Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthetic and Biological Studies of Some Pyrrolidine-Tethered Novel Aurones against Digestive Enzymes

Author(s): Sanjeev Kumar, Bhavna Saroha, Ekta Lathwal, Gourav Kumar, Priyanka Arya, Neera Raghav, Ramesh Kumar and Suresh Kumar*

Volume 27, Issue 20, 2023

Published on: 28 November, 2023

Page: [1821 - 1832] Pages: 12

DOI: 10.2174/0113852728269884231102063805

Price: $65

Abstract

Amylase, lipase, and trypsin are crucial digestive enzymes, whose activation or inhibition is of potent therapeutic approach for treating various body disorders. In this work, we have synthesized a small library of pyrrolidine-tethered novel aurones 4(a-k) and structures validated by analyzing their IR, NMR (1H and 13C), and mass spectrometry data. The biological activities of the synthesized aurones were evaluated through in vitro and in silico experiments against digestive enzymes. A distinct pattern emerged, with significant activation observed for trypsin and amylase, while lipase was notably inhibited. Among the synthesized compounds, 4f produced the highest lipase inhibition (72.3%), whereas 4k showed maximum activation for trypsin (EC50 = 0.94×10-6 M) and 4f activated amylase (EC50 = 8.76×10-4 M) to the maximum extent, thus confirming their possible use as agents for combating inflammation and obesity.

« Previous
[1]
Bell, J.A.; Kivimaki, M.; Hamer, M. Metabolically healthy obesity and risk of incident type 2 diabetes: A meta‐analysis of prospective cohort studies. Obes. Rev., 2014, 15(6), 504-515.
[http://dx.doi.org/10.1111/obr.12157] [PMID: 24661566]
[2]
Abdullah, A.; Peeters, A.; de Courten, M.; Stoelwinder, J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract., 2010, 89(3), 309-319.
[http://dx.doi.org/10.1016/j.diabres.2010.04.012] [PMID: 20493574]
[3]
Wilson, P.W.F.; D’Agostino, R.B.; Sullivan, L.; Parise, H.; Kannel, W.B. Overweight and obesity as determinants of cardiovascular risk: The Framingham experience. Arch. Intern. Med., 2002, 162(16), 1867-1872.
[http://dx.doi.org/10.1001/archinte.162.16.1867] [PMID: 12196085]
[4]
Lu, Y.; Hajifathalian, K.; Ezzati, M.; Woodward, M.; Rimm, E.B.; Danaei, G.; D’Este, C. Metabolic mediators of the eff ects of body-mass index, overweight, and obesity on coronary heart disease and stroke: A pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet, 2014, 383(9921), 970-83.
[5]
Calle, E.E.; Thun, M.J. Obesity and cancer. Oncogene, 2004, 23(38), 6365-6378.
[http://dx.doi.org/10.1038/sj.onc.1207751] [PMID: 15322511]
[6]
Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a multisystem disease: Trends in obesity rates and obesity‐related complications. Diabetes Obes. Metab., 2021, 23(S1), 3-16.
[http://dx.doi.org/10.1111/dom.14290] [PMID: 33621415]
[7]
Tucci, S.; Boyland, E.J.; Halford, J.C.G. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes Metab. Syndr. Obes., 2010, 3, 125-143.
[http://dx.doi.org/10.2147/DMSO.S7005] [PMID: 21437083]
[8]
Müller, T.D.; Blüher, M.; Tschöp, M.H.; DiMarchi, R.D. Anti-obesity drug discovery: Advances and challenges. Nat. Rev. Drug Discov., 2022, 21(3), 201-223.
[http://dx.doi.org/10.1038/s41573-021-00337-8] [PMID: 34815532]
[9]
Daneschvar, H.L.; Aronson, M.D.; Smetana, G.W. FDA-approved anti-obesity drugs in the United States. Am. J. Med., 2016, 129(8), e871-e879.
[10]
Woodard, K.; Louque, L.; Hsia, D.S. Medications for the treatment of obesity in adolescents. Ther. Adv. Endocrinol. Metab., 2020, 11, 20420188220918789.
[http://dx.doi.org/10.1177/2042018820918789] [PMID: 32523671]
[11]
Pilitsi, E.; Farr, O.M.; Polyzos, S.A.; Perakakis, N.; Nolen-Doerr, E.; Papathanasiou, A.E.; Mantzoros, C.S. Pharmacotherapy of obesity: Available medications and drugs under investigation. Metabolism, 2019, 92, 170-192.
[http://dx.doi.org/10.1016/j.metabol.2018.10.010] [PMID: 30391259]
[12]
Kusunoki, M.; Hara, T.; Tsutsumi, K.; Nakamura, T.; Miyata, T.; Sakakibara, F.; Sakamoto, S.; Ogawa, H.; Nakaya, Y.; Storlien, L.H. The lipoprotein lipase activator, NO-1886, suppresses fat accumulation and insulin resistance in rats fed a high-fat diet. Diabetologia, 2000, 43(7), 875-880.
[http://dx.doi.org/10.1007/s001250051464] [PMID: 10952460]
[13]
Nakajima, K. Low serum amylase and obesity, diabetes and metabolic syndrome: A novel interpretation. World J. Diabetes, 2016, 7(6), 112-121.
[http://dx.doi.org/10.4239/wjd.v7.i6.112] [PMID: 27022442]
[14]
Shamsi, T.N.; Parveen, R.; Afreen, S.; Azam, M.; Sen, P.; Sharma, Y.; Haque, Q.M.R.; Fatma, T.; Manzoor, N.; Fatima, S. Trypsin inhibitors from Cajanus cajan and Phaseolus limensis possess antioxidant, anti-inflammatory, and antibacterial activity. J. Diet. Suppl., 2018, 15(6), 939-950.
[http://dx.doi.org/10.1080/19390211.2017.1407383] [PMID: 29345972]
[15]
Mazziotti, I.; Petrarolo, G.; La Motta, C. Aurones: A golden resource for active compounds. Molecules, 2021, 27(1), 2.
[http://dx.doi.org/10.3390/molecules27010002] [PMID: 35011233]
[16]
Ono, E.; Fukuchi-Mizutani, M.; Nakamura, N.; Fukui, Y.; Yonekura-Sakakibara, K.; Yamaguchi, M.; Nakayama, T.; Tanaka, T.; Kusumi, T.; Tanaka, Y. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA, 2006, 103(29), 11075-11080.
[http://dx.doi.org/10.1073/pnas.0604246103] [PMID: 16832053]
[17]
Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40.
[http://dx.doi.org/10.1002/ptr.6208] [PMID: 30346068]
[18]
Boucherle, B.; Peuchmaur, M.; Boumendjel, A.; Haudecoeur, R. Occurrences, biosynthesis and properties of aurones as high-end evolutionary products. Phytochemistry, 2017, 142, 92-111.
[http://dx.doi.org/10.1016/j.phytochem.2017.06.017] [PMID: 28704688]
[19]
Sato, T.; Nakayama, T.; Kikuchi, S.; Fukui, Y.; Yonekura-Sakakibara, K.; Ueda, T.; Nishino, T.; Tanaka, Y.; Kusumi, T. Enzymatic formation of aurones in the extracts of yellow snapdragon flowers. Plant Sci., 2001, 160(2), 229-236.
[http://dx.doi.org/10.1016/S0168-9452(00)00385-X] [PMID: 11164594]
[20]
Paidakula, S.; Nerella, S.; Vadde, R.; Kamal, A.; Kankala, S. Design and synthesis of 4β-Acetamidobenzofuranone-podophyllotoxin hybrids and their anti-cancer evaluation. Bioorg. Med. Chem. Lett., 2019, 29(16), 2153-2156.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.060] [PMID: 31281022]
[21]
Saroha, B.; Kumar, G.; Kumar, S.; Kumari, M.; Rani, M.; Raghav, N.; Sahoo, P.K.; Ghosh, S.; Mahata, S.; Nasare, V.D. Novel 1,2,3-triazole-aurone hybrids as cathepsin B inhibitors: One-pot synthesis, anti-proliferative, and drug modeling studies. Eur. J. Med. Chem. Rep., 2022, 5, 100056.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100056]
[22]
Kumar, S.; Lathwal, E.; Kumar, G.; Saroha, B.; Kumar, S.; Mahata, S.; Sahoo, P.K.; Nasare, V.D. Synthesis of pyrazole based novel aurone analogs and their cytotoxic activity against MCF-7 cell line. Chem. Data Collect., 2020, 30, 100559.
[http://dx.doi.org/10.1016/j.cdc.2020.100559]
[23]
Kim, H-G.; Nam, Y.H.; Jung, Y.S.; Oh, S.M.; Nguyen, T.N.; Lee, M-H.; Kim, D-O.; Kang, T.H.; Lee, D.Y.; Baek, N-I. Aurones and flavonols from coreopsis lanceolata l. flowers and their anti-oxidant, pro-inflammatory inhibition effects, and recovery effects on alloxan-induced pancreatic islets in Zebrafish. Molecules, 2021, 26(20), 6098.
[http://dx.doi.org/10.3390/molecules26206098]
[24]
Pan, G.; Li, X.; Zhao, L.; Wu, M.; Su, C.; Li, X.; Zhang, Y.; Yu, P.; Teng, Y.; Lu, K. Synthesis and anti-oxidant activity evaluation of (±)-Anastatins A, B and their analogs. Eur. J. Med. Chem., 2017, 138, 577-589.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.054] [PMID: 28704760]
[25]
Saroha, B.; Kumar, G.; Kumari, M.; Kaur, R.; Raghav, N.; Sharma, P.K.; Kumar, N.; Kumar, S. A decennary update on diverse heterocycles and their intermediates as privileged scaffolds for cathepsin B inhibition. Int. J. Biol. Macromol., 2022, 222(Pt B), 2270-2308.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.017] [PMID: 36216101]
[26]
Zwergel, C.; Gaascht, F.; Valente, S.; Diederich, M.; Bagrel, D.; Kirsch, G. Aurones: Interesting natural and synthetic compounds with emerging biological potential. Nat. Prod. Commun., 2012, 7, 1934578X1200700322.
[27]
Pourparizi, A.; Nadri, H.; Naghsh, N.; Eider, A.R.; Pourrajab, F. Synthesis of aurone sulfonate derivatives: Evaluation of their cholinesterase inhibition, neuroprotective effects, and expression of oxidative stress-related genes. J. Mol. Struct., 2023, 1294, 136334.
[http://dx.doi.org/10.1016/j.molstruc.2023.136334]
[28]
Chintakrindi, A.S.; Gohil, D.J.; Chowdhary, A.S.; Kanyalkar, M.A. Design, synthesis and biological evaluation of substituted flavones and aurones as potential anti-influenza agents. Bioorg. Med. Chem., 2020, 28(1), 115191.
[http://dx.doi.org/10.1016/j.bmc.2019.115191] [PMID: 31744778]
[29]
Liu, A.L.; Wang, H.D.; Lee, S.M.; Wang, Y.T.; Du, G.H. Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg. Med. Chem., 2008, 16(15), 7141-7147.
[http://dx.doi.org/10.1016/j.bmc.2008.06.049] [PMID: 18640042]
[30]
Pereira, V.R.D.; da Silveira, L.S.; Mengarda, A.C.; Alves Júnior, I.J.; da Silva, O.O.Z.; Miguel, F.B.; Silva, M.P.; Almeida, A.C.; Torres, D.S.; Pinto, P.F.; Coimbra, E.S.; de Moraes, J.; Couri, M.R.C.; da Silva Filho, A.A. Antischistosomal properties of aurone derivatives against juvenile and adult worms of Schistosoma mansoni. Acta Trop., 2021, 213, 105741.
[http://dx.doi.org/10.1016/j.actatropica.2020.105741] [PMID: 33159900]
[31]
Kumar, G.; Lathwal, E.; Saroha, B.; Kumar, S.; Kumar, S.; Chauhan, N.S.; Kumar, T. Synthesis and biological evaluation of quinoline‐based novel aurones. ChemistrySelect, 2020, 5(12), 3539-3543.
[http://dx.doi.org/10.1002/slct.201904912]
[32]
Bandgar, B.P.; Patil, S.A.; Korbad, B.L.; Biradar, S.C.; Nile, S.N.; Khobragade, C.N. Synthesis and biological evaluation of a novel series of 2,2-bisaminomethylated aurone analogues as anti-inflammatory and antimicrobial agents. Eur. J. Med. Chem., 2010, 45(7), 3223-3227.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.045] [PMID: 20430485]
[33]
Liu, W-J.; Li, Z-L.; Cheng, N-B.; Hu, Y-M.; Meng, Z-Q.; Su, Z-Z.; Yang, B.; Huang, W-Z.; Wang, Z-Z.; Xiao, W. A new aurone with anti-inflammatory activity from Cleistocalyx operculatus flower buds. Zhongguo Zhongyao Zazhi, 2018, 43(7), 1467-1470.
[PMID: 29728038]
[34]
Lathwal, E.; Kumar, S. A review of the various synthetic approaches to access aurone derivatives and their biological activities. Curr. Org. Chem., 2023, 27(4), 308-351.
[http://dx.doi.org/10.2174/1385272827666230407110607]
[35]
Sui, G.; Li, T.; Zhang, B.; Wang, R.; Hao, H.; Zhou, W. Recent advances on synthesis and biological activities of aurones. Bioorg. Med. Chem., 2021, 29, 115895.
[http://dx.doi.org/10.1016/j.bmc.2020.115895] [PMID: 33271454]
[36]
Haudecoeur, R.; Boumendjel, A. Recent advances in the medicinal chemistry of aurones. Curr. Med. Chem., 2012, 19(18), 2861-2875.
[http://dx.doi.org/10.2174/092986712800672085] [PMID: 22519399]
[37]
Liu, X.; Lai, D.; Liu, Q.; Zhou, L.; Liu, Q.; Liu, Z. Bioactivities of a new pyrrolidine alkaloid from the root barks of Orixa japonica. Molecules, 2016, 21(12), 1665.
[http://dx.doi.org/10.3390/molecules21121665] [PMID: 27918451]
[38]
Newman, M.B.; Arendash, G.W.; Shytle, R.D.; Bickford, P.C.; Tighe, T.; Sanberg, P.R. Nicotine’s oxidative and antioxidant properties in CNS. Life Sci., 2002, 71(24), 2807-2820.
[http://dx.doi.org/10.1016/S0024-3205(02)02135-5] [PMID: 12377264]
[39]
Lakhan, S.E.; Kirchgessner, A. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. J. Transl. Med., 2011, 9(1), 129.
[http://dx.doi.org/10.1186/1479-5876-9-129] [PMID: 21810260]
[40]
Narender, T.; Khaliq, T.; Singh, A.B.; Joshi, M.D.; Mishra, P.; Chaturvedi, J.P.; Srivastava, A.K.; Maurya, R.; Agarwal, S.C. Synthesis of α-amyrin derivatives and their in vivo antihyperglycemic activity. Eur. J. Med. Chem., 2009, 44(3), 1215-1222.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.011] [PMID: 18947904]
[41]
Islam, M.T.; Mubarak, M.S. Pyrrolidine alkaloids and their promises in pharmacotherapy. Adv. Trad. Med., 2020, 20(1), 13-22.
[http://dx.doi.org/10.1007/s13596-019-00419-4]
[42]
Li Petri, G.; Raimondi, M.V.; Spanò, V.; Holl, R.; Barraja, P.; Montalbano, A. Pyrrolidine in drug discovery: A versatile scaffold for novel biologically active compounds. Top. Curr. Chem., 2021, 379(5), 34.
[http://dx.doi.org/10.1007/s41061-021-00347-5] [PMID: 34373963]
[43]
Higashio, Y.; Shoji, T. Heterocyclic compounds such as pyrrole, pyridines, pyrrolidine, piperidine, indole, imidazol and pyrazines. Appl. Catal. A Gen., 2004, 260(2), 251-259.
[http://dx.doi.org/10.1016/S0926-860X(03)00197-2]
[44]
Egelund, P.H.G.; Jadhav, S.; Martin, V.; Johansson Castro, H.; Richner, F.; Le Quement, S.T.; Dettner, F.; Lechner, C.; Schoenleber, R.; Sejer Pedersen, D. Fmoc-removal with pyrrolidine expands the available solvent space in green solid-phase peptide synthesis. ACS Sustain. Chem.& Eng., 2021, 9(42), 14202-14215.
[http://dx.doi.org/10.1021/acssuschemeng.1c04770]
[45]
Uchide, N.; Ohyama, K. Antiviral function of pyrrolidine dithiocarbamate against influenza virus: The inhibition of viral gene replication and transcription. J. Antimicrob. Chemother., 2003, 52(1), 8-10.
[http://dx.doi.org/10.1093/jac/dkg282] [PMID: 12775674]
[46]
Haddad, S.; Boudriga, S.; Akhaja, T.N.; Raval, J.P.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; Rajani, D. A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: In vitro antibacterial, antifungal, antimalarial and antitubercular studies. New J. Chem., 2015, 39(1), 520-528.
[http://dx.doi.org/10.1039/C4NJ01008F]
[47]
Girgis, A.S. Regioselective synthesis of dispiro [1H-indene-2,3′-pyrrolidine-2′,3″- [3H]indole]-1,2″(1″H)-diones of potential anti-tumor properties. Eur. J. Med. Chem., 2009, 44(1), 91-100.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.013] [PMID: 18455272]
[48]
Socała, K.; Mogilski, S.; Pieróg, M.; Nieoczym, D.; Abram, M.; Szulczyk, B.; Lubelska, A.; Latacz, G.; Doboszewska, U.; Wlaź, P.; Kamiński, K. KA-11, a novel pyrrolidine-2, 5-dione derived broad-spectrum anticonvulsant: Its antiepileptogenic, antinociceptive properties and in vitro characterization. ACS Chem. Neurosci., 2019, 10(1), 636-648.
[http://dx.doi.org/10.1021/acschemneuro.8b00476] [PMID: 30247871]
[49]
Saroha, B.; Kumar, G.; Kumar, S.; Kumari, M.; Rani, M.; Raghav, N.; Sahoo, P.K.; Ghosh, S.; Mahata, S.; Nasare, V.D. Ultrasound assisted a one pot multicomponent and greener synthesis of 1,2,3-triazole incorporated aurone hybrids: Cathepsin B inhibition, anti-cancer activity against AGS cell line, and in-silico docking evaluation. Curr. Res. Green Sustain. Chem., 2022, 5, 100295.
[http://dx.doi.org/10.1016/j.crgsc.2022.100295]
[50]
Lathwal, E.; Kumar, S.; Kumar Sahoo, P.; Ghosh, S.; Mahata, S.; Nasare, V.D.; Kumar, S. Synthesis, cytotoxic evaluation and structure activity relationship of pyrazole hybrid aurones on gastric cancer (AGS) cell lines. Results Chem., 2022, 4, 100590.
[http://dx.doi.org/10.1016/j.rechem.2022.100590]
[51]
Sanjeev, K.; Bhavna, S.; Ekta, L.; Gourav, K.; Suresh, K.; Ramesh, K.; Priyanka, A.; Neera, R. An ultrasound-assisted three component protocol for the regio and stereo-selective synthesis of some novel dispiroheterocycles and their biological evaluation as anti-inflammatory, anti-obesity agents. Lett. Design Discov., 2024, 21(1), 133-142. [https://dx.doi.org/10.2174/1570180820666230306115855
[52]
Alshaye, N.A.; Mughal, E.U.; Elkaeed, E.B.; Ashraf, Z.; Kehili, S.; Nazir, Y.; Naeem, N.; Abdul Majeed, N.; Sadiq, A. Synthesis and biological evaluation of substituted aurone derivatives as potential tyrosinase inhibitors: In vitro, kinetic, QSAR, docking and drug-likeness studies. J. Biomol. Struct. Dyn., 2023, 41(17), 8307-8322.
[http://dx.doi.org/10.1080/07391102.2022.2132296] [PMID: 36255179]
[53]
Lazinski, L.M.; Royal, G.; Robin, M.; Maresca, M.; Haudecoeur, R. Bioactive Aurones, Indanones, and other hemiindigoid scaffolds: Medicinal chemistry and photopharmacology perspectives. J. Med. Chem., 2022, 65(19), 12594-12625.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01150] [PMID: 36126323]
[54]
Kumar, S. An improved one-pot and eco-friendly synthesis of aurones under solvent-free conditions. Green Chem. Lett. Rev., 2014, 7(1), 95-99.
[http://dx.doi.org/10.1080/17518253.2014.895867]
[55]
Zheng, X.; Wang, H.; Liu, Y.M.; Yao, X.; Tong, M.; Wang, Y.H.; Liao, D.F. Synthesis, characterization, and anticancer effect of trifluoromethylated aurone derivatives. J. Heterocycl. Chem., 2015, 52(1), 296-301.
[http://dx.doi.org/10.1002/jhet.1969]
[56]
Saroha, B.; Kumar, G.; Lathwal, E.; Kumar, S.; Kumari, M.; Mor, N.; Raghav, N.; Kumar, S. Synthesis of propynyloxy substituted some novel aurones as potent cathepsin B inhibitors. Chem. Data Collect., 2021, 31, 100630.
[http://dx.doi.org/10.1016/j.cdc.2020.100630]
[57]
Saroha, B.; Kumar, G.; Arya, P.; Raghav, N.; Kumar, S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg. Chem., 2023, 140, 106805.
[http://dx.doi.org/10.1016/j.bioorg.2023.106805] [PMID: 37634269]
[58]
Whitcomb, D.C.; Lowe, M.E. Human pancreatic digestive enzymes. Dig. Dis. Sci., 2007, 52(1), 1-17.
[59]
Huber, R.; Bode, W. Structural basis of the activation and action of trypsin. Acc. Chem. Res., 1978, 11(3), 114-122.
[http://dx.doi.org/10.1021/ar50123a006]
[60]
Seligman, B. Trypsin: An anti-inflammatory agent. Angiology, 1955, 6(3), 208-211.
[http://dx.doi.org/10.1177/000331975500600303] [PMID: 13275725]
[61]
Zhang, Q.; Han, Y.; Xiao, H. Microbial α-amylase: A biomolecular overview. Process Biochem., 2017, 53, 88-101.
[http://dx.doi.org/10.1016/j.procbio.2016.11.012]
[62]
Shi, Z.; Zhu, Y.; Teng, C.; Yao, Y.; Ren, G.; Richel, A. Anti-obesity effects of α-amylase inhibitor enriched-extract from white common beans (Phaseolus vulgaris L.) associated with the modulation of gut microbiota composition in high-fat diet-induced obese rats. Food Funct., 2020, 11(2), 1624-1634.
[http://dx.doi.org/10.1039/C9FO01813A] [PMID: 32022058]
[63]
Kashani-Amin, E.; Yaghmaei, P.; Larijani, B.; Ebrahim-Habibi, A. Xanthine derivatives as activators of alpha-amylase: Hypothesis on a link with the hyperglycemia induced by caffeine. Obes. Res. Clin. Pract., 2013, 7(6), e487-e493.
[http://dx.doi.org/10.1016/j.orcp.2012.07.007] [PMID: 24308891]
[64]
Arya, P.; Raghav, N. In-vitro studies of curcumin-β-cyclodextrin inclusion complex as sustained release system. J. Mol. Struct., 2021, 1228, 129774.
[http://dx.doi.org/10.1016/j.molstruc.2020.129774]
[65]
Mead, J.; Irvine, S.; Ramji, D. Lipoprotein lipase: Structure, function, regulation, and role in disease. J. Mol. Med., 2002, 80(12), 753-769.
[http://dx.doi.org/10.1007/s00109-002-0384-9] [PMID: 12483461]
[66]
Heck, A.M.; Yanovski, J.A.; Calis, K.A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy, 2000, 20(3), 270-279.
[http://dx.doi.org/10.1592/phco.20.4.270.34882] [PMID: 10730683]
[67]
Maiti, S.; Sen, K.K. Introductory chapter: Drug delivery concepts Adv. Technol. Deliv. Ther; , 2017, pp. 1-12.
[68]
Ahamad, S.; Hema, K.; Gupta, D. Identification of Novel Tau-Tubulin Kinase 2 inhibitors using computational approaches. ACS Omega, 2023, 8(14), 13026-13037.
[http://dx.doi.org/10.1021/acsomega.3c00225] [PMID: 37065061]
[69]
Ahamad, S.; Hema, K.; Kumar, V.; Gupta, D. The structural, functional, and dynamic effect of Tau tubulin kinase1 upon a mutation: A neuro‐degenerative hotspot. J. Cell. Biochem., 2021, 122(11), 1653-1664.
[http://dx.doi.org/10.1002/jcb.30112] [PMID: 34297427]
[70]
Ahamad, S.; Kanipakam, H.; Kumar, V.; Gupta, D. A molecular journey to check the conformational dynamics of tau tubulin kinase 2 mutations associated with Alzheimer’s disease. RSC Advances, 2021, 11(3), 1320-1331.
[http://dx.doi.org/10.1039/D0RA07659G] [PMID: 35424125]
[71]
Polgár, L. The catalytic triad of serine peptidases. Cell. Mol. Life Sci., 2005, 62(19-20), 2161-2172.
[http://dx.doi.org/10.1007/s00018-005-5160-x] [PMID: 16003488]
[72]
Verma, N.K.; Raghav, N. Comparative study of covalent and hydrophobic interactions for α-amylase immobilization on cellulose derivatives. Int. J. Biol. Macromol., 2021, 174, 134-143.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.033] [PMID: 33428958]
[73]
Sridhar, S.N.C.; Palawat, S.; Paul, A.T. Design, synthesis, biological evaluation and molecular modelling studies of indole glyoxylamides as a new class of potential pancreatic lipase inhibitors. Bioorg. Chem., 2019, 85, 373-381.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.012] [PMID: 30658237]
[74]
S N C, S.; Bhurta, D.; Kantiwal, D.; George, G.; Monga, V.; Paul, A.T. Design, synthesis, biological evaluation and molecular modelling studies of novel diaryl substituted pyrazolyl thiazolidinediones as potent pancreatic lipase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(16), 3749-3754.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.069] [PMID: 28705641]
[75]
Chen, X.; Li, H.; Tian, L.; Li, Q.; Luo, J.; Zhang, Y. Analysis of the physicochemical properties of acaricides based on Lipinski’s rule of five. J. Comput. Biol., 2020, 27(9), 1397-1406.
[http://dx.doi.org/10.1089/cmb.2019.0323] [PMID: 32031890]
[76]
Migliolo, L.; de Oliveira, A.S.; Santos, E.A.; Franco, O.L.; de Sales, M.P. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases. J. Mol. Graph. Model., 2010, 29(2), 148-156.
[http://dx.doi.org/10.1016/j.jmgm.2010.05.006] [PMID: 20816329]
[77]
Xie, F.; Zhang, W.; Gong, S.; Gu, X.; Lan, X.; Wu, J.; Wang, Z. Investigating lignin from Canna edulis ker residues induced activation of α-amylase: Kinetics, interaction, and molecular docking. Food Chem., 2019, 271, 62-69.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.153] [PMID: 30236724]
[78]
Habeych, D.I.; Juhl, P.B.; Pleiss, J.; Vanegas, D.; Eggink, G.; Boeriu, C.G. Biocatalytic synthesis of polyesters from sugar-based building blocks using immobilized Candida antarctica lipase B. J. Mol. Catal., B Enzym., 2011, 71(1-2), 1-9.
[http://dx.doi.org/10.1016/j.molcatb.2011.02.015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy