growth factor-1 receptor in human cancer. Cancer Gene Ther., 2013, 4
[http://dx.doi.org/10.3389/fphar.2013.00030]
[82]
Ertl, D.A.; Gleiss, A.; Sagmeister, S.; Haeusler, G. Determining the normal range for IGF-I, IGFBP-3, and ALS: New reference data based on current internal standards. Wien. Med. Wochenschr., 2014, 164(17-18), 343-352.
[http://dx.doi.org/10.1007/s10354-014-0299-4] [PMID: 25186253]
[83]
Culver, K.W.; Ram, Z.; Wallbridge, S.; Ishii, H.; Oldfield, E.H.; Blaese, R.M. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science, 1992, 256(5063), 1550-1552.
[http://dx.doi.org/10.1126/science.1317968] [PMID: 1317968]
[84]
Resnicoff, M.; Sell, C.; Rubini, M.; Coppola, D.; Ambrose, D.; Baserga, R.; Rubin, R. Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-1 (IGF-1) receptor are nontumorigenic and induce regression of wild-type tumors. Cancer Res., 1994, 54(8), 2218-2222.
[PMID: 8174129]
[85]
Trojan, J.; Pan, Y.X.; Wei, M.X.; Ly, A.; Shevelev, A.; Bierwagen, M.; Ardourel, M.Y.; Trojan, L.A.; Alvarez, A.; Andres, C.; Noguera, M.C.; Briceño, I.; Aristizabal, B.H.; Kasprzak, H.; Duc, H.T.; Anthony, D.D. Methodology for anti - gene anti IGF-I therapy of malignant tumours. Chemother. Res. Pract., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/721873] [PMID: 22400112]
[86]
Alanís-Garza, B.; Salazar-Aranda, R.; Ramírez-Durón, R.; Garza-González, E.; de Torres, N.W. A new antimycobacterial furanolignan from Leucophyllum frutescens. Nat. Prod. Commun., 2012, 7(5), 1934578X1200700.
[http://dx.doi.org/10.1177/1934578X1200700512] [PMID: 22799084]
[87]
Tsai, T.; Diggle, P.K.; Frye, H.A.; Jones, C.S. Contrasting lengths of Pelargonium floral nectar tubes result from late differences in rate and duration of growth. Ann. Bot. (Lond.), 2018, 121(3), 549-560.
[http://dx.doi.org/10.1093/aob/mcx171] [PMID: 29293992]
[88]
Suwanjang, W.; Khongniam, B.; Srisung, S.; Prachayasittikul, S.; Prachayasittikul, V. Neuroprotective effect of Spilanthes acmella Murr. on pesticide-induced neuronal cells death. Asian Pac. J. Trop. Med., 2017, 10(1), 35-41.
[http://dx.doi.org/10.1016/j.apjtm.2016.11.012] [PMID: 28107862]
[89]
Rondanelli, M.; Fossari, F.; Vecchio, V.; Braschi, V.; Riva, A.; Allegrini, P.; Petrangolini, G.; Iannello, G.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Gasparri, C.; Spadaccini, D.; Infantino, V.; Mustafa, S.; Alalwan, T.; Perna, S. Acmella oleracea for pain management. Fitoterapia, 2020, 140, 104419.
[http://dx.doi.org/10.1016/j.fitote.2019.104419] [PMID: 31705952]
[90]
Weiss, M.C. Roots: Contributions of boris, ephrussi to the development of somatic cell genetics. BioEssays, 1992, 14(5), 349-353.
[http://dx.doi.org/10.1002/bies.950140512]
[91]
Komata, T.; Kanzawa, T.; Kondo, Y.; Kondo, S. Telomerase as a therapeutic target for malignant gliomas. Oncogene, 2002, 21(4), 656-663.
[http://dx.doi.org/10.1038/sj.onc.1205072] [PMID: 11850793]
[92]
Le Gall, T.; Loizeau, D.; Picquet, E.; Carmoy, N.; Yaouanc, J.J.; Burel-Deschamps, L.; Delépine, P.; Giamarchi, P.; Jaffrès, P.A.; Lehn, P.; Montier, T. A novel cationic lipophosphoramide with diunsaturated lipid chains: Synthesis, physicochemical properties, and transfection activities. J. Med. Chem., 2010, 53(4), 1496-1508.
[http://dx.doi.org/10.1021/jm900897a] [PMID: 20112994]
[93]
Costa, P.M.; Cardoso, A.L.; Mendonça, L.S.; Serani, A.; Custódia, C.; Conceição, M.; Simões, S.; Moreira, J.N.; Pereira de Almeida, L.; Pedroso de Lima, M.C. al. Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: A promising system for glioblastoma treatment. Mol. Ther. Nucleic Acids, 2013, 2(6), e100.
[http://dx.doi.org/10.1038/mtna.2013.30] [PMID: 23778499]
[94]
Zhang, A.; Hao, J.; Wang, K.; Huang, Q.; Yu, K.; Kang, C.; Wang, G.; Jia, Z.; Han, L.; Pu, P. Down-regulation of miR-106b suppresses the growth of human glioma cells. J. Neurooncol., 2013, 112(2), 179-189.
[http://dx.doi.org/10.1007/s11060-013-1061-2] [PMID: 23377830]
[95]
Le Corre, S.S.; Berchel, M.; Belmadi, N. Denis, C.; Haelters, J-P.; Le Gall, T.; Lehn, P.; Montier, T.; Jaffrèset, P-A. Cationic lipophosforamidates with two different lipid chains: Synthesis and evaluation as gene carriers. Org. Biomol. Chem., 2014, 12(9), 1463-1474.
[http://dx.doi.org/10.1039/C3OB42270D] [PMID: 24445607]
[96]
Rinaldi, C.; Wood, M.J.A. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat. Rev. Neurol., 2018, 14(1), 9-21.
[http://dx.doi.org/10.1038/nrneurol.2017.148] [PMID: 29192260]
[97]
Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev., 2019, 80, 101896.
[http://dx.doi.org/10.1016/j.ctrv.2019.101896] [PMID: 31541850]
[98]
Schlingensiepen, K.; Schlingensiepen, R.; Steinbrecher, A.; Hau, P.; Bogdahn, U.; Fischerblass, B.; Jachimczak, P. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev., 2006, 17(1-2), 129-139.
[http://dx.doi.org/10.1016/j.cytogfr.2005.09.002] [PMID: 16377233]
[99]
Moro-Sibilot, D.; Coudurier, M.; Lantuejoul, S. Targeting insulin-like growth factors in the treatment of cancer. Rev. Mal. Respir., 2010, 27(8), 959-963.
[http://dx.doi.org/10.1016/j.rmr.2010.07.005] [PMID: 20965410]
[100]
Sachdev, D. Targeting the type I insulin-like growth factor system for breast cancer therapy. Curr. Drug Targets, 2010, 11(9), 1121-1132.
[http://dx.doi.org/10.2174/138945010792006816] [PMID: 20545608]
[101]
Yang, L.; Lin, Z.; Huang, Q.; Lin, J.; Chen, Z.; Zhou, L.; Zhang, P. Effect of vascular endothelial growth factor on remodeling of C6 glioma tissue in vivo . J. Neurooncol., 2011, 103(1), 33-41.
[http://dx.doi.org/10.1007/s11060-010-0356-9] [PMID: 20740302]
[102]
Lamszus, K.; Brockmann, M.A.; Eckerich, C.; Bohlen, P.; May, C.; Mangold, U.; Fillbrandt, R.; Westphal, M. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin. Cancer Res., 2005, 11(13), 4934-4940.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2270] [PMID: 16000592]
[103]
Hutterer, M.; Gunsilius, E.; Stockhammer, G. Molecular therapies for malignant glioma. Wien. Med. Wochenschr., 2006, 156(11-12), 351-363.
[http://dx.doi.org/10.1007/s10354-006-0308-3] [PMID: 16944367]
[104]
Choi, B.D.; Archer, G.E.; Mitchell, D.A.; Heimberger, A.B.; McLendon, R.E.; Bigner, D.D.; Sampson, J.H. EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol., 2009, 19(4), 713-723.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00318.x] [PMID: 19744042]
[105]
Li, Y.; Jia, Q.; Zhang, J.; Han, L.; Xu, D.; Zhang, A.; Zhang, Y.; Zhang, Z.; Pu, P.; Kang, C. Combination therapy with gamma knife radiosurgery and antisense EGFR for malignant glioma in vitro and orthotopic xenografts. Oncol. Rep., 2010, 23(6), 1585-1591.
[PMID: 20428813]
[106]
Kalman, B.; Szep, E.; Garzuly, F.; Post, D.E. Epidermal growth factor receptor as a therapeutic target in glioblastoma. Neuromolecular Med., 2013, 15(2), 420-434.
[http://dx.doi.org/10.1007/s12017-013-8229-y] [PMID: 23575987]
[107]
Gaffney, D.C.; Soyer, H.P.; Simpson, F. The epidermal growth factor receptor in squamous cell carcinoma: An emerging drug target. Australas. J. Dermatol., 2014, 55(1), 24-34.
[http://dx.doi.org/10.1111/ajd.12025] [PMID: 23425099]
[108]
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer, 2003, 3(1), 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[109]
Kaminska, B.; Wesolowska, A.; Danilkiewicz, M. TGF beta signalling and its role in tumour pathogenesis. Acta Biochim. Pol., 2005, 52(2), 329-337.
[http://dx.doi.org/10.18388/abp.2005_3446] [PMID: 15990918]
[110]
Beckner, M.E.; Gobbel, G.T.; Abounader, R.; Burovic, F.; Agostino, N.R.; Laterra, J.; Pollack, I.F. Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Lab. Invest., 2005, 85(12), 1457-1470.
[http://dx.doi.org/10.1038/labinvest.3700355] [PMID: 16170333]
[111]
Lo, H.W. Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for malignant gliomas. Curr. Cancer Drug Targets, 2010, 10(8), 840-848.
[http://dx.doi.org/10.2174/156800910793357970] [PMID: 20718706]
[112]
Zhang, J.; Han, L.; Zhang, A.; Wang, Y.; Yue, X.; You, Y.; Pu, P.; Kang, C. AKT2 expression is associated with glioma malignant progression and required for cell survival and invasion. Oncol. Rep., 2010, 24(1), 65-72.
[PMID: 20514445]
[113]
Hau, P.; Jachimczak, P.; Schlaier, J.; Bogdahn, U. TGF-β2 signaling in high-grade gliomas. Curr. Pharm. Biotechnol., 2011, 12(12), 2150-2157.
[http://dx.doi.org/10.2174/138920111798808347] [PMID: 21619538]
[114]
Liu, Y.; Zhao, J.; Lu, Y.; Trojan, J.; Wu, M.; Guo, Y. Antisense igf-I for hepatocellular carcinoma. Methods Mol. Med., 2000, 45, 221-235.
[PMID: 21341060]
[115]
Liu, Y.; Wang, H.; Zhao, J.; Ma, J.; Wei, L.; Wu, S.; Xie, T.; Shen, F.; Trojan, J.; Habib, N.; Anthony, D.D.; Wu, M.; Guo, Y. Enhancement of immunogenicity of tumor cells by cotransfection with genes encoding antisense insulin-like growth factor-1 and B7.1 molecules. Cancer Gene Ther., 2000, 7(3), 456-465.
[http://dx.doi.org/10.1038/sj.cgt.7700137] [PMID: 10766352]
[116]
Trojan, A.; Kasprzak, H.; Gutierrez, O.; Penagos, P.; Briceno, I.; Siachoque, H.; Anthony, D.D.; Alvarez, A.; Trojan, J. Neoplastic brain, glioblastoma and immunotherapy. Brain and Spinal Tumors; IntechOpen Limited: London, 2020.
[http://dx.doi.org/10.5772/intechopen.84726]
[117]
Andrews, D.W.; Resnicoff, M.; Flanders, A.E.; Kenyon, L.; Curtis, M.; Merli, G.; Baserga, R.; Iliakis, G.; Aiken, R.D. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J. Clin. Oncol., 2001, 19(8), 2189-2200.
[http://dx.doi.org/10.1200/JCO.2001.19.8.2189] [PMID: 11304771]
[118]
Hau, P.; Jachimczak, P.; Schlingensiepen, R.; Schulmeyer, F.; Jauch, T.; Steinbrecher, A.; Brawanski, A.; Proescholdt, M.; Schlaier, J.; Buchroithner, J.; Pichler, J.; Wurm, G.; Mehdorn, M.; Strege, R.; Schuierer, G.; Villarrubia, V.; Fellner, F.; Jansen, O.; Straube, T.; Nohria, V.; Goldbrunner, M.; Kunst, M.; Schmaus, S.; Stauder, G.; Bogdahn, U.; Schlingensiepen, K.H. Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: From preclinical to phase I/II studies. Oligonucleotides, 2007, 17(2), 201-212.
[http://dx.doi.org/10.1089/oli.2006.0053] [PMID: 17638524]
[119]
Merino, E.; Balbás, P.; Puente, J.L.; Bolívar, F. Antisense overlapping open reading frames in genes from bacteria to humans. Nucleic Acids Res., 1994, 22(10), 1903-1908.
[http://dx.doi.org/10.1093/nar/22.10.1903] [PMID: 8208617]
[120]
Yomo, T.; Urabe, I. A frame-specific symmetry of complementary strands of DNA suggests the existence of genes on the antisense strand. J. Mol. Evol., 1994, 38(2), 113-120.
[http://dx.doi.org/10.1007/BF00166158] [PMID: 8169956]
[121]
Xu, J.; Zhang, J.; Zhang, W. Antisense RNA: The new favorite in genetic research. J. Zhejiang Univ. Sci. B, 2018, 19(10), 739-749.
[http://dx.doi.org/10.1631/jzus.B1700594] [PMID: 30269442]
[122]
Vitravene Study Group. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. Am. J. Ophthalmol., 2002, 133(4), 467-474.
[PMID: 11931780]
[123]
Bennett, C.F.; Baker, B.F.; Pham, N.; Swayze, E.; Geary, R.S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol., 2017, 57(1), 81-105.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104846] [PMID: 27732800]
[124]
Shen, X.; Corey, D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res., 2018, 46(4), 1584-1600.
[http://dx.doi.org/10.1093/nar/gkx1239] [PMID: 29240946]
[125]
Wang, Y.; Yu, R.Z.; Henry, S.; Geary, R.S. Pharmacokinetics and clinical pharmacology considerations of GalNAc(3)-conjugated anti.sense oligonucleotides. Expert Opin. Drug Metab. Toxicol., 2019, 15(6), 475-485.
[http://dx.doi.org/10.1080/17425255.2019.1621838] [PMID: 31144994]
[126]
Fakhrai, H.; Dorigo, O.; Shawler, D.L.; Lin, H.; Mercola, D.; Black, K.L.; Royston, I.; Sobol, R.E. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2909-2914.
[http://dx.doi.org/10.1073/pnas.93.7.2909] [PMID: 8610141]
[127]
Frazier, K.S. Antisense oligonucleotide therapies: The promise and the challenges from a toxicologic pathologist’s perspective. Toxicol. Pathol., 2015, 43(1), 78-89.
[http://dx.doi.org/10.1177/0192623314551840] [PMID: 25385330]
[128]
Sardone, V.; Zhou, H.; Muntoni, F.; Ferlini, A.; Falzarano, M. Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules, 2017, 22(4), 563-569.
[http://dx.doi.org/10.3390/molecules22040563] [PMID: 28379182]
[129]
Klim, J.R.; Vance, C.; Scotter, E.L. Antisense oligonucleotide therapies for Amyotrophic Lateral Sclerosis: Existing and emerging targets. Int. J. Biochem. Cell Biol., 2019, 110, 149-153.
[http://dx.doi.org/10.1016/j.biocel.2019.03.009] [PMID: 30904737]
[130]
Galderisi, U.; Cascino, A.; Giordano, A. Antisense oligonucleotides as therapeutic agents. J. Cell. Physiol., 1999, 181(2), 251-257.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199911)181:2<251::AID-JCP7>3.0.CO;2-D] [PMID: 10497304]
[131]
Sun, B.W.; Babu, B.R.; Sørensen, M.D.; Zakrzewska, K.; Wengel, J.; Sun, J.S. Sequence and pH effects of LNA-containing triple helix-forming oligonucleotides: Physical chemistry, biochemistry, and modeling studies. Biochemistry, 2004, 43(14), 4160-4169.
[http://dx.doi.org/10.1021/bi036064e] [PMID: 15065859]
[132]
Seidman, M.M.; Puri, N.; Majumdar, A.; Cuenoud, B.; Miller, P.S.; Alam, R. The development of bioactive triple helix-forming oligonucleotides. Ann. N. Y. Acad. Sci., 2005, 1058(1), 119-127.
[http://dx.doi.org/10.1196/annals.1359.020] [PMID: 16394131]
[133]
Giovannangeli, C.; Héléne, C. Progress in developments of triplex-based strategies. Antisense Nucleic Acid Drug Dev., 1997, 7(4), 413-421.
[http://dx.doi.org/10.1089/oli.1.1997.7.413] [PMID: 9303193]
[134]
Vasquez, K.M.; Wilson, J.H. Triplex-directed modification of genes and gene activity. Trends Biochem. Sci., 1998, 23(1), 4-9.
[http://dx.doi.org/10.1016/S0968-0004(97)01158-4] [PMID: 9478127]
[135]
Alunni-Fabbroni, M.; Pirulli, D.; Manzini, G.; Xodo, L.E. (A,G)-oligonucleotides form extraordinary stable triple helices with a critical RY sequence of the murine c-Ki-ras promoter and inhibit transcription in transfected NIH 3T3 cells. Biochemistry, 1996, 35(50), 16361-16369.
[http://dx.doi.org/10.1021/bi961750h]
[136]
Upegui-Gonzalez, L.C.; François, J.C.; Ly, A.; Trojan, J. The approach of triple helix formation in control of gene expression and the treatment of tumors expressing IGF-I. Adv. Exp. Med. Biol., 2002, 465, 319-332.
[http://dx.doi.org/10.1007/0-306-46817-4_27] [PMID: 10810636]
[137]
Agarwal, N.; Gewirtz, A.M. Oligonucleotide therapeutics for hematologic disorders. Biochim. Biophys. Acta Gene Struct. Expr., 1999, 1489(1), 85-96.
[http://dx.doi.org/10.1016/S0167-4781(99)00142-6] [PMID: 10806999]
[138]
Zhao, M.; Amiel, S.A.; Ajami, S.; Jiang, J.; Rela, M.; Heaton, N.; Huang, G.C. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells. PLoS One, 2008, 3(7), e2666.
[http://dx.doi.org/10.1371/journal.pone.0002666] [PMID: 18628974]
[139]
Trembinski, D.J.; Bink, D.I.; Theodorou, K.; Sommer, J.; Fischer, A.; van Bergen, A.; Kuo, C.C.; Costa, I.G.; Schürmann, C.; Leisegang, M.S.; Brandes, R.P.; Alekseeva, T.; Brill, B.; Wietelmann, A.; Johnson, C.N.; Spring-Connell, A.; Kaulich, M.; Werfel, S.; Engelhardt, S.; Hirt, M.N.; Yorgan, K.; Eschenhagen, T.; Kirchhof, L.; Hofmann, P.; Jaé, N.; Wittig, I.; Hamdani, N.; Bischof, C.; Krishnan, J.; Houtkooper, R.H.; Dimmeler, S.; Boon, R.A. Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction. Nat. Commun., 2020, 11(1), 2039.
[http://dx.doi.org/10.1038/s41467-020-15995-2] [PMID: 32341350]
[140]
Ben Gaied, N.; Zhao, Z.; Gerrard, S.R.; Fox, K.R.; Brown, T. Potent triple helix stabilization by 5′,3′-modified triplex-forming oligonucleotides. ChemBioChem, 2009, 10(11), 1839-1851.
[http://dx.doi.org/10.1002/cbic.200900232] [PMID: 19554592]
[141]
Hnedzko, D.; Cheruiyot, S.K.; Rozners, E. Using triple-helix-forming epptide nucleic acids for sequence-selective recognition of double-stranded RNA. Curr Protoc Nucleic Acid Chem, 2014, 58, 1-23.
[142]
Alam, M.R.; Thazhathveetil, A.K.; Li, H.; Seidman, M.M. Preparation and application of triple helix forming oligonucleotides and single strand oligonucleotide donors for gene correction. Methods Mol. Biol., 2014, 1114, 103-113.
[http://dx.doi.org/10.1007/978-1-62703-761-7_7] [PMID: 24557899]
[143]
Trojan, J. Cancer immunogene therapy. Anti - gene anti IGF-I approach. Case of glioblastoma, 1st ed; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2017.
[144]
Kunkler, C.N.; Hulewicz, J.P.; Hickman, S.C.; Wang, M.C.; McCown, P.J.; Brown, J.A. Stability of an RNA•DNA–DNA triple helix depends on base triplet composition and length of the RNA third strand. Nucleic Acids Res., 2019, 47(14), 7213-7222. https://www.morebooks.de/store/gb/book/cancer-immunogene-therapy/isbn/978-3-330-06345-7
[http://dx.doi.org/10.1093/nar/gkz573] [PMID: 31265072]
[145]
Duthie, G.; Crozier, A. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol., 2000, 11(1), 43-47.
[http://dx.doi.org/10.1097/00041433-200002000-00007] [PMID: 10750693]
[146]
Mahmoud, N.N.; Carothers, A.M.; Grunberger, D.; Bilinski, R.T.; Churchill, M.R.; Martucci, C.; Newmark, H.L.; Bertagnolli, M.M. Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis, 2000, 21(5), 921-927.
[http://dx.doi.org/10.1093/carcin/21.5.921] [PMID: 10783313]
[147]
Zacchino, S.A.; Butassi, E.; Liberto, M.D.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 2017, 37, 27-48.
[http://dx.doi.org/10.1016/j.phymed.2017.10.018] [PMID: 29174958]
[148]
Tejpal, C.S.; Chatterjee, N.S.; Elavarasan, K.; Lekshmi, R.G.K.; Anandan, R.; Asha, K.K.; Ganesan, B.; Mathew, S.; Ravishankar, C.N. Dietary supplementation of thiamine and pyridoxine-loaded vanillic acid-grafted chitosan microspheres enhances growth performance, metabolic and immune responses in experimental rats. Int J Biol Macromol., 2017, Pt B, 1874-1881.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.120]
[149]
Hyun, K.H.; Gil, K.C.; Kim, S.G.; Park, S.; Hwang, K.W. Delphinidin chloride and its hydrolytic metolite gallic acid promote differentiation of regulatory T cells and have an anti-inflammatory effect on the allograft model. J. Food Sci., 2019, 84(4), 920-930.
[http://dx.doi.org/10.1111/1750-3841.14490] [PMID: 30977922]
[150]
Wang, Y.; Zhao, J.; Zhang, L.; Di, T.; Liu, X.; Lin, Y.; Zeng, Z.; Li, P. Suppressive effect of β, β-dimethylacryloyl alkannin on activated dendritic cells in an imiquimod-induced psoriasis mouse model. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6665-6673.
[PMID: 26261548]
[151]
Wang, H.; Zou, C.; Zhao, W.; Yu, Y.; Cui, Y.; Zhang, H.; e, F.; Qiu, Z.; Zou, C.; Gao, X. Juglone eliminates MDSCs accumulation and enhances antitumor immunity. Int. Immunopharmacol., 2019, 73, 118-127.
[http://dx.doi.org/10.1016/j.intimp.2019.04.058] [PMID: 31085459]
[152]
Septama, A.W.; Panichayupakaranant, P.; Jantan, I. In vitro immunomodulatory effect of lawsone methyl ether on innate immune response of human phagocytes. J. Young Pharm., 2018, 11(1), 62-66.
[http://dx.doi.org/10.5530/jyp.2019.11.13]
[153]
Cho, J.Y.; Kim, A.R.; Yoo, E.S.; Baik, K.U.; Park, M.H. Immunomodulatory effect of arctigenin, a lignan compound, on tumour necrosis factor-alpha and nitric oxide production, and lymphocyte proliferation. J. Pharm. Pharmacol., 2010, 51(11), 1267-1273.
[http://dx.doi.org/10.1211/0022357991777001] [PMID: 10632084]
[154]
Corsini, E.; Dell’Agli, M.; Facchi, A.; De Fabiani, E.; Lucchi, L.; Boraso, M.S.; Marinovich, M.; Galli, C.L. Enterodiol and enterolactone modulate the immune response by acting on nuclear factor-kappaB (NF-kappaB) signaling. J. Agric. Food Chem., 2010, 58(11), 6678-6684.
[http://dx.doi.org/10.1021/jf100471n] [PMID: 20446732]
[155]
Lee, C.C.; Wang, C.C.; Huang, H.M.; Lin, C.L.; Leu, S.J.; Lee, Y.L. Ferulic acid induces Th1 responses by modulating the function of dendritic cells and ameliorates Th2-mediated allergic airway inflammation in mice. Evid. Based Complement. Alternat. Med., 2017, 2017, 1.
[http://dx.doi.org/10.1155/2017/1039829] [PMID: 29085433]
[156]
Tada, R.; Yamanaka, D.; Ogasawara, M.; Saito, M.; Ohno, N.; Kiyono, H.; Kunisawa, J.; Aramaki, Y. Polymeric caffeic acid is a safer mucosal adjuvant that augments antigen-specific mucosal and systemic immune responses in mice. Mol. Pharm., 2018, 15(9), 4226-4234.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00648] [PMID: 30107747]
[157]
Conti, B.J.; Búfalo, M.C.; Golim, M.A.; Bankova, V.; Sforcin, J.M. Cinnamic Acid is partially involved in propolis immunomodulatory action on human monocytes. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/109864] [PMID: 23762102]
[158]
Devi, G.; Harikrishnan, R.; Paray, B.A.; Al-Sadoon, M.K.; Hoseinifar, S.H.; Balasundaram, C. Effects of aloe-emodin on innate immunity, antioxidant and immune cytokines mechanisms in the head kidney leucocytes of Labeo rohita against Aphanomyces invadans. Fish Shellfish Immunol., 2019, 87, 669-678.
[http://dx.doi.org/10.1016/j.fsi.2019.02.006] [PMID: 30753918]
[159]
Malaguarnera, L. Influence of resveratrol on the immune response. Nutrients, 2019, 11(5), 946.
[http://dx.doi.org/10.3390/nu11050946] [PMID: 31035454]
[160]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167-175.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[161]
Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x] [PMID: 10736000]
[162]
Kothari, S.K.; Singh, C.P.; Singh, K. Weed control in rose-scented geranium (Pelargonium spp). Pest Manag. Sci., 2002, 58(12), 1254-1258.
[http://dx.doi.org/10.1002/ps.592] [PMID: 12477000]
[163]
Manzoor, M.; Gul, I.; Manzoor, A.; Kamboh, U.R.; Hina, K.; Kallerhoff, J.; Arshad, M. Lead availability and phytoextraction in the rhizosphere of Pelargonium species. Environ. Sci. Pollut. Res. Int., 2020, 27(32), 39753-39762.
[http://dx.doi.org/10.1007/s11356-020-08226-0] [PMID: 32141003]
[164]
Alviano, D.; Alviano, C. Plant extracts: Search for new alternatives to treat microbial diseases. Curr. Pharm. Biotechnol., 2009, 10(1), 106-121.
[http://dx.doi.org/10.2174/138920109787048607] [PMID: 19149593]
[165]
Solórzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol., 2012, 23(2), 136-141.
[http://dx.doi.org/10.1016/j.copbio.2011.08.005] [PMID: 21903378]
[166]
Moreira, V.M.; Maia, J.G.; de Souza, J.M.; Bortolotto, Z.A.; Cavalheiro, E.A. Characterization of convulsions induced by a hexanic extract of Spilanthes acmella var. oleracea in rats. Braz. J. Med. Biol. Res., 1989, 22(1), 65-67.
[PMID: 2758174]
[167]
Lagnika, L.; Amoussa, A.M.O.; Adjileye, R.A.A.; Laleye, A.; Sanni, A. Antimicrobial, antioxidant, toxicity and phytochemical assessment of extracts from Acmella uliginosa, a leafy-vegetable consumed in Bénin, West Africa. BMC Complement. Altern. Med., 2016, 16(1), 34.
[http://dx.doi.org/10.1186/s12906-016-1014-3] [PMID: 26817601]
[168]
Savic, S.; Petrovic, S.; Savic, S.; Cekic, N. Identification and photostability of N-alkylamides from Acmella oleracea extract. J. Pharm. Biomed. Anal., 2021, 195, 113819.
[http://dx.doi.org/10.1016/j.jpba.2020.113819] [PMID: 33317914]
[169]
Spelman, K.; Depoix, D.; McCray, M.; Mouray, E.; Grellier, P. The traditional medicine Spilanthes acmella, and the alkylamides spilanthol and undeca-2E-ene-8,10-diynoic acid isobutylamide, demonstrate in vitro and in vivoantimalarial activity. Phytother. Res., 2011, 25(7), 1098-1101.
[http://dx.doi.org/10.1002/ptr.3395] [PMID: 22692989]
[170]
Lee, J.Y.; Kim, G.J.; Choi, J.K.; Choi, Y.A.; Jeong, N.H.; Park, P.H.; Choi, H.; Kim, S.H. Kim, S-Y. 4-(hydroxymethyl) catechol extracted from fungi in marine sponges attenuates rheumatoid arthritis by inhibiting PI3K/Akt/NF-κB signaling. Front. Pharmacol., 2018, 9, 726.
[http://dx.doi.org/10.3389/fphar.2018.00726] [PMID: 30079020]
[171]
Duval, R.; Bui, L.C.; Mathieu, C.; Nian, Q.; Berthelet, J.; Xu, X.; Haddad, I.; Vinh, J.; Dupret, J.M.; Busi, F.; Guidez, F.; Chomienne, C.; Rodrigues-Lima, F. Benzoquinone, a leukemogenic metabolite of benzene, catalytically inhibits the protein tyrosine phosphatase PTPN2 and alters STAT1 signaling. J. Biol. Chem., 2019, 294(33), 12483-12494.
[http://dx.doi.org/10.1074/jbc.RA119.008666] [PMID: 31248982]
[172]
Chahal, D.S.; Sivamani, R.K.; Rivkah Isseroff, R.; Dasu, M.R. Plant-based modulation of Toll-like receptors: An emerging therapeutic model. Phytother. Res., 2013, 27(10), 1423-1438.
[http://dx.doi.org/10.1002/ptr.4886] [PMID: 23147906]
[173]
Pan, W.; Yu, H.; Huang, S.; Zhu, P. Resveratrol protects against TNF-α-induced injury in human umbilical endothelial cells through promoting sirtuin-1-induced repression of NF-KB and p38 MAPK. PLoS One, 2016, 11(1), e0147034.
[http://dx.doi.org/10.1371/journal.pone.0147034] [PMID: 26799794]
[174]
Adams, R.P. Identification of essential oil components by gas chromatography/mass spectrometry, 2nd ed.; Carol Stream, Illinois: USA, 2012.
[175]
Green, P.J.; Pines, O.; Inouye, M. The role of antisense RNA in gene regulation. Annu. Rev. Biochem., 1986, 55(1), 569-597.
[http://dx.doi.org/10.1146/annurev.bi.55.070186.003033] [PMID: 2427015]
[176]
Ly, A.; Duc, H.T.; Kalamarides, M.; Trojan, L.A.; Pan, Y.; Shevelev, A.; François, J-C.; Noël, T.; Kane, A.; Henin, D.; Anthony, D.D.; Trojan, J. Human glioma cells transformed by IGF-I triple helix technology show immune and apoptotic characteristics determining cell selection for gene therapy of glioblastoma. Mol. Pathol., 2001, 54(4), 230-239.
[http://dx.doi.org/10.1136/mp.54.4.230] [PMID: 11477137]
[177]
Trojan, L.A.; Kopinski, P.; Mazurek, A.; Chyczewski, L.; Ly, A.; Jarocki, P.; Nikliński, J.; Shevelev, A.; Trzos, R.; Pan, Y.; Gitis, D.J.; Bierwagen, M.; Czapiewska, J.L.; Wei, M.X.; Michalkiewicz, J.; Henin, D.; Popiela, T.; Evrard, F.; Kasprzak, H.; Anthony, D.; Trojan, J. IGF-I triple helix gene therapy of rat and human gliomas. Adv. Med. Sci., 2003, 48, 18-27.
[PMID: 14737936]
[178]
Zhu, C.; Trabado, S.; Fan, Y.; Trojan, J.; Lone, Y.C.; Giron-Michel, J.; Duc, H.T. Characterization of effector components from the humoral and cellular immune response stimulated by melanoma cells exhibiting modified IGF-1 expression. Biomed. Pharmacother., 2015, 70, 53-57.
[http://dx.doi.org/10.1016/j.biopha.2015.01.002] [PMID: 25776479]
[179]
Iwai, Y.; Hamanishi, J.; Chamoto, K.; Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci., 2017, 24(1), 26.
[http://dx.doi.org/10.1186/s12929-017-0329-9] [PMID: 28376884]
[180]
Roselli, E.; Frieling, J.S.; Thorner, K.; MarRamello, M.C.; Lynch, C.C.; Abate-Daga, D. CAR-T engineering: Optimizing signal transduction and effector mechanisms. BioDrugs, 2019, 33(6), 647-659.
[181]
Chappert, M.; Leboeuf, M. Antigen specific Treg impair CD8+ T-cell priming y blocking early T-cell expansion. Eur. J. Immunol., 2010, 40(2), 339-350.
[PMID: 19877007]
[182]
Ikenaga, C.; Kubota, A.; Kadoya, M.; Taira, K.; Uchio, N.; Hida, A.; Maeda, M.H.; Nagashima, Y.; Ishiura, H.; Kaida, K.; Goto, J.; Tsuji, S.; Shimizu, J. Clinicopathologic features of myositis patients with CD8-MHC-1 complex pathology. Neurology, 2017, 89(10), 1060-1068.
[http://dx.doi.org/10.1212/WNL.0000000000004333] [PMID: 28794251]
[183]
Espinosa-Cueto, P.; Magallanes-Puebla, A.; Castellanos, C.; Mancilla, R. Dendritic cells that phagocytose apoptotic macrophages loaded with mycobacterial antigens activate CD8 T cells via cross-presentation. PLoS One, 2017, 12(8), e0182126.
[http://dx.doi.org/10.1371/journal.pone.0182126] [PMID: 28767693]
[184]
Ventura, A.; Vassall, A.; Yurter, A.; Robinson, E.; Filler, R.; Hanlon, D.; Meeth, K.; Ezaldein, H.; Girardi, M.; Sobolev, O.; Bosenberg, M.W.; Edelson, R.L. Novel protocol for generating physiologic immunogenic dendritic cells. J. Vis. Exp., 2019, 147(147)
[http://dx.doi.org/10.3791/59370-v] [PMID: 31157760]
[185]
Ly, A.; François, J.C.; Upegui-Gonzalez, L.C.; Swiercz, B.; Bedel, C.; Duc, H.T.; Bout, D.; Trojan, J. Alterations in tumorigenicity of embryonal carcinoma cells by IGF-I triple-helix induced changes in immunogenicity and apoptosis. Life Sci., 2000, 68(3), 307-319.
[http://dx.doi.org/10.1016/S0024-3205(00)00936-X] [PMID: 11191646]
[186]
Kindt, T.J.; Goldsby, R.A.; Osborne, B.A.; Kuby, J. Kuby Immunology. 2007. Available From: www.worldcat.org
[187]
Chen, W.; Wu, Y.; Zhang, G.; Wang, M.; Yang, H.; Li, Q. γδT cells exacerbate podocyte injury via the CD28/B7-1-phosphor-SRC kinase pathway. BioMed Res. Int., 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/5647120] [PMID: 29862277]
[188]
Tao, S.C.; Yuan, T.; Rui, B.Y.; Zhu, Z.Z.; Guo, S.C.; Zhang, C.Q. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics, 2017, 7(3), 733-750.
[http://dx.doi.org/10.7150/thno.17450] [PMID: 28255363]
[189]
Motaghinejad, M.; Motevalian, M.; Fatima, S.; Beiranvand, T.; Mozaffari, S. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J. Neural Transm. (Vienna), 2017, 124(11), 1369-1387.
[http://dx.doi.org/10.1007/s00702-017-1771-2] [PMID: 28795276]
[190]
Prokhorova, E.A.; Kopeina, G.S.; Lavrik, I.N.; Zhivotovsky, B. Apoptosis regulation by subcellular relocation of caspases. Sci. Rep., 2018, 8(1), 12199.
[http://dx.doi.org/10.1038/s41598-018-30652-x] [PMID: 30111833]
[191]
Gao, C.; Yuan, X.; Jiang, Z.; Gan, D.; Ding, L.; Sun, Y.; Zhou, J.; Xu, L.; Liu, Y.; Wang, G. Regulation of AKT phosphorylation by GSK3β and PTEN to control chemoresistance in breast cancer. Breast Cancer Res. Treat., 2019, 176(2), 291-301.
[http://dx.doi.org/10.1007/s10549-019-05239-3] [PMID: 31006103]
[192]
Huang, H.; Miao, L.; Yang, L.; Liang, F.; Wang, Q.; Zhuang, P.; Sun, Y.; Hu, Y. AKT-dependent and -independent pathways mediate PTEN deletion-induced CNS axon regeneration. Cell Death Dis., 2019, 10(3), 203.
[http://dx.doi.org/10.1038/s41419-018-1289-z] [PMID: 30814515]
[193]
Yan, Y.; Huang, H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv. Exp. Med. Biol., 2019, 1210, 319-331.
[http://dx.doi.org/10.1007/978-3-030-32656-2_14] [PMID: 31900915]
[194]
O’Neill, L.A.J.; Golenbock, D.; Bowie, A.G. The history of Toll-like receptors — redefining innate immunity. Nat. Rev. Immunol., 2013, 13(6), 453-460.
[http://dx.doi.org/10.1038/nri3446] [PMID: 23681101]
[195]
Brutkiewicz, R.R. Cell signaling pathways that regulate antigen presentation. J. Immunol, 2016, 19(8), 2971-2979.
[196]
Chen, L. Modulation of Toll-Like Receptor signaling in innate immunity by natural products: In vivo, DCs express TLRs 2, 4, 7, and 9. Int. Immunopharmacol., 2016, 37, 65-70.
[197]
Chen, X.; Li, Y.; Blankson, S.; Liu, M.; Huang, D.; Redmond, H.P.; Huang, J.; Wang, J.H.; Wang, J. B7-H3 augments inflammatory responses and exacerbates brain damage via amplifying NF-kappaB p65 and MAPK p38 activation during experimental Pneumococcal Meningitis. PLoS One, 2017, 12(1), e0171146.
[http://dx.doi.org/10.1371/journal.pone.0171146] [PMID: 28141831]
[198]
Medvedev, A.E. Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer. J. Interferon Cytokine Res., 2013, 33(9), 467-484.
[http://dx.doi.org/10.1089/jir.2012.0140] [PMID: 23675778]
[199]
Trejo-de la O, A.; Hernández-Sancén, P.; Maldonado-Bernal, C. Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes Immun., 2014, 15(4), 199-209.
[http://dx.doi.org/10.1038/gene.2014.10] [PMID: 24622688]
[200]
Mohammad Hosseini, A.; Majidi, J.; Baradaran, B.; Yousefi, M. Toll-like receptors in the pathogenesis of autoimmune diseases. Adv. Pharm. Bull., 2015, 5(1)(Suppl. 1), 605-614.
[http://dx.doi.org/10.15171/apb.2015.082] [PMID: 26793605]
[201]
Ostrand-Rosenberg, S.; Sinha, P.; Chornoguz, O.; Ecker, C. Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunol. Immunother., 2012, 61(8), 1319-1325.
[http://dx.doi.org/10.1007/s00262-012-1269-6] [PMID: 22546994]
[202]
Svane, I.M.; Engel, A.M.; Nielsen, M.; Werdelin, O. Interferon-gamma-induced MHC class I expression and defects in Jak/Stat signalling in methylcholanthrene-induced sarcomas. Scand. J. Immunol., 1997, 46(4), 379-387.
[http://dx.doi.org/10.1046/j.1365-3083.1997.d01-141.x] [PMID: 9350289]
[203]
Rodríguez, T.; Méndez, R.; Del Campo, A.; Jiménez, P.; Aptsiauri, N.; Garrido, F.; Ruiz-Cabello, F. Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer, 2007, 7(1), 34.
[http://dx.doi.org/10.1186/1471-2407-7-34] [PMID: 17319941]
[204]
Heise, R.; Amann, P.M.; Ensslen, S.; Marquardt, Y.; Czaja, K.; Joussen, S.; Beer, D.; Abele, R.; Plewnia, G.; Tampé, R.; Merk, H.F.; Hermanns, H.M.; Baron, J.M. Interferon alpha signalling and its relevance for the upregulatory effect of transporter proteins associated with antigen processing (TAP) in patients with malignant melanoma. PLoS One, 2016, 11(1), e0146325.
[http://dx.doi.org/10.1371/journal.pone.0146325] [PMID: 26735690]
[205]
O’Shea, J.J.; Plenge, R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity, 2012, 36(4), 542-550.
[http://dx.doi.org/10.1016/j.immuni.2012.03.014] [PMID: 22520847]
[206]
O’Shea, J.J.; Holland, S.M.; Staudt, L.M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med., 2013, 368(2), 161-170.
[http://dx.doi.org/10.1056/NEJMra1202117] [PMID: 23301733]
[207]
Chen, X.; Meng, X.; Foley, N.M.; Shi, X.; Liu, M.; Chai, Y.; Li, Y.; Redmond, H.P.; Wang, J.; Wang, J.H. Activation of the TLR2-mediated downstream signaling pathways NF-κB and MAPK is responsible for B7-H3-augmented inflammatory response during S. pneumoniae infection. J. Neuroimmunol., 2017, 310, 82-90.
[http://dx.doi.org/10.1016/j.jneuroim.2017.07.002] [PMID: 28778451]
[208]
Sallusto, F.; Lanzavecchia, A. The instructive role of dendritic cells on T-cell responses. Arthritis Res., 2002, 4(Suppl 3)(Suppl. 3), S127-S132.
[http://dx.doi.org/10.1186/ar567] [PMID: 12110131]
[209]
Steinman, R.M.; Turley, S.; Mellman, I.; Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med., 2000, 191(3), 411-416.
[http://dx.doi.org/10.1084/jem.191.3.411] [PMID: 10662786]
[210]
D’Ambrosio, C.; Ferber, A.; Resnicoff, M.; Baserga, R. A soluble insulin-like growth factor I receptor that induces apoptosis of tumor cells in vivo and inhibits tumorigenesis. Cancer Res., 1996, 56(17), 4013-4020.
[PMID: 8752172]
[211]
Dudek, H.; Datta, S.R.; Franke, T.F.; Birnbaum, M.J.; Yao, R.; Cooper, G.M.; Segal, R.A.; Kaplan, D.R.; Greenberg, M.E. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 1997, 275(5300), 661-665.
[http://dx.doi.org/10.1126/science.275.5300.661] [PMID: 9005851]
[212]
Satoh, J.; Lee, Y.B.; Kim, S.U. T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture. Brain Res., 1995, 704(1), 92-96.
[http://dx.doi.org/10.1016/0006-8993(95)01177-3] [PMID: 8750966]
[213]
Resnicoff, M.; Abraham, D.; Yutanawiboonchai, W.; Rotman, H.L.; Kajstura, J.; Rubin, R.; Zoltick, P.; Baserga, R. The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res., 1995, 55(11), 2463-2469.
[PMID: 7758000]
[214]
Sotomayor, E.M.; Fu, Y.X.; Lopez-Cepero, M.; Herbert, L.; Jimenez, J.J.; Albarracin, C.; Lopez, D.M. Role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. II. Down-regulation of macrophage-mediated cytotoxicity by tumor-derived granulocyte-macrophage colony-stimulating factor. J. Immunol., 1991, 147(8), 2816-2823.
[http://dx.doi.org/10.4049/jimmunol.147.8.2816] [PMID: 1918995]
[215]
Albert, M.L.; Sauter, B.; Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998, 392(6671), 86-89.
[http://dx.doi.org/10.1038/32183] [PMID: 9510252]
[216]
Gérard, C.M.; Bruyns, C.; Delvaux, A.; Baudson, N.; Dargent, J.L.; Goldman, M.; Velu, T. Loss of tumorigenicity and increased immunogenicity induced by interleukin-10 gene transfer in B16 melanoma cells. Hum. Gene Ther., 1996, 7(1), 23-31.
[http://dx.doi.org/10.1089/hum.1996.7.1-23] [PMID: 8825865]
[217]
Buck, C.; Digel, W.; Schöniger, W.; Stefanic, M.; Ragnavachar, A.; Heimpel, H.; Porzsolt, F. Tumor necrosis factor-alpha, but not lymphotoxin, stimulates growth of tumor cells in hairy cell leukemia. Leukemia, 1990, 4(6), 431-434.
[PMID: 2162999]
[218]
Aggarwal, B.B.; Schwarz, L.; Hogan, M.E.; Rando, R.F. Triple helix-forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF-dependent growth of human glioblastoma tumor cells. Cancer Res., 1996, 56(22), 5156-5164.
[PMID: 8912851]
[219]
Anthony, D.D. Ex vivo and in vivo IGF-1 antisense RNA strategies for treatment of cancers in humans. Cancer Gene Ther., 1997, 2, 322.
[220]
Messaoudi, S.; Peyrat, J.; Brion, J.; Alami, M. Recent advances in Hsp90 inhibitors as antitumor agents. Anticancer. Agents Med. Chem., 2008, 8(7), 761-782.
[http://dx.doi.org/10.2174/187152008785914824] [PMID: 18855578]
[221]
Stupp, R.; Hegi, M.E.; van den Bent, M.J.; Mason, W.P.; Weller, M.; Mirimanoff, R.O.; Cairncross, J.G. Changing paradigms--an update on the multidisciplinary management of malignant glioma. Oncologist, 2006, 11(2), 165-180.
[http://dx.doi.org/10.1634/theoncologist.11-2-165] [PMID: 16476837]
[222]
Huttner, A. Overview of primary brain tumors: Pathologic classification, epidemiology, molecular biology, and prognostic markers. Hematol. Oncol. Clin. North Am., 2012, 26(4), 715-732.
[http://dx.doi.org/10.1016/j.hoc.2012.05.004] [PMID: 22794280]
[223]
Siegel, R.L.; Miller, K.D.; Jemal, A. Statistic of cancer. Cancer J. Clin, 2019, 69, 34.
[224]
Liu, X. Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. Springerplus, 2014, 3, 356.
[PMID: 25089247]
[225]
Liu, T.Y.; Shi, C.X.; Gao, R.; Sun, H.J.; Xiong, X.Q.; Ding, L.; Chen, Q.; Li, Y.H.; Wang, J.J.; Kang, Y.M.; Zhu, G.Q. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin. Sci. (Lond.), 2015, 129(10), 839-850.
[http://dx.doi.org/10.1042/CS20150009] [PMID: 26201094]
[226]
Fujiwara, Y.; Kuchiba, A.; Koyama, T.; Machida, R.; Shimomura, A.; Kitano, S.; Shimizu, T.; Yamamoto, N. Infection risk with PI3K-AKT-mTOR pathway inhibitors and immune checkpoint inhibitors in patients with advanced solid tumours in phase I clinical trials. ESMO Open, 2020, 5(2), e000653.
[http://dx.doi.org/10.1136/esmoopen-2019-000653] [PMID: 32276948]
[227]
Chen, C.F.; Yang, J.S.; Chen, W.K.; Lu, C.C.; Chiang, J.H.; Chiu, H.Y.; Tsai, S.C.; Juan, Y.N.; Huang, H.J.; Way, T.D. Ursolic acid elicits intrinsic apoptotic machinery by downregulating the phosphorylation of AKT/BAD signaling in human cisplatin-resistant oral cancer CAR cells. Oncol. Rep., 2018, 40(3), 1752-1760.
[http://dx.doi.org/10.3892/or.2018.6530] [PMID: 29956797]
[228]
Boado, R.J. RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx, 2005, 2(1), 139-150.
[http://dx.doi.org/10.1602/neurorx.2.1.139] [PMID: 15717065]
[229]
Pai, S.I. Prospects of RNA interference therapy for cancer. Gene Ther., 2006, 13(6), 464-477.
[230]
Berezikov, V. Diversity of microRNAs in human and chimpanzee brain. Nat. Genet, 2006, 38(12), 1375-1377.
[231]
Corsten, M.F. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res., 2007, 67(9), 8994-9000.
[232]
Coutinho, M.F.; Matos, L.; Santos, J.I.; Alves, S. RNA therapeutics: How far have we gone? Adv. Exp. Med. Biol., 2019, 1157, 133-177.
[http://dx.doi.org/10.1007/978-3-030-19966-1_7] [PMID: 31342441]
[233]
Bennett, C.F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med., 2019, 70(1), 307-321.
[http://dx.doi.org/10.1146/annurev-med-041217-010829] [PMID: 30691367]
[234]
Ferrari, G.; Rossini, S.; Nobili, N.; Maggioni, D.; Garofalo, A.; Giavazzi, R.; Mavilio, F.; Bordignon, C. Transfer of the ADA gene into human ADA-deficient T lymphocytes reconstitutes specific immune functions. Blood, 1992, 80(5), 1120-1124.
[http://dx.doi.org/10.1182/blood.V80.5.1120.1120] [PMID: 1325209]
[235]
Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: An evolving concept. Nat. Rev. Cancer, 2012, 12(2), 133-143.
[http://dx.doi.org/10.1038/nrc3184] [PMID: 22237392]
[236]
Pino, A.; Fumagalli, G.; Bifari, F.; Decimo, I. New neurons in adult brain: Distribution, molecular mechanisms and therapies. Biochem. Pharmacol., 2017, 141, 4-22.
[http://dx.doi.org/10.1016/j.bcp.2017.07.003] [PMID: 28690140]
[237]
Maiuolo, J.; Gliozzi, M.; Musolino, V.; Carresi, C.; Scarano, F.; Nucera, S.; Scicchitano, M.; Oppedisano, F.; Bosco, F.; Ruga, S.; Zito, M.C.; Macri, R.; Palma, E.; Muscoli, C.; Mollace, V. Palma, E.; Muscoli, C.; Mollace, V. The contribution of gut microbiota-brain axis in the development of brain disorders. Front. Neurosci., 2021, 15, 616883.
[http://dx.doi.org/10.3389/fnins.2021.616883] [PMID: 33833660]
[238]
Mossad, O.; Blank, T. Getting on in old age: How the gut microbiota interferes with brain innate immunity. Front. Cell. Neurosci., 2021, 15, 698126.
[http://dx.doi.org/10.3389/fncel.2021.698126] [PMID: 34295223]
[239]
Suganya, K.; Koo, B.S. Gut – brain axis:role of gut microbiota on neurological disorders and how probiotics / prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int. J. Mol. Sci., 2020, 21(20), 7551.
[http://dx.doi.org/10.3390/ijms21207551] [PMID: 33066156]
[240]
Alrushaid, N.; Khan, F.A.; Al-Suhaimi, E.A.; Elaissari, A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics, 2023, 15(3), 1025.
[http://dx.doi.org/10.3390/pharmaceutics15031025] [PMID: 36986885]
[241]
Salazar, A.; Pérez-de la Cruz, V.; Muñoz-Sandoval, E.; Chavarria, V.; García Morales, M.L.; Espinosa-Bonilla, A.; Sotelo, J.; Jiménez-Anguiano, A.; Pineda, B. Potential use of nitrogendoped carbon nanotube sponges as payload carriers against malignant glioma. Nanomaterials (Basel), 2021, 11(5), 1244.
[http://dx.doi.org/10.3390/nano11051244] [PMID: 34066818]
[242]
Lihuang, L.; Qiuyan, G.; Yanxiu, L.; Mindan, L.; Jun, Y.; Yunlong, G.; Qiang, Z.; Benqiang, S.; Xiumin, W.; Liang-cheng, L.; Lei, R. Targeted combination therapy for glioblastoma by co-delivery of doxorubicin, YAP-siRNA and gold nanorods. J. Mater. Sci. Technol., 2021, 63, 81-90.
[http://dx.doi.org/10.1016/j.jmst.2020.03.009]
[243]
Zhou, H.; Qian, W.; Uckun, F.M.; Wang, L.; Wang, Y.A.; Chen, H.; Kooby, D.; Yu, Q.; Lipowska, M.; Staley, C.A.; Mao, H.; Yang, L. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano, 2015, 9(8), 7976-7991.
[http://dx.doi.org/10.1021/acsnano.5b01288] [PMID: 26242412]
[244]
Sadjadi, S.; Malmir, M.; Heravi, M.M.; Raja, M. Magnetic hybrid of cyclodextrin nanosponge and polyhedral oligomeric silsesquioxane: Efficient catalytic support for immobilization of Pd nanoparticles. Int. J. Biol. Macromol., 2019, 128, 638-647.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.181] [PMID: 30708003]
[245]
Duca, M.; Vekhoff, P.; Oussedik, K.; Halby, L.; Arimondo, P.B. The triple helix: 50 years later, the outcome. Nucleic Acids Res., 2008, 36(16), 5123-5138.
[http://dx.doi.org/10.1093/nar/gkn493] [PMID: 18676453]
[246]
Watts, J.K.; Corey, D.R. Silencing disease genes in the laboratory and the clinic. J. Pathol., 2012, 226(2), 365-379.
[http://dx.doi.org/10.1002/path.2993] [PMID: 22069063]
[247]
Nikam, R.R.; Gore, K.R. Journey of siRNA: Clinical developments and targeted delivery. Nucleic Acid Ther., 2018, 28(4), 209-224.
[http://dx.doi.org/10.1089/nat.2017.0715] [PMID: 29584585]
[248]
Sanson, M.; Laigle-Donadey, F.; Benouaich-Amiel, A. Molecular changes in brain tumors: Prognostic and therapeutic impact. Curr. Opin. Oncol., 2006, 18(6), 623-630.
[http://dx.doi.org/10.1097/01.cco.0000245322.11787.72] [PMID: 16988585]
[249]
Love, S.; Perry, A.; Ironside, J.; Budka, H. Greenfield’s Neuropathology. 2016. Available From: https://www.livres-medicaux.com/greenfield-s-neuropathology-9th-ed-2-vol-ebook.html
[250]
Granier, C.; Karaki, S.; Oudard, S. Cancer immunotherapy: Rational and recent breakthroughs. Rev. Med. Int, 2016, 37(10), 694-700.
[251]
Kakimi, K.; Karasaki, T.; Matsushita, H.; Sugie, T. Advances in personalized cancer immunotherapy. Breast Cancer, 2017, 24(1), 16-24.
[http://dx.doi.org/10.1007/s12282-016-0688-1] [PMID: 27000871]
[252]
Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol., 2018, 15(5), 325-340.
[http://dx.doi.org/10.1038/nrclinonc.2018.29] [PMID: 29508855]
[253]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[254]
Wang, G. Cancer immunotherapy and immunomodulation. Curr. Med. Chem., 2019, 26(17), 2988-2989.
[http://dx.doi.org/10.2174/092986732617190820123515] [PMID: 31526344]
[255]
Mohanraj, L.; Oh, Y. Targeting IGF-I, IGFBPs and IGF-I receptor system in cancer: The current and future in breast cancer therapy. Recent Patents Anticancer Drug Discov., 2011, 6(2), 166-177.
[http://dx.doi.org/10.2174/157489211795328512] [PMID: 21247403]
[256]
Nadal, R.; Amin, A.; Geynisman, D.M.; Voss, M.H.; Weinstock, M.; Doyle, J.; Zhang, Z.; Viudez, A.; Plimack, E.R.; McDermott, D.F.; Motzer, R.; Rini, B.; Hammers, H.J. Safety and clinical activity of vascular endothelial growth factor receptor (VEGFR)–tyrosine kinase inhibitors after programmed cell death 1 inhibitor treatment in patients with metastatic clear cell renal cell carcinoma. Ann. Oncol., 2016, 27(7), 1304-1311.
[http://dx.doi.org/10.1093/annonc/mdw160] [PMID: 27059553]
[257]
Haque, S.; Morris, J.C. Transforming growth factor-β: A therapeutic target for cancer. Hum. Vaccin. Immunother., 2017, 13(8), 1741-1750.
[http://dx.doi.org/10.1080/21645515.2017.1327107] [PMID: 28575585]
[258]
Masood, A.; Kancha, R.K.; Subramanian, J. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer harboring uncommon EGFR mutations: Focus on afatinib. Semin. Oncol., 2019, 46(3), 271-283.
[http://dx.doi.org/10.1053/j.seminoncol.2019.08.004] [PMID: 31558282]
[259]
Bright, G.M. Recombinant IGF-I: Past, present and future. Growth Horm. IGF Res., 2016, 28, 62-65.
[http://dx.doi.org/10.1016/j.ghir.2016.01.002] [PMID: 26822565]
[260]
Osher, E.; Macaulay, V.M. Therapeutic targeting of the IGF axis. Cells, 2019, 8(8), 895.
[http://dx.doi.org/10.3390/cells8080895] [PMID: 31416218]
[261]
Zumkeller, W. The insulin-like growth factor system in hematopoietic cells. Leuk. Lymphoma, 2002, 43(3), 487-491.
[http://dx.doi.org/10.1080/10428190290011958] [PMID: 12002750]
[262]
Yasui, H. Safe handling of cancer chemotherapy drugs. Gan To Kagaku Ryoho, 2016, 43(5), 503-508.
[PMID: 27210078]
[263]
Nozaki, E.; Maeno, S.; Nagashima, F.; Okano, N.; Kawai, K.; Kobayashi, T.; Yamauchi, Y.; Furuse, J. The risk factors of cancer chemotherapy in elderly patients. Gan To Kagaku Ryoho, 2018, 45(1), 8-11.
[PMID: 29362297]
[264]
Benedetti, E.; Galzio, R.; D’Angelo, B.; Cerù, M.P.; Cimini, A. Corrigendum to PPARs in human neuroepithelial tumors: PPAR ligands as anticancer therapies for the most common human neuroepithelial tumors. PPAR Res., 2019, 2019, 1-2.
[http://dx.doi.org/10.1155/2019/4309068] [PMID: 31428141]
[265]
Ganesan, K.; Jayachandran, M.; Xu, B. Diet-derived phytochemicals targeting colon cancer stem cells and microbiota in colorectal cancer. Int. J. Mol. Sci., 2020, 21(11), 3976.
[http://dx.doi.org/10.3390/ijms21113976] [PMID: 32492917]
[266]
Jarosz-Biej, M.; Smolarczyk, R.; Cichoń, T.; Kułach, N. Tumor microenvironment as a “game changer” in cancer radiotherapy. Int. J. Mol. Sci., 2019, 20(13), 3212.
[http://dx.doi.org/10.3390/ijms20133212] [PMID: 31261963]
[267]
Maxim, P.G.; Tantawi, S.G.; Loo, B.W., Jr PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiother. Oncol., 2019, 139, 28-33.
[http://dx.doi.org/10.1016/j.radonc.2019.05.005] [PMID: 31178058]
[268]
Vlashi, E.; Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin. Cancer Biol., 2015, 31, 28-35.
[http://dx.doi.org/10.1016/j.semcancer.2014.07.001] [PMID: 25025713]
[269]
Eun, K.; Ham, S.W.; Kim, H. Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep., 2017, 50(3), 117-125.
[http://dx.doi.org/10.5483/BMBRep.2017.50.3.222] [PMID: 27998397]
[270]
Najafi, M.; Mortezaee, K.; Ahadi, R. Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci., 2019, 231, 116520.
[http://dx.doi.org/10.1016/j.lfs.2019.05.076] [PMID: 31158379]
[271]
Trojan, J. Oncoproteins targeting: Antibodies, antisense, triple - helix. Case of anti IGF-I cancer immunogene therapy. Antisense Therapies ; InTechOpen: UK, 2019.
[272]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[273]
Marković, D.; Pavelić, K. Recent advances in modern anticancer research. Curr. Med. Chem., 2020, 27(8), 1172-1173.
[http://dx.doi.org/10.2174/092986732708200326173257] [PMID: 32238130]
[274]
Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; Barnholtz-Sloan, J.S. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin., 2021, 71(5), 381-406.
[http://dx.doi.org/10.3322/caac.21693] [PMID: 34427324]
[275]
Hotchkiss, K.M.; Sampson, J.H. Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor. J. Neurooncol., 2021, 151(1), 55-62.
[http://dx.doi.org/10.1007/s11060-020-03598-2] [PMID: 32813186]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy