Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Immunomodulatory Effects of Clozapine: More Than Just a Side Effect in Schizophrenia

Author(s): Andrea Amerio*, Luca Magnani, Gabriele Arduino, Fabio Fesce, Renato de Filippis, Alberto Parise, Alessandra Costanza, Khoa D. Nguyen, Daniele Saverino, Domenico De Berardis, Andrea Aguglia, Andrea Escelsior, Gianluca Serafini, Pasquale De Fazio and Mario Amore

Volume 22, Issue 7, 2024

Published on: 28 November, 2023

Page: [1233 - 1247] Pages: 15

DOI: 10.2174/1570159X22666231128101725

Price: $65

Abstract

Recent evidence suggests a possible relationship between the immune system and schizophrenia spectrum disorders (SSDs), as neuroinflammation appears to play a role in major psychiatric conditions. Neuroinflammation is as a broad concept representing a physiological protective response to infection or injury, but in some cases, especially if chronic, it may represent an expression of maladaptive processes, potentially driving to clinical dysfunction and neurodegeneration. Several studies are concurrently highlighting the importance of microglia, the resident immune cells of the central nervous system, in a huge number of neurodegenerative diseases, including multiple sclerosis, Alzheimer’s and Parkinson’s diseases, as well as SSDs. A more fundamental phenomenon of maladaptive coupling of microglia may contribute to the genesis of dysfunctional brain inflammation involved in SSDs, from the onset of their neurophenomenological evolution. Clozapine and other antipsychotic drugs seem to express a provable immunomodulant effect and a more specific action on microglia, while neuroactive steroids and nonsteroidal anti-inflammatory drugs may reduce some SSDs symptoms in add-on therapy. Given these theoretical premises, this article aims to summarize and interpret the available scientific evidence about psychotropic and anti-inflammatory drugs that could express an immunomodulant activity on microglia.

Graphical Abstract

[1]
Owen, M.J.; O’Donovan, M.C.; Thapar, A.; Craddock, N. Neurodevelopmental hypothesis of Schizophrenia. Br. J. Psychiatry, 2011, 198(3), 173-175.
[http://dx.doi.org/10.1192/bjp.bp.110.084384] [PMID: 21357874]
[2]
Mullin, A.P.; Gokhale, A.; Moreno-De-Luca, A.; Sanyal, S.; Waddington, J.L.; Faundez, V. Neurodevelopmental disorders: Mechanisms and boundary definitions from genomes, interactomes and proteomes. Transl. Psychiatry, 2013, 3(12), e329.
[http://dx.doi.org/10.1038/tp.2013.108] [PMID: 24301647]
[3]
Belsky, J.; Pluess, M. Beyond diathesis stress: Differential susceptibility to environmental influences. Psychol. Bull., 2009, 135(6), 885-908.
[http://dx.doi.org/10.1037/a0017376] [PMID: 19883141]
[4]
Ripke, S.; Neale, B.M.; Corvin, A.; Walters, J.T.R.; Farh, K.H.; Holmans, P.A. Biological insights from 108 Schizophrenia-associated genetic loci. Nature, 2014, 511(7510), 421-427.
[http://dx.doi.org/10.1038/nature13595] [PMID: 25056061]
[5]
Stefansson, H.; Ophoff, R.A.; Steinberg, S.; Andreassen, O.A.; Cichon, S.; Rujescu, D.; Werge, T.; Pietiläinen, O.P.H.; Mors, O.; Mortensen, P.B.; Sigurdsson, E.; Gustafsson, O.; Nyegaard, M.; Tuulio-Henriksson, A.; Ingason, A.; Hansen, T.; Suvisaari, J.; Lonnqvist, J.; Paunio, T.; Børglum, A.D.; Hartmann, A.; Fink-Jensen, A.; Nordentoft, M.; Hougaard, D.; Norgaard-Pedersen, B.; Böttcher, Y.; Olesen, J.; Breuer, R.; Möller, H.J.; Giegling, I.; Rasmussen, H.B.; Timm, S.; Mattheisen, M.; Bitter, I.; Réthelyi, J.M.; Magnusdottir, B.B.; Sigmundsson, T.; Olason, P.; Masson, G.; Gulcher, J.R.; Haraldsson, M.; Fossdal, R.; Thorgeirsson, T.E.; Thorsteinsdottir, U.; Ruggeri, M.; Tosato, S.; Franke, B.; Strengman, E.; Kiemeney, L.A.; Melle, I.; Djurovic, S.; Abramova, L.; Kaleda, V.; Sanjuan, J.; de Frutos, R.; Bramon, E.; Vassos, E.; Fraser, G.; Ettinger, U.; Picchioni, M.; Walker, N.; Toulopoulou, T.; Need, A.C.; Ge, D.; Yoon, J.; Shianna, K.V.; Freimer, N.B.; Cantor, R.M.; Murray, R.; Kong, A.; Golimbet, V.; Carracedo, A.; Arango, C.; Costas, J.; Jönsson, E.G.; Terenius, L.; Agartz, I.; Petursson, H.; Nöthen, M.M.; Rietschel, M.; Matthews, P.M.; Muglia, P.; Peltonen, L.; St Clair, D.; Goldstein, D.B.; Stefansson, K.; Collier, D.A. Common variants conferring risk of schizophrenia. Nature, 2009, 460(7256), 744-747.
[http://dx.doi.org/10.1038/nature08186] [PMID: 19571808]
[6]
Pardiñas, A.F.; Holmans, P.; Pocklington, A.J.; Escott-Price, V.; Ripke, S.; Carrera, N.; Legge, S.E.; Bishop, S.; Cameron, D.; Hamshere, M.L.; Han, J.; Hubbard, L.; Lynham, A.; Mantripragada, K.; Rees, E.; MacCabe, J.H.; McCarroll, S.A.; Baune, B.T.; Breen, G.; Byrne, E.M.; Dannlowski, U.; Eley, T.C.; Hayward, C.; Martin, N.G.; McIntosh, A.M.; Plomin, R.; Porteous, D.J.; Wray, N.R.; Caballero, A.; Geschwind, D.H.; Huckins, L.M.; Ruderfer, D.M.; Santiago, E.; Sklar, P.; Stahl, E.A.; Won, H.; Agerbo, E.; Als, T.D.; Andreassen, O.A.; Bækvad-Hansen, M.; Mortensen, P.B.; Pedersen, C.B.; Børglum, A.D.; Bybjerg-Grauholm, J.; Djurovic, S.; Durmishi, N.; Pedersen, M.G.; Golimbet, V.; Grove, J.; Hougaard, D.M.; Mattheisen, M.; Molden, E.; Mors, O.; Nordentoft, M.; Pejovic-Milovancevic, M.; Sigurdsson, E.; Silagadze, T.; Hansen, C.S.; Stefansson, K.; Stefansson, H.; Steinberg, S.; Tosato, S.; Werge, T.; Collier, D.A.; Rujescu, D.; Kirov, G.; Owen, M.J.; O’Donovan, M.C.; Walters, J.T.R. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet., 2018, 50(3), 381-389.
[http://dx.doi.org/10.1038/s41588-018-0059-2] [PMID: 29483656]
[7]
Benros, M.E.; Pedersen, M.G.; Rasmussen, H.; Eaton, W.W.; Nordentoft, M.; Mortensen, P.B. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am. J. Psychiatry, 2014, 171(2), 218-226.
[http://dx.doi.org/10.1176/appi.ajp.2013.13010086] [PMID: 24129899]
[8]
Sekar, A.; Bialas, A.R.; de Rivera, H.; Davis, A.; Hammond, T.R.; Kamitaki, N.; Tooley, K.; Presumey, J.; Baum, M.; Van Doren, V.; Genovese, G.; Rose, S.A.; Handsaker, R.E.; Daly, M.J.; Carroll, M.C.; Stevens, B.; McCarroll, S.A. Schizophrenia risk from complex variation of complement component 4. Nature, 2016, 530(7589), 177-183.
[http://dx.doi.org/10.1038/nature16549] [PMID: 26814963]
[9]
Pouget, J.G.; Han, B.; Wu, Y.; Mignot, E.; Ollila, H.M.; Barker, J.; Spain, S.; Dand, N.; Trembath, R.; Martin, J.; Mayes, M.D.; Bossini-Castillo, L.; López-Isac, E.; Jin, Y.; Santorico, S.A.; Spritz, R.A.; Hakonarson, H.; Polychronakos, C.; Raychaudhuri, S.; Knight, J. Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk. Hum. Mol. Genet., 2019, 28(20), 3498-3513.
[http://dx.doi.org/10.1093/hmg/ddz145] [PMID: 31211845]
[10]
van Mierlo, H.C.; Schot, A.; Boks, M.P.M.; de Witte, L.D. The association between schizophrenia and the immune system: Review of the evidence from unbiased ‘omic-studies’. Schizophr. Res., 2020, 217, 114-123.
[http://dx.doi.org/10.1016/j.schres.2019.05.028] [PMID: 31130400]
[11]
Nutma, E.; Willison, H.; Martino, G.; Amor, S. Neuroimmunology: The past, present and future. Clin. Exp. Immunol., 2019, 197(3), 278-293.
[http://dx.doi.org/10.1111/cei.13279] [PMID: 30768789]
[12]
Pollak, T.A.; Drndarski, S.; Stone, J.M.; David, A.S.; McGuire, P.; Abbott, N.J. The blood-brain barrier in psychosis. Lancet Psychiatry, 2018, 5(1), 79-92.
[http://dx.doi.org/10.1016/S2215-0366(17)30293-6] [PMID: 28781208]
[13]
van Kesteren, C F M.G.; Gremmels, H.; de Witte, L.D.; Hol, E.M.; Van Gool, A.R.; Falkai, P.G.; Kahn, R.S.; Sommer, I.E.C. Immune involvement in the pathogenesis of Schizophrenia: A meta-analysis on postmortem brain studies. Transl. Psychiatry, 2017, 7(3), e1075.
[http://dx.doi.org/10.1038/tp.2017.4] [PMID: 28350400]
[14]
Snijders, G.J.L.J.; Zuiden, W.; Sneeboer, M.A.M.; Berdenis van Berlekom, A.; Geest, A.T.; Schnieder, T.; MacIntyre, D.J.; Hol, E.M.; Kahn, R.S.; Witte, L.D. A loss of mature microglial markers without immune activation in Schizophrenia. Glia, 2021, 69(5), 1251-1267.
[http://dx.doi.org/10.1002/glia.23962] [PMID: 33410555]
[15]
Peferoen, L.; Kipp, M.; van der Valk, P.; van Noort, J.M.; Amor, S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology, 2014, 141(3), 302-313.
[http://dx.doi.org/10.1111/imm.12163] [PMID: 23981039]
[16]
Perry, V.H.; Cunningham, C.; Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat. Rev. Immunol., 2007, 7(2), 161-167.
[http://dx.doi.org/10.1038/nri2015] [PMID: 17220915]
[17]
Paolicelli, R.C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T.A.; Guiducci, E.; Dumas, L.; Ragozzino, D.; Gross, C.T. Synaptic pruning by microglia is necessary for normal brain development. Science, 2011, 333(6048), 1456-1458.
[http://dx.doi.org/10.1126/science.1202529] [PMID: 21778362]
[18]
Akiyoshi, R.; Wake, H.; Kato, D.; Horiuchi, H.; Ono, R.; Ikegami, A.; Haruwaka, K.; Omori, T.; Tachibana, Y.; Moorhouse, A.J.; Nabekura, J. Microglia enhance synapse activity to promote local network synchronization. eNeuro, 2018, 5(5), ENEURO.0088-18.2018.
[http://dx.doi.org/10.1523/ENEURO.0088-18.2018] [PMID: 30406198]
[19]
Bartels, T.; De Schepper, S.; Hong, S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science, 2020, 370(6512), 66-69.
[http://dx.doi.org/10.1126/science.abb8587] [PMID: 33004513]
[20]
Schaafsma, W.; Basterra, L.B.; Jacobs, S.; Brouwer, N.; Meerlo, P.; Schaafsma, A.; Boddeke, E.W.G.M.; Eggen, B.J.L. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol. Dis., 2017, 106, 291-300.
[http://dx.doi.org/10.1016/j.nbd.2017.07.017] [PMID: 28751257]
[21]
Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, 351(6276), 933-939.
[http://dx.doi.org/10.1126/science.aad0314] [PMID: 26822608]
[22]
Neher, J.J.; Cunningham, C. Priming microglia for innate immune memory in the brain. Trends Immunol., 2019, 40(4), 358-374.
[http://dx.doi.org/10.1016/j.it.2019.02.001] [PMID: 30833177]
[23]
Lahiri, D.K.; Maloney, B.; Zawia, N.H. The LEARn model: An epigenetic explanation for idiopathic neurobiological diseases. Mol. Psychiatry, 2009, 14(11), 992-1003.
[http://dx.doi.org/10.1038/mp.2009.82] [PMID: 19851280]
[24]
Davis, J.; Eyre, H.; Jacka, F.N.; Dodd, S.; Dean, O.; McEwen, S.; Debnath, M.; McGrath, J.; Maes, M.; Amminger, P.; McGorry, P.D.; Pantelis, C.; Berk, M. A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis. Neurosci. Biobehav. Rev., 2016, 65, 185-194.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.017] [PMID: 27073049]
[25]
Sankowski, R.; Böttcher, C.; Masuda, T.; Geirsdottir, L. Sagar; Sindram, E.; Seredenina, T.; Muhs, A.; Scheiwe, C.; Shah, M.J.; Heiland, D.H.; Schnell, O.; Grün, D.; Priller, J.; Prinz, M. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci., 2019, 22(12), 2098-2110.
[http://dx.doi.org/10.1038/s41593-019-0532-y] [PMID: 31740814]
[26]
Safaiyan, S.; Besson-Girard, S.; Kaya, T.; Cantuti-Castelvetri, L.; Liu, L.; Ji, H.; Schifferer, M.; Gouna, G.; Usifo, F.; Kannaiyan, N.; Fitzner, D.; Xiang, X.; Rossner, M.J.; Brendel, M.; Gokce, O.; Simons, M. White matter aging drives microglial diversity. Neuron, 2021, 109(7), 1100-1117.e10.
[http://dx.doi.org/10.1016/j.neuron.2021.01.027] [PMID: 33606969]
[27]
Schultze-Lutter, F.; Theodoridou, A. The concept of basic symptoms: Its scientific and clinical relevance. World Psychiatry, 2017, 16(1), 104-105.
[http://dx.doi.org/10.1002/wps.20404] [PMID: 28127912]
[28]
Jiang, L.; Wu, X.; Wang, S.; Chen, S.H.; Zhou, H.; Wilson, B.; Jin, C.Y.; Lu, R.B.; Xie, K.; Wang, Q.; Hong, J.S. Clozapine metabolites protect dopaminergic neurons through inhibition of microglial NADPH oxidase. J. Neuroinflammation, 2016, 13(1), 110.
[http://dx.doi.org/10.1186/s12974-016-0573-z] [PMID: 27184631]
[29]
Shaerzadeh, F.; Streit, W.J.; Heysieattalab, S.; Khoshbouei, H. Methamphetamine neurotoxicity, microglia, and neuroinflammation. J. Neuroinflammation, 2018, 15(1), 341.
[http://dx.doi.org/10.1186/s12974-018-1385-0] [PMID: 30541633]
[30]
Ribeiro, B.M.M.; do Carmo, M.R.S.; Freire, R.S.; Rocha, N.F.M.; Borella, V.C.M.; de Menezes, A.T.; Monte, A.S.; Gomes, P.X.L.; de Sousa, F.C.F.; Vale, M.L.; de Lucena, D.F.; Gama, C.S.; Macêdo, D. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: Reversal by clozapine. Schizophr. Res., 2013, 151(1-3), 12-19.
[http://dx.doi.org/10.1016/j.schres.2013.10.040] [PMID: 24257517]
[31]
Buchanan, R.W.; Kreyenbuhl, J.; Kelly, D.L.; Noel, J.M.; Boggs, D.L.; Fischer, B.A.; Himelhoch, S.; Fang, B.; Peterson, E.; Aquino, P.R.; Keller, W. The 2009 schizophrenia PORT psychopharmacological treatment recommendations and summary statements. Schizophr. Bull., 2010, 36(1), 71-93.
[http://dx.doi.org/10.1093/schbul/sbp116] [PMID: 19955390]
[32]
Rubio, J.M.; Kane, J.M. How and when to use clozapine. Acta Psychiatr. Scand., 2020, 141(3), 178-189.
[http://dx.doi.org/10.1111/acps.13111] [PMID: 31603988]
[33]
Üçok, A.; Çikrikçili, U.; Karabulut, S.; Salaj, A.; Öztürk, M.; Tabak, Ö.; Durak, R. Delayed initiation of clozapine may be related to poor response in treatment-resistant schizophrenia. Int. Clin. Psychopharmacol., 2015, 30(5), 290-295.
[http://dx.doi.org/10.1097/YIC.0000000000000086] [PMID: 26163875]
[34]
Khokhar, J.Y.; Henricks, A.M.; Sullivan, E.D.K.; Green, A.I. Unique effects of clozapine: A pharmacological perspective. Adv. Pharmacol., 2018, 82, 137-162.
[http://dx.doi.org/10.1016/bs.apha.2017.09.009] [PMID: 29413518]
[35]
Wenthur, C.J.; Lindsley, C.W. Classics in chemical neuroscience. Clozapine. ACS Chem. Neurosci., 2013, 4(7), 1018-1025.
[http://dx.doi.org/10.1021/cn400121z] [PMID: 24047509]
[36]
Park, H.S.; Kim, E.; Moon, B.S.; Lim, N.H.; Lee, B.C.; Kim, S.E. In vivo tissue pharmacokinetics of carbon-11-labeled clozapine in healthy volunteers: A positron emission tomography study. CPT Pharmacometrics Syst. Pharmacol., 2015, 4(5), 305-311.
[http://dx.doi.org/10.1002/psp4.38] [PMID: 26225256]
[37]
Ceylan, U.; Haupeltshofer, S.; Kämper, L.; Dann, J.; Ambrosius, B.; Gold, R.; Faissner, S. Clozapine regulates microglia and is effective in chronic experimental autoimmune encephalomyelitis. Front. Immunol., 2021, 12, 656941.
[http://dx.doi.org/10.3389/fimmu.2021.656941] [PMID: 34012440]
[38]
Constantinescu, C.S.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol., 2011, 164(4), 1079-1106.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01302.x] [PMID: 21371012]
[39]
Stamoula, Ε Ainatzoglou, A.; Stamatellos, V.P.; Dardalas, I.; Siafis, S.; Matsas, A.; Stamoulas, K.; Papazisis, G. Atypical antipsychotics in multiple sclerosis: A review of their in vivo immunomodulatory effects. Mult. Scler. Relat. Disord., 2022, 58, 103522.
[http://dx.doi.org/10.1016/j.msard.2022.103522] [PMID: 35063906]
[40]
Robichon, K.; Patel, V.; Connor, B.; La Flamme, A.C. Clozapine reduces infiltration into the CNS by targeting migration in experimental autoimmune encephalomyelitis. J. Neuroinflammation, 2020, 17(1), 53.
[http://dx.doi.org/10.1186/s12974-020-01733-4] [PMID: 32050980]
[41]
Robichon, K.; Sondhauss, S.; Jordan, T.W.; Keyzers, R.A.; Connor, B.; La Flamme, A.C. Localisation of clozapine during experimental autoimmune encephalomyelitis and its impact on dopamine and its receptors. Sci. Rep., 2021, 11(1), 2966.
[http://dx.doi.org/10.1038/s41598-021-82667-6] [PMID: 33536582]
[42]
Green, L.K.; Zareie, P.; Templeton, N.; Keyzers, R.A.; Connor, B.; La Flamme, A.C. Enhanced disease reduction using clozapine, an atypical antipsychotic agent, and glatiramer acetate combination therapy in experimental autoimmune encephalomyelitis. Mult. Scler. J. Exp. Transl. Clin., 2017, 3(1), 2055217317698724.
[http://dx.doi.org/10.1177/2055217317698724] [PMID: 28607752]
[43]
Dodd, S.; Maes, M.; Anderson, G.; Dean, O.M.; Moylan, S.; Berk, M. Putative neuroprotective agents in neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 42, 135-145.
[http://dx.doi.org/10.1016/j.pnpbp.2012.11.007] [PMID: 23178231]
[44]
MacDowell, K.S.; García-Bueno, B.; Madrigal, J.L.M.; Parellada, M.; Arango, C.; Micó, J.A.; Leza, J.C. Risperidone normalizes increased inflammatory parameters and restores anti-inflammatory pathways in a model of neuroinflammation. Int. J. Neuropsychopharmacol., 2013, 16(1), 121-135.
[http://dx.doi.org/10.1017/S1461145711001775] [PMID: 22176740]
[45]
Basta-Kaim, A.; Budziszewska, B.; Jaworska-Feil, L.; Tetich, M.; Kubera, M. Leśkiewicz, M.; Otczyk, M.; Lasoń, W. Antipsychotic drugs inhibit the human corticotropin-releasing-hormone gene promoter activity in neuro-2A cells-an involvement of protein kinases. Neuropsychopharmacology, 2006, 31(4), 853-865.
[http://dx.doi.org/10.1038/sj.npp.1300911] [PMID: 16205782]
[46]
Kato, T.; Monji, A.; Hashioka, S.; Kanba, S. Risperidone significantly inhibits interferon-γ-induced microglial activation in vitro. Schizophr. Res., 2007, 92(1-3), 108-115.
[http://dx.doi.org/10.1016/j.schres.2007.01.019] [PMID: 17363222]
[47]
Sugino, H.; Futamura, T.; Mitsumoto, Y.; Maeda, K.; Marunaka, Y. Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(2), 303-307.
[http://dx.doi.org/10.1016/j.pnpbp.2008.12.006] [PMID: 19138716]
[48]
Shin, H.; Kim, J.; Song, J.H. Clozapine and olanzapine inhibit proton currents in BV2 microglial cells. Eur. J. Pharmacol., 2015, 755, 74-79.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.003] [PMID: 25771455]
[49]
Racki, V.; Marcelic, M.; Stimac, I.; Petric, D.; Kucic, N. Effects of haloperidol, risperidone, and aripiprazole on the immunometabolic properties of BV-2 microglial cells. Int. J. Mol. Sci., 2021, 22(9), 4399.
[http://dx.doi.org/10.3390/ijms22094399] [PMID: 33922377]
[50]
Zhu, S.; Shi, R.; Li, V.; Wang, J.; Zhang, R.; Tempier, A.; He, J.; Kong, J.; Wang, J-F.; Li, X-M. Quetiapine attenuates glial activation and proinflammatory cytokines in APP/PS1 transgenic mice via inhibition of nuclear factor- b pathway. Int. J. Neuropsychopharmacol., 2015, 18(3), pyu022.
[http://dx.doi.org/10.1093/ijnp/pyu022]
[51]
Wang, H.; Liu, S.; Tian, Y.; Wu, X.; He, Y.; Li, C.; Namaka, M.; Kong, J.; Li, H.; Xiao, L. Quetiapine inhibits microglial activation by neutralizing abnormal STIM1-mediated intercellular calcium homeostasis and promotes myelin repair in a cuprizone-induced mouse model of demyelination. Front. Cell. Neurosci., 2015, 9, 492.
[http://dx.doi.org/10.3389/fncel.2015.00492] [PMID: 26732345]
[52]
Marcinowicz, P. Więdłocha, M.; Zborowska, N.; Dębowska, W.; Podwalski, P.; Misiak, B.; Tyburski, E.; Szulc, A. A meta-analysis of the influence of antipsychotics on cytokines levels in first episode psychosis. J. Clin. Med., 2021, 10(11), 2488.
[http://dx.doi.org/10.3390/jcm10112488] [PMID: 34199832]
[53]
Tourjman, V.; Kouassi, É.; Koué, M.È.; Rocchetti, M.; Fortin-Fournier, S.; Fusar-Poli, P.; Potvin, S. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: A meta-analysis. Schizophr. Res., 2013, 151(1-3), 43-47.
[http://dx.doi.org/10.1016/j.schres.2013.10.011] [PMID: 24200418]
[54]
Romeo, B.; Brunet-Lecomte, M.; Martelli, C.; Benyamina, A. Kinetics of cytokine levels during antipsychotic treatment in schizophrenia: A meta-analysis. Int. J. Neuropsychopharmacol., 2018, 21(9), 828-836.
[http://dx.doi.org/10.1093/ijnp/pyy062] [PMID: 30016466]
[55]
Capuzzi, E.; Bartoli, F.; Crocamo, C.; Clerici, M.; Carrà, G. Acute variations of cytokine levels after antipsychotic treatment in drug-naïve subjects with a first-episode psychosis: A meta-analysis. Neurosci. Biobehav. Rev., 2017, 77, 122-128.
[http://dx.doi.org/10.1016/j.neubiorev.2017.03.003] [PMID: 28285148]
[56]
Goldsmith, D.R.; Rapaport, M.H.; Miller, B.J. A meta-analysis of blood cytokine network alterations in psychiatric patients: Comparisons between schizophrenia, bipolar disorder and depression. Mol. Psychiatry, 2016, 21(12), 1696-1709.
[http://dx.doi.org/10.1038/mp.2016.3] [PMID: 26903267]
[57]
Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry, 2011, 70(7), 663-671.
[http://dx.doi.org/10.1016/j.biopsych.2011.04.013] [PMID: 21641581]
[58]
Fraguas, D.; Díaz-Caneja, C.M.; Rodríguez-Quiroga, A.; Arango, C. Oxidative stress and inflammation in early onset first episode psychosis: A systematic review and meta-analysis. Int. J. Neuropsychopharmacol., 2017, 20(6), 435-444.
[http://dx.doi.org/10.1093/ijnp/pyx015] [PMID: 28575316]
[59]
Ishijima, T.; Nakajima, K. Inflammatory cytokines TNFα IL-1β and IL-6 are induced in endotoxin- stimulated microglia through different signaling cascades. Sci. Prog., 2021, 104(4)
[http://dx.doi.org/10.1177/00368504211054985] [PMID: 34821182]
[60]
Şimşek, Ş.; Yıldırım, V.; Çim, A.; Kaya, S. Serum IL-4 and IL-10 levels correlate with the symptoms of the drug-naive adolescents with first episode, early onset schizophrenia. J. Child Adolesc. Psychopharmacol., 2016, 26(8), 721-726.
[http://dx.doi.org/10.1089/cap.2015.0220] [PMID: 27384868]
[61]
Noto, C.; Ota, V.K.; Gouvea, E.S.; Rizzo, L.B.; Spindola, L.M.N.; Honda, P.H.S.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Gadelha, A.; Maes, M.; Brietzke, E. Effects of risperidone on cytokine profile in drug-naïve first-episode psychosis. Int. J. Neuropsychopharmacol., 2015, 18(4), pyu042-pyu042.
[http://dx.doi.org/10.1093/ijnp/pyu042] [PMID: 25522386]
[62]
Coughlin, J.M.; Wang, Y.; Ambinder, E.B.; Ward, R.E.; Minn, I.; Vranesic, M.; Kim, P.K.; Ford, C.N.; Higgs, C.; Hayes, L.N.; Schretlen, D.J.; Dannals, R.F.; Kassiou, M.; Sawa, A.; Pomper, M.G. In vivo markers of inflammatory response in recent-onset schizophrenia: A combined study using [11C]DPA-713 PET and analysis of CSF and plasma. Transl. Psychiatry, 2016, 6(4), e777-e777.
[http://dx.doi.org/10.1038/tp.2016.40] [PMID: 27070405]
[63]
Kato, T.A.; Monji, A.; Mizoguchi, Y.; Hashioka, S.; Horikawa, H.; Seki, Y.; Kasai, M.; Utsumi, H.; Kanba, S. Anti-Inflammatory properties of antipsychotics via microglia modulations: Are antipsychotics a ‘fire extinguisher’ in the brain of Schizophrenia? Mini Rev. Med. Chem., 2011, 11(7), 565-574.
[http://dx.doi.org/10.2174/138955711795906941] [PMID: 21699487]
[64]
Dinesh, A.A.; Islam, J.; Khan, J.; Turkheimer, F.; Vernon, A.C. Effects of antipsychotic drugs: Cross talk between the nervous and innate immune system. CNS Drugs, 2020, 34(12), 1229-1251.
[http://dx.doi.org/10.1007/s40263-020-00765-x] [PMID: 32975758]
[65]
Färber, K.; Pannasch, U.; Kettenmann, H. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell. Neurosci., 2005, 29(1), 128-138.
[http://dx.doi.org/10.1016/j.mcn.2005.01.003] [PMID: 15866053]
[66]
Kato, T.; Mizoguchi, Y.; Monji, A.; Horikawa, H.; Suzuki, S.O.; Seki, Y.; Iwaki, T.; Hashioka, S.; Kanba, S. Inhibitory effects of aripiprazole on interferon--induced microglial activation via intracellular Ca 2+ regulation in vitro. J. Neurochem., 2008, 106(2), 815-825.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05435.x] [PMID: 18429930]
[67]
O’Sullivan, D.; Green, L.; Stone, S.; Zareie, P.; Kharkrang, M.; Fong, D.; Connor, B.; La Flamme, A.C. Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis. PLoS One, 2014, 9(8), e104430.
[http://dx.doi.org/10.1371/journal.pone.0104430] [PMID: 25116424]
[68]
Martel, J.C.; Gatti McArthur, S. Dopamine receptor subtypes, physiology and pharmacology: New ligands and concepts in schizophrenia. Front. Pharmacol., 2020, 11, 1003.
[http://dx.doi.org/10.3389/fphar.2020.01003] [PMID: 32765257]
[69]
Besser, M.J.; Ganor, Y.; Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFα or both. J. Neuroimmunol., 2005, 169(1-2), 161-171.
[http://dx.doi.org/10.1016/j.jneuroim.2005.07.013] [PMID: 16150496]
[70]
Levite, M. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr. Opin. Pharmacol., 2008, 8(4), 460-471.
[http://dx.doi.org/10.1016/j.coph.2008.05.001] [PMID: 18579442]
[71]
Arreola, R.; Alvarez-Herrera, S.; Pérez-Sánchez, G.; Becerril-Villanueva, E.; Cruz-Fuentes, C.; Flores-Gutierrez, E.O.; Garcés-Alvarez, M.E.; de la Cruz-Aguilera, D.L.; Medina-Rivero, E.; Hurtado-Alvarado, G.; Quintero-Fabián, S.; Pavón, L. Immunomodulatory effects mediated by dopamine. J. Immunol. Res., 2016, 2016, 1-31.
[http://dx.doi.org/10.1155/2016/3160486] [PMID: 27795960]
[72]
Vidal, P.M.; Pacheco, R. The cross-talk between the dopaminergic and the immune system involved in schizophrenia. Front. Pharmacol., 2020, 11, 394.
[http://dx.doi.org/10.3389/fphar.2020.00394] [PMID: 32296337]
[73]
Jeon, S.; Kim, S.H.; Shin, S.Y.; Lee, Y.H. Clozapine reduces toll-like receptor 4/NF-κB-mediated inflammatory responses through inhibition of calcium/calmodulin-dependent Akt activation in microglia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 81, 477-487.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.012] [PMID: 28431901]
[74]
Shin, S.Y.; Choi, B.H.; Ko, J.; Kim, S.H.; Kim, Y.S.; Lee, Y.H. Clozapine, a neuroleptic agent, inhibits Akt by counteracting Ca2+/calmodulin in PTEN-negative U-87MG human glioblastoma cells. Cell. Signal., 2006, 18(11), 1876-1886.
[http://dx.doi.org/10.1016/j.cellsig.2006.02.004] [PMID: 16542821]
[75]
Zheng, W.; Wang, H.; Zeng, Z.; Lin, J.; Little, P.J.; Srivastava, L.K.; Quirion, R. The possible role of the Akt signaling pathway in schizophrenia. Brain Res., 2012, 1470, 145-158.
[http://dx.doi.org/10.1016/j.brainres.2012.06.032] [PMID: 22771711]
[76]
Chen, P.; Bornhorst, J.; Neely, M.D.; Avila, D.S. Mechanisms and disease pathogenesis underlying metal-induced oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 7612172.
[http://dx.doi.org/10.1155/2018/7612172]
[77]
Giridharan, V.V.; Scaini, G.; Colpo, G.D.; Doifode, T.; Pinjari, O.F.; Teixeira, A.L.; Petronilho, F.; Macêdo, D.; Quevedo, J.; Barichello, T. Clozapine prevents poly (I:C) induced inflammation by modulating NLRP3 pathway in microglial cells. Cells, 2020, 9(3), 577.
[http://dx.doi.org/10.3390/cells9030577] [PMID: 32121312]
[78]
Sato-Kasai, M.; Kato, T.A.; Ohgidani, M.; Mizoguchi, Y.; Sagata, N.; Inamine, S.; Horikawa, H.; Hayakawa, K.; Shimokawa, N.; Kyuragi, S.; Seki, Y.; Monji, A.; Kanba, S. Aripiprazole inhibits polyI:C-induced microglial activation possibly via TRPM7. Schizophr. Res., 2016, 178(1-3), 35-43.
[http://dx.doi.org/10.1016/j.schres.2016.08.022] [PMID: 27614570]
[79]
Meyer, U.; Feldon, J. To poly(I:C) or not to poly(I:C): Advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology, 2012, 62(3), 1308-1321.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.009] [PMID: 21238465]
[80]
Yuen, J.W.Y.; Kim, D.D.; Procyshyn, R.M.; White, R.F.; Honer, W.G.; Barr, A.M. Clozapine-induced cardiovascular side effects and autonomic dysfunction: A systematic review. Front. Neurosci., 2018, 12, 203.
[http://dx.doi.org/10.3389/fnins.2018.00203] [PMID: 29670504]
[81]
Yuen, J.W.Y.; Kim, D.D.; Procyshyn, R.M.; Panenka, W.J.; Honer, W.G.; Barr, A.M. A focused review of the metabolic side-effects of clozapine.Front Endocrinol; Frontiers Media S.A.: Lausanne, 2021.
[82]
Wiciński, M.; Węclewicz, M.M. Clozapine-induced agranulocytosis/granulocytopenia. Curr. Opin. Hematol., 2018, 25(1), 22-28.
[http://dx.doi.org/10.1097/MOH.0000000000000391] [PMID: 28984748]
[83]
de With, S A J.; Pulit, S.L.; Staal, W.G.; Kahn, R.S.; Ophoff, R.A. More than 25 years of genetic studies of clozapine-induced agranulocytosis. Pharmacogenomics J., 2017, 17(4), 304-311.
[http://dx.doi.org/10.1038/tpj.2017.6] [PMID: 28418011]
[84]
Li, X.H.; Zhong, X.M.; Lu, L.; Zheng, W.; Wang, S.; Rao, W.; Wang, S.; Ng, C.H.; Ungvari, G.S.; Wang, G.; Xiang, Y.T. The prevalence of agranulocytosis and related death in clozapine-treated patients: A comprehensive meta-analysis of observational studies. Psychol. Med., 2020, 50(4), 583-594.
[http://dx.doi.org/10.1017/S0033291719000369] [PMID: 30857568]
[85]
Naumann, R.; Felber, W.; Heilemann, H.; Reuster, T. Olanzapine-induced agranulocytosis. Lancet, 1999, 354(9178), 566-567.
[http://dx.doi.org/10.1016/S0140-6736(99)03111-6] [PMID: 10470705]
[86]
Ng, W.; Kennar, R.; Uetrecht, J. Effect of clozapine and olanzapine on neutrophil kinetics: implications for drug-induced agranulocytosis. Chem. Res. Toxicol., 2014, 27(7), 1104-1108.
[http://dx.doi.org/10.1021/tx500183x] [PMID: 24968069]
[87]
Chen, J.; Yang, P.; Zhang, Q.; Chen, R.; Wang, P.; Liu, B.; Sun, W.; Jian, X.; Xiang, S.; Zhou, J.; Li, N.; Wang, K.; Gao, C.; Wen, Y.; Wu, C.; Zhang, J.; Zhao, Y.; Yang, Q.; Li, M.; Stewart, R.; Sun, Y.; Pan, D.; Niu, Y.; Wang, Z.; Xu, Y.; Li, X.; He, L.; Li, Z.; Shi, Y. Genetic risk of clozapine-induced leukopenia and neutropenia: A genome-wide association study. Transl. Psychiatry, 2021, 11(1), 343.
[http://dx.doi.org/10.1038/s41398-021-01470-z]
[88]
van der Weide, K.; Loovers, H.; Pondman, K.; Bogers, J.; van der Straaten, T.; Langemeijer, E.; Cohen, D.; Commandeur, J.; van der Weide, J. Genetic risk factors for clozapine-induced neutropenia and agranulocytosis in a Dutch psychiatric population. Pharmacogenomics J., 2017, 17(5), 471-478.
[http://dx.doi.org/10.1038/tpj.2016.32] [PMID: 27168101]
[89]
Konte, B.; Walters, J.T.R.; Rujescu, D.; Legge, S.E.; Pardiñas, A.F.; Cohen, D.; Pirmohamed, M.; Tiihonen, J.; Hartmann, A.M.; Bogers, J.P.; van der Weide, J.; van der Weide, K.; Putkonen, A.; Repo-Tiihonen, E.; Hallikainen, T.; Silva, E.; Ingimarsson, O.; Sigurdsson, E.; Kennedy, J.L.; Sullivan, P.F.; Rietschel, M.; Breen, G.; Stefansson, H.; Stefansson, K.; Collier, D.A.; O’Donovan, M.C.; Giegling, I. HLA-DQB1 6672G>C (rs113332494) is associated with clozapine-induced neutropenia and agranulocytosis in individuals of European ancestry. Transl. Psychiatry, 2021, 11(1), 214.
[http://dx.doi.org/10.1038/s41398-021-01322-w] [PMID: 33846298]
[90]
Numata, S.; Umehara, H.; Ohmori, T.; Hashimoto, R. Clozapine pharmacogenetic studies in schizophrenia: Efficacy and agranulocytosis. Front. Pharmacol., 2018, 9, 1049.
[http://dx.doi.org/10.3389/fphar.2018.01049] [PMID: 30319405]
[91]
Gerson, S.L.; Arce, C.; Meltzer, H.Y. N-desmethylclozapine: A clozapine metabolite that suppresses haemopoiesis. Br. J. Haematol., 1994, 86(3), 555-561.
[http://dx.doi.org/10.1111/j.1365-2141.1994.tb04786.x] [PMID: 8043437]
[92]
Borges, R.S.; Nagurniak, G.R.; Queiroz, L.M.D.; Maia, C.S.F.; Barros, C.A.L.; Orestes, E.; da Silva, A.B.F. Structure and toxicity of clozapine and olanzapine on agranulocytosis. Med. Chem. Res., 2016, 25(2), 322-328.
[http://dx.doi.org/10.1007/s00044-015-1484-8]
[93]
Haslund-Vinding, J.; McBean, G.; Jaquet, V.; Vilhardt, F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br. J. Pharmacol., 2017, 174(12), 1733-1749.
[http://dx.doi.org/10.1111/bph.13425] [PMID: 26750203]
[94]
Pollmächer, T.; Fenzel, T.; Mullington, J.; Hinze-Selch, D. The influence of clozapine treatment on plasma granulocyte colony-stimulating (G-CSF) levels. Pharmacopsychiatry, 1997, 30(4), 118-121.
[http://dx.doi.org/10.1055/s-2007-979495] [PMID: 9271776]
[95]
Lobach, A.R.; Uetrecht, J. Clozapine promotes the proliferation of granulocyte progenitors in the bone marrow leading to increased granulopoiesis and neutrophilia in rats. Chem. Res. Toxicol., 2014, 27(7), 1109-1119.
[http://dx.doi.org/10.1021/tx500184c] [PMID: 24968143]
[96]
Löffler, S.; Klimke, A.; Kronenwett, R.; Kobbe, G.; Haas, R.; Fehsel, K. Clozapine mobilizes CD34+ hematopoietic stem and progenitor cells and increases plasma concentration of interleukin 6 in patients with schizophrenia. J. Clin. Psychopharmacol., 2010, 30(5), 591-595.
[http://dx.doi.org/10.1097/JCP.0b013e3181eeb7f7] [PMID: 20814329]
[97]
Delieu, J.M.; Badawoud, M.; Williams, M.A.; Horobin, R.W.; Duguid, J.K. Antipsychotic drugs result in the formation of immature neutrophil leucocytes in Schizophrenic patients. J. Psychopharmacol., 2001, 15(3), 191-194.
[http://dx.doi.org/10.1177/026988110101500306] [PMID: 11565627]
[98]
Spiekermann, K.; Roesler, J.; Emmendoerffer, A.; Elsner, J.; Welte, K. Functional features of neutrophils induced by G-CSF and GM-CSF treatment: Differential effects and clinical implications. Leukemia, 1997, 11(4), 466-478.
[http://dx.doi.org/10.1038/sj.leu.2400607] [PMID: 9096685]
[99]
Iverson, S.; Kautiainen, A.; Ip, J.; Uetrecht, J.P. Effect of clozapine on neutrophil kinetics in rabbits. Chem. Res. Toxicol., 2010, 23(7), 1184-1191.
[http://dx.doi.org/10.1021/tx100035k] [PMID: 20553052]
[100]
Suzumura, A.; Sawada, M.; Yamamoto, H.; Marunouchi, T. Effects of colony stimulating factors on isolated microglia in vitro. J. Neuroimmunol., 1990, 30(2-3), 111-120.
[http://dx.doi.org/10.1016/0165-5728(90)90094-4] [PMID: 2229405]
[101]
Peng, W. RETRACTED ARTICLE: Neuroprotective effects of G-CSF administration in microglia-mediated reactive T cell activation in vitro. Immunol. Res., 2017, 65(4), 888-902.
[http://dx.doi.org/10.1007/s12026-017-8928-9] [PMID: 28646409]
[102]
Dikmen, H.O.; Hemmerich, M.; Lewen, A.; Hollnagel, J.O.; Chausse, B.; Kann, O. GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J. Neuroinflammation, 2020, 17(1), 235.
[http://dx.doi.org/10.1186/s12974-020-01903-4] [PMID: 32782006]
[103]
Fedi, V.; Guidi, A.; Altamura, M. Tricyclic structures in medicinal chemistry: An overview of their recent uses in non-CNS pathologies. Mini Rev. Med. Chem., 2008, 8(14), 1464-1484.
[http://dx.doi.org/10.2174/138955708786786453] [PMID: 19075805]
[104]
de Filippis, R.; Soldevila-Matías, P.; De Fazio, P.; Guinart, D.; Fuentes-Durá, I.; Rubio, J.M.; Kane, J.M.; Schoretsanitis, G. Clozapine-related drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: A systematic review. Expert Rev. Clin. Pharmacol., 2020, 13(8), 875-883.
[http://dx.doi.org/10.1080/17512433.2020.1787831] [PMID: 32576056]
[105]
Eyre, H.; Lavretsky, H.; Kartika, J.; Qassim, A.; Baune, B. Modulatory effects of antidepressant classes on the innate and adaptive immune system in depression. Pharmacopsychiatry, 2016, 49(3), 85-96.
[http://dx.doi.org/10.1055/s-0042-103159] [PMID: 26951496]
[106]
Szałach, Ł.P.; Lisowska, K.A.; Cubała, W.J. The influence of antidepressants on the immune system. Arch. Immunol. Ther. Exp., 2019, 67(3), 143-151.
[http://dx.doi.org/10.1007/s00005-019-00543-8] [PMID: 31032529]
[107]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S.L.; Lotti, V.J.; Cerino, D.J.; Chen, T.B.; Kling, P.J.; Kunkel, K.A.; Springer, J.P.; Hirshfield, J. Methods for drug discovery: Development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[108]
Çakici, N.; van Beveren, N.J.M.; Judge-Hundal, G.; Koola, M.M.; Sommer, I.E.C. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: A meta-analysis. Psychol. Med., 2019, 49(14), 2307-2319.
[http://dx.doi.org/10.1017/S0033291719001995] [PMID: 31439071]
[109]
Sommer, I.E.; van Westrhenen, R.; Begemann, M.J.H.; de Witte, L.D.; Leucht, S.; Kahn, R.S. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: An update. Schizophr. Bull., 2014, 40(1), 181-191.
[http://dx.doi.org/10.1093/schbul/sbt139] [PMID: 24106335]
[110]
Compagnone, N.A.; Mellon, S.H. Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front. Neuroendocrinol., 2000, 21(1), 1-56.
[http://dx.doi.org/10.1006/frne.1999.0188] [PMID: 10662535]
[111]
Mellon, S.H.; Griffin, L.D. Neurosteroids: Biochemistry and clinical significance. Trends Endocrinol. Metab., 2002, 13(1), 35-43.
[http://dx.doi.org/10.1016/S1043-2760(01)00503-3] [PMID: 11750861]
[112]
Yilmaz, C.; Karali, K.; Fodelianaki, G.; Gravanis, A.; Chavakis, T.; Charalampopoulos, I.; Alexaki, V.I. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol., 2019, 55, 100788.
[http://dx.doi.org/10.1016/j.yfrne.2019.100788] [PMID: 31513776]
[113]
Schumacher, M.; Weill-Engerer, S.; Liere, P.; Robert, F.; Franklin, R.J.M.; Garcia-Segura, L.M.; Lambert, J.J.; Mayo, W.; Melcangi, R.C.; Parducz, A.; Suter, U.; Carelli, C.; Baulieu, E.E.; Akwa, Y. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog. Neurobiol., 2003, 71(1), 3-29.
[http://dx.doi.org/10.1016/j.pneurobio.2003.09.004] [PMID: 14611864]
[114]
Stárka, L.; Dušková, M.; Hill, M. Dehydroepiandrosterone: A neuroactive steroid. J. Steroid Biochem. Mol. Biol., 2015, 145, 254-260.
[http://dx.doi.org/10.1016/j.jsbmb.2014.03.008] [PMID: 24704258]
[115]
Charalampopoulos, I.; Alexaki, V.I.; Tsatsanis, C.; Minas, V.; Dermitzaki, E.; Lasaridis, I.; Vardouli, L.; Stournaras, C.; Margioris, A.N.; Castanas, E.; Gravanis, A. Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging. Ann. N. Y. Acad. Sci., 2006, 1088(1), 139-152.
[http://dx.doi.org/10.1196/annals.1366.003] [PMID: 17192562]
[116]
Charalampopoulos, I.; Remboutsika, E.; Margioris, A.N.; Gravanis, A. Neurosteroids as modulators of neurogenesis and neuronal survival. Trends Endocrinol. Metab., 2008, 19(8), 300-307.
[http://dx.doi.org/10.1016/j.tem.2008.07.004] [PMID: 18771935]
[117]
Alexaki, V.I.; Fodelianaki, G.; Neuwirth, A.; Mund, C.; Kourgiantaki, A.; Ieronimaki, E.; Lyroni, K.; Troullinaki, M.; Fujii, C.; Kanczkowski, W.; Ziogas, A.; Peitzsch, M.; Grossklaus, S.; Sönnichsen, B.; Gravanis, A.; Bornstein, S.R.; Charalampopoulos, I.; Tsatsanis, C.; Chavakis, T. DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol. Psychiatry, 2018, 23(6), 1410-1420.
[http://dx.doi.org/10.1038/mp.2017.167] [PMID: 28894299]
[118]
Zwain, I.H.; Yen, S.S.C. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology, 1999, 140(8), 3843-3852.
[http://dx.doi.org/10.1210/endo.140.8.6907] [PMID: 10433246]
[119]
Gago, N.; Akwa, Y.; Sananès, N.; Guennoun, R.; Baulieu, E.E.; El-Etr, M.; Schumacher, M. Progesterone and the oligodendroglial lineage: Stage-dependent biosynthesis and metabolism. Glia, 2001, 36(3), 295-308.
[http://dx.doi.org/10.1002/glia.1117] [PMID: 11746767]
[120]
Gottfried-Blackmore, A.; Sierra, A.; Jellinck, P.H.; McEwen, B.S.; Bulloch, K. Brain microglia express steroid-converting enzymes in the mouse. J. Steroid Biochem. Mol. Biol., 2008, 109(1-2), 96-107.
[http://dx.doi.org/10.1016/j.jsbmb.2007.12.013] [PMID: 18329265]
[121]
Saijo, K.; Collier, J.G.; Li, A.C.; Katzenellenbogen, J.A.; Glass, C.K. An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell, 2011, 145(4), 584-595.
[http://dx.doi.org/10.1016/j.cell.2011.03.050] [PMID: 21565615]
[122]
Schaufelberger, S.A.; Rosselli, M.; Barchiesi, F.; Gillespie, D.G.; Jackson, E.K.; Dubey, R.K. 2-Methoxyestradiol, an endogenous 17β-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism. Am. J. Physiol. Endocrinol. Metab., 2016, 310(5), E313-E322.
[http://dx.doi.org/10.1152/ajpendo.00418.2015] [PMID: 26732685]
[123]
Ishihara, Y.; Itoh, K.; Ishida, A.; Yamazaki, T. Selective estrogen-receptor modulators suppress microglial activation and neuronal cell death via an estrogen receptor-dependent pathway. J. Steroid Biochem. Mol. Biol., 2015, 145, 85-93.
[http://dx.doi.org/10.1016/j.jsbmb.2014.10.002] [PMID: 25305410]
[124]
Liu, X.; Fan, X.L.; Zhao, Y.; Luo, G.R.; Li, X.P.; Li, R.; Le, W.D. Estrogen provides neuroprotection against activated microglia-induced dopaminergic neuronal injury through both estrogen receptor-α and estrogen receptor-β in microglia. J. Neurosci. Res., 2005, 81(5), 653-665.
[http://dx.doi.org/10.1002/jnr.20583] [PMID: 16013043]
[125]
Bruce-Keller, A.J.; Keeling, J.L.; Keller, J.N.; Huang, F.F.; Camondola, S.; Mattson, M.P. Antiinflammatory effects of estrogen on microglial activation. Endocrinology, 2000, 141(10), 3646-3656.
[http://dx.doi.org/10.1210/endo.141.10.7693] [PMID: 11014219]
[126]
Pawlak, J.; Karolczak, M.; Krust, A.; Chambon, P.; Beyer, C. Estrogen receptor-? is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia, 2005, 50(3), 270-275.
[http://dx.doi.org/10.1002/glia.20162] [PMID: 15712205]
[127]
Sierra, A.; Gottfried-Blackmore, A.; Milner, T.A.; McEwen, B.S.; Bulloch, K. Steroid hormone receptor expression and function in microglia. Glia, 2008, 56(6), 659-674.
[http://dx.doi.org/10.1002/glia.20644] [PMID: 18286612]
[128]
Kuo, J.; Hamid, N.; Bondar, G.; Prossnitz, E.R.; Micevych, P. Membrane estrogen receptors stimulate intracellular calcium release and progesterone synthesis in hypothalamic astrocytes. J. Neurosci., 2010, 30(39), 12950-12957.
[http://dx.doi.org/10.1523/JNEUROSCI.1158-10.2010] [PMID: 20881113]
[129]
Bali, N.; Arimoto, J.M.; Morgan, T.E.; Finch, C.E. Progesterone antagonism of neurite outgrowth depends on microglial activation via Pgrmc1/S2R. Endocrinology, 2013, 154(7), 2468-2480.
[http://dx.doi.org/10.1210/en.2012-2109] [PMID: 23653459]
[130]
Meffre, D.; Labombarda, F.; Delespierre, B.; Chastre, A.; De Nicola, A.F.; Stein, D.G.; Schumacher, M.; Guennoun, R. Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience, 2013, 231, 111-124.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.039] [PMID: 23211561]
[131]
Roche, S.L.; Wyse-Jackson, A.C.; Gómez-Vicente, V.; Lax, P.; Ruiz-Lopez, A.M.; Byrne, A.M.; Cuenca, N.; Cotter, T.G. Progesterone attenuates microglial-driven retinal degeneration and stimulates protective fractalkine-CX3CR1 signaling. PLoS One, 2016, 11(11), e0165197.
[http://dx.doi.org/10.1371/journal.pone.0165197] [PMID: 27814376]
[132]
Lee, M.; Schwab, C.; Mcgeer, P.L. Astrocytes are GABAergic cells that modulate microglial activity. Glia, 2011, 59(1), 152-165.
[http://dx.doi.org/10.1002/glia.21087] [PMID: 21046567]
[133]
Lambert, J.J.; Belelli, D.; Peden, D.R.; Vardy, A.W.; Peters, J.A. Neurosteroid modulation of GABAA receptors. Prog. Neurobiol., 2003, 71(1), 67-80.
[http://dx.doi.org/10.1016/j.pneurobio.2003.09.001] [PMID: 14611869]
[134]
Singh, M.; Su, C.; Ng, S. Non-genomic mechanisms of progesterone action in the brain. Front. Neurosci., 2013, 7, 159.
[http://dx.doi.org/10.3389/fnins.2013.00159] [PMID: 24065876]
[135]
Pediaditakis, I.; Efstathopoulos, P.; Prousis, K.C.; Zervou, M.; Arévalo, J.C.; Alexaki, V.I.; Nikoletopoulou, V.; Karagianni, E.; Potamitis, C.; Tavernarakis, N.; Chavakis, T.; Margioris, A.N.; Venihaki, M.; Calogeropoulou, T.; Charalampopoulos, I.; Gravanis, A. Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology, 2016, 111, 266-282.
[http://dx.doi.org/10.1016/j.neuropharm.2016.09.007] [PMID: 27618740]
[136]
Bonetto, G.; Charalampopoulos, I.; Gravanis, A.; Karagogeos, D. The novel synthetic microneurotrophin BNN27 protects mature oligodendrocytes against cuprizone-induced death, through the NGF receptor TrkA. Glia, 2017, 65(8), 1376-1394.
[http://dx.doi.org/10.1002/glia.23170] [PMID: 28567989]
[137]
Botsakis, K.; Mourtzi, T.; Panagiotakopoulou, V.; Vreka, M.; Stathopoulos, G.T.; Pediaditakis, I.; Charalampopoulos, I.; Gravanis, A.; Delis, F.; Antoniou, K.; Zisimopoulos, D.; Georgiou, C.D.; Panagopoulos, N.T.; Matsokis, N.; Angelatou, F. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the “weaver” mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology, 2017, 121, 140-157.
[http://dx.doi.org/10.1016/j.neuropharm.2017.04.043] [PMID: 28461162]
[138]
Brown, C.M.; Mulcahey, T.A.; Filipek, N.C.; Wise, P.M. Production of proinflammatory cytokines and chemokines during neuroinflammation: Novel roles for estrogen receptors α and β. Endocrinology, 2010, 151(10), 4916-4925.
[http://dx.doi.org/10.1210/en.2010-0371] [PMID: 20685874]
[139]
Smith, J.A.; Das, A.; Butler, J.T.; Ray, S.K.; Banik, N.L. Estrogen or estrogen receptor agonist inhibits lipopolysaccharide induced microglial activation and death. Neurochem. Res., 2011, 36(9), 1587-1593.
[http://dx.doi.org/10.1007/s11064-010-0336-7] [PMID: 21127968]
[140]
Vegeto, E.; Belcredito, S.; Etteri, S.; Ghisletti, S.; Brusadelli, A.; Meda, C.; Krust, A.; Dupont, S.; Ciana, P.; Chambon, P.; Maggi, A. Estrogen receptor-α mediates the brain antiinflammatory activity of estradiol. Proc. Natl. Acad. Sci., 2003, 100(16), 9614-9619.
[http://dx.doi.org/10.1073/pnas.1531957100] [PMID: 12878732]
[141]
Wu, W.; Tan, X.; Dai, Y.; Krishnan, V.; Warner, M.; Gustafsson, J.Å. Targeting estrogen receptor β in microglia and T cells to treat experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci., 2013, 110(9), 3543-3548.
[http://dx.doi.org/10.1073/pnas.1300313110] [PMID: 23401502]
[142]
Bhat, R.; Axtell, R.; Mitra, A.; Miranda, M.; Lock, C.; Tsien, R.W.; Steinman, L. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl. Acad. Sci., 2010, 107(6), 2580-2585.
[http://dx.doi.org/10.1073/pnas.0915139107] [PMID: 20133656]
[143]
Kipp, M.; Karakaya, S.; Johann, S.; Kampmann, E.; Mey, J.; Beyer, C. Oestrogen and progesterone reduce lipopolysaccharide-induced expression of tumour necrosis factor-α and interleukin-18 in midbrain astrocytes. J. Neuroendocrinol., 2007, 19(10), 819-822.
[http://dx.doi.org/10.1111/j.1365-2826.2007.01588.x] [PMID: 17850464]
[144]
Calogeropoulou, T.; Avlonitis, N.; Minas, V.; Alexi, X.; Pantzou, A.; Charalampopoulos, I.; Zervou, M.; Vergou, V.; Katsanou, E.S.; Lazaridis, I.; Alexis, M.N.; Gravanis, A. Novel dehydroepiandrosterone derivatives with antiapoptotic, neuroprotective activity. J. Med. Chem., 2009, 52(21), 6569-6587.
[http://dx.doi.org/10.1021/jm900468p] [PMID: 19845386]
[145]
Gravanis, A.; Pediaditakis, I.; Charalampopoulos, I. Synthetic microneurotrophins in therapeutics of neurodegeneration. Oncotarget, 2017, 8(6), 9005-9006.
[http://dx.doi.org/10.18632/oncotarget.14667] [PMID: 28099949]
[146]
Akhondzadeh, S.; Nejatisafa, A.A.; Amini, H.; Mohammadi, M.R.; Larijani, B.; Kashani, L.; Raisi, F.; Kamalipour, A. Adjunctive estrogen treatment in women with chronic schizophrenia: A double-blind, randomized, and placebo-controlled trial. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27(6), 1007-1012.
[http://dx.doi.org/10.1016/S0278-5846(03)00161-1] [PMID: 14499318]
[147]
Ghafari, E.; Fararouie, M.; Shirazi, H.G.; Farhangfar, A.; Ghaderi, F.; Mohammadi, A. Combination of estrogen and antipsychotics in the treatment of women with chronic schizophrenia: A double-blind, randomized, placebo-controlled clinical trial. Clin. Schizophr. Relat. Psychoses, 2013, 6(4), 172-176.
[http://dx.doi.org/10.3371/CSRP.GHFA.01062013] [PMID: 23302446]
[148]
Kianimehr, G.; Fatehi, F.; Hashempoor, S.; Khodaei-Ardakani, M.R.; Rezaei, F.; Nazari, A.; Kashani, L.; Akhondzadeh, S. Raloxifene adjunctive therapy for postmenopausal women suffering from chronic schizophrenia: A randomized double-blind and placebo controlled trial. Daru, 2014, 22(1), 55.
[http://dx.doi.org/10.1186/2008-2231-22-55] [PMID: 25012765]
[149]
Kulkarni, J.; de Castella, A.; Fitzgerald, P.B.; Gurvich, C.T.; Bailey, M.; Bartholomeusz, C.; Burger, H. Estrogen in severe mental illness: A potential new treatment approach. Arch. Gen. Psychiatry, 2008, 65(8), 955-960.
[http://dx.doi.org/10.1001/archpsyc.65.8.955] [PMID: 18678800]
[150]
Kulkarni, J.; de Castella, A.; Headey, B.; Marston, N.; Sinclair, K.; Lee, S.; Gurvich, C.; Fitzgerald, P.B.; Burger, H. Estrogens and men with schizophrenia: Is there a case for adjunctive therapy? Schizophr. Res., 2011, 125(2-3), 278-283.
[http://dx.doi.org/10.1016/j.schres.2010.10.009] [PMID: 21062669]
[151]
Kulkarni, J.; Riedel, A.; de Castella, A.R.; Fitzgerald, P.B.; Rolfe, T.J.; Taffe, J.; Burger, H. Estrogen: A potential treatment for schizophrenia. Schizophr. Res., 2001, 48(1), 137-144.
[http://dx.doi.org/10.1016/S0920-9964(00)00088-8] [PMID: 11278160]
[152]
Kulkarni, J.; Gavrilidis, E.; Gwini, S.M.; Worsley, R.; Grigg, J.; Warren, A.; Gurvich, C.; Gilbert, H.; Berk, M.; Davis, S.R. Effect of adjunctive raloxifene therapy on severity of refractory schizophrenia in women. JAMA Psychiatry, 2016, 73(9), 947-954.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.1383] [PMID: 27438995]
[153]
Louzã, M.R.; Marques, A.P.; Elkis, H.; Bassitt, D.; Diegoli, M.; Gattaz, W.F. Conjugated estrogens as adjuvant therapy in the treatment of acute schizophrenia: A double-blind study. Schizophr. Res., 2004, 66(2-3), 97-100.
[http://dx.doi.org/10.1016/S0920-9964(03)00082-3] [PMID: 15061241]
[154]
Usall, J.; Huerta-Ramos, E.; Labad, J.; Cobo, J.; Núñez, C.; Creus, M.; Parés, G.G.; Cuadras, D.; Franco, J.; Miquel, E.; Reyes, J.C.; Roca, M. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: A 24-week double-blind, randomized, parallel, placebo-controlled trial. Schizophr. Bull., 2016, 42(2), 309-317.
[http://dx.doi.org/10.1093/schbul/sbv149] [PMID: 26591005]
[155]
Weiser, M.; Levi, L.; Burshtein, S.; Hagin, M.; Matei, V.P.; Podea, D. Micluția, I.; Tiugan, A.; Păcală B.; Grecu, I.G.; Noy, A.; Zamora, D.; Davis, J.M. Raloxifene plus antipsychotics versus placebo plus antipsychotics in severely ill decompensated postmenopausal women with schizophrenia or schizoaffective disorder. J. Clin. Psychiatry, 2017, 78(7), e758-e765.
[http://dx.doi.org/10.4088/JCP.15m10498] [PMID: 28541645]
[156]
Khodaie-Ardakani, M-R.; Khosravi, M.; Zarinfard, R.; Nejati, S.; Mohsenian, A.; Tabrizi, M.; Akhondzadeh, S. A Placebo-Controlled Study of Raloxifene Added to Risperidone in Men with Chronic Schizophrenia. Acta Med. Iran., 2015, 53(6), 337-345.
[PMID: 26069170]
[157]
Nasib, L.G.; Gangadin, S.S.; Rossum, I.W.; Boudewijns, Z.S.R.M.; de Witte, L.D.; Wilting, I.; Luykx, J.; Somers, M.; Veen, N.; van Baal, C.; Kahn, R.S.; Sommer, I.E. The effect of prednisolone on symptom severity in schizophrenia: A placebo-controlled, randomized controlled trial. Schizophr. Res., 2021, 230, 79-86.
[http://dx.doi.org/10.1016/j.schres.2021.01.024] [PMID: 33711681]
[158]
Veenstra, D.L.; Best, J.H.; Hornberger, J.; Sullivan, S.D.; Hricik, D.E. Incidence and long-term cost of steroid-related side effects after renal transplantation. Am. J. Kidney Dis., 1999, 33(5), 829-839.
[http://dx.doi.org/10.1016/S0272-6386(99)70414-2] [PMID: 10213637]
[159]
Çaldır, M.V.; Çelik, G.K.; Çiftçi, Ö.; Müderrisoğlu, İ.H. The effect of high-dose steroid treatment used for the treatment of acute demyelinating diseases on endothelial and cardiac functions. Anatol. J. Cardiol., 2017, 17(5), 392-397.
[http://dx.doi.org/10.14744/AnatolJCardiol.2016.7425] [PMID: 27965510]
[160]
De Hert, M.; Correll, C.U.; Bobes, J.; Cetkovich-Bakmas, M.; Cohen, D.; Asai, I.; Detraux, J.; Gautam, S.; Möller, H.J.; Ndetei, D.M.; Newcomer, J.W.; Uwakwe, R.; Leucht, S. Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry, 2011, 10(1), 52-77.
[http://dx.doi.org/10.1002/j.2051-5545.2011.tb00014.x] [PMID: 21379357]
[161]
Galderisi, S.; De Hert, M.; Del Prato, S.; Fagiolini, A.; Gorwood, P.; Leucht, S.; Maggioni, A.P.; Mucci, A.; Arango, C. Identification and management of cardiometabolic risk in subjects with schizophrenia spectrum disorders: A Delphi expert consensus study. Eur. Psychiatry, 2021, 64(1), e7.
[http://dx.doi.org/10.1192/j.eurpsy.2020.115] [PMID: 33413701]
[162]
Sommer, I.E.; de Witte, L.; Begemann, M.; Kahn, R.S. Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J. Clin. Psychiatry, 2012, 73(4), 414-419.
[http://dx.doi.org/10.4088/JCP.10r06823] [PMID: 22225599]
[163]
Hirst, W.D.; Young, K.A.; Newton, R.; Allport, V.C.; Marriott, D.R.; Wilkin, G.P. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol. Cell. Neurosci., 1999, 13(1), 57-68.
[http://dx.doi.org/10.1006/mcne.1998.0731] [PMID: 10049531]
[164]
Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol., 2004, 63(9), 901-910.
[http://dx.doi.org/10.1093/jnen/63.9.901] [PMID: 15453089]
[165]
Müller, N.; Riedel, M.; Scheppach, C.; Brandstätter, B.; Sokullu, S.; Krampe, K.; Ulmschneider, M.; Engel, R.R.; Möller, H.J.; Schwarz, M.J. Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am. J. Psychiatry, 2002, 159(6), 1029-1034.
[http://dx.doi.org/10.1176/appi.ajp.159.6.1029] [PMID: 12042193]
[166]
Müller, N; Riedel, M; Schwarz, MJ; Engel, RR 2004.
[167]
Müller, N. COX-2 inhibitors as antidepressants and antipsychotics: Clinical evidence. Curr. Opin. Investig. Drugs, 2010, 11(1), 31-42.
[PMID: 20047157]
[168]
Laan, W.; Grobbee, D.E.; Selten, J.P.; Heijnen, C.J.; Kahn, R.S.; Burger, H. Adjuvant aspirin therapy reduces symptoms of schizophrenia spectrum disorders: Results from a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry, 2010, 71(5), 520-527.
[http://dx.doi.org/10.4088/JCP.09m05117yel] [PMID: 20492850]
[169]
Nitta, M.; Kishimoto, T.; Müller, N.; Weiser, M.; Davidson, M.; Kane, J.M.; Correll, C.U. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophr. Bull., 2013, 39(6), 1230-1241.
[http://dx.doi.org/10.1093/schbul/sbt070] [PMID: 23720576]
[170]
Vasović V.; Banić B.; Jakovljević V.; Tomic, Z.; Milic-Djordjevic, V. Effect of aminophylline on aspirin penetration into the central nervous system in rats. Eur. J. Drug Metab. Pharmacokinet., 2008, 33(1), 23-30.
[http://dx.doi.org/10.1007/BF03191015] [PMID: 18543581]
[171]
Arvin, K.L.; Han, B.H.; Du, Y.; Lin, S.Z.; Paul, S.M.; Holtzman, D.M. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann. Neurol., 2002, 52(1), 54-61.
[http://dx.doi.org/10.1002/ana.10242] [PMID: 12112047]
[172]
Chen, M.; Ona, V.O.; Li, M.; Ferrante, R.J.; Fink, K.B.; Zhu, S.; Bian, J.; Guo, L.; Farrell, L.A.; Hersch, S.M.; Hobbs, W.; Vonsattel, J.P.; Cha, J.H.J.; Friedlander, R.M. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med., 2000, 6(7), 797-801.
[http://dx.doi.org/10.1038/77528] [PMID: 10888929]
[173]
Wu, D.C.; Jackson-Lewis, V.; Vila, M.; Tieu, K.; Teismann, P.; Vadseth, C.; Choi, D.K.; Ischiropoulos, H.; Przedborski, S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci., 2002, 22(5), 1763-1771.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01763.2002] [PMID: 11880505]
[174]
Homsi, S.; Federico, F.; Croci, N.; Palmier, B.; Plotkine, M.; Marchand-Leroux, C.; Jafarian-Tehrani, M. Minocycline effects on cerebral edema: Relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res., 2009, 1291, 122-132.
[http://dx.doi.org/10.1016/j.brainres.2009.07.031] [PMID: 19631631]
[175]
Yrjänheikki, J.; Tikka, T.; Keinänen, R.; Goldsteins, G.; Chan, P.H.; Koistinaho, J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc. Natl. Acad. Sci., 1999, 96(23), 13496-13500.
[http://dx.doi.org/10.1073/pnas.96.23.13496] [PMID: 10557349]
[176]
Yrjänheikki, J.; Keinänen, R.; Pellikka, M.; Hökfelt, T.; Koistinaho, J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl. Acad. Sci., 1998, 95(26), 15769-15774.
[http://dx.doi.org/10.1073/pnas.95.26.15769] [PMID: 9861045]
[177]
Watabe, M.; Kato, T.A.; Monji, A.; Horikawa, H.; Kanba, S. Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction? Psychopharmacology, 2012, 220(3), 551-557.
[http://dx.doi.org/10.1007/s00213-011-2509-8] [PMID: 21956241]
[178]
Dommergues, M.A.; Plaisant, F.; Verney, C.; Gressens, P. Early microglial activation following neonatal excitotoxic brain damage in mice: A potential target for neuroprotection. Neuroscience, 2003, 121(3), 619-628.
[http://dx.doi.org/10.1016/S0306-4522(03)00558-X] [PMID: 14568022]
[179]
Kobayashi, K.; Imagama, S.; Ohgomori, T.; Hirano, K.; Uchimura, K.; Sakamoto, K.; Hirakawa, A.; Takeuchi, H.; Suzumura, A.; Ishiguro, N.; Kadomatsu, K. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis., 2013, 4(3), e525-e525.
[http://dx.doi.org/10.1038/cddis.2013.54] [PMID: 23470532]
[180]
Tikka, T.; Fiebich, B.L.; Goldsteins, G.; Keinänen, R.; Koistinaho, J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci., 2001, 21(8), 2580-2588.
[http://dx.doi.org/10.1523/JNEUROSCI.21-08-02580.2001] [PMID: 11306611]
[181]
Mizoguchi, H.; Takuma, K.; Fukakusa, A.; Ito, Y.; Nakatani, A.; Ibi, D.; Kim, H.C.; Yamada, K. Improvement by minocycline of methamphetamine-induced impairment of recognition memory in mice. Psychopharmacology, 2008, 196(2), 233-241.
[http://dx.doi.org/10.1007/s00213-007-0955-0] [PMID: 17909751]
[182]
Kamei, H.; Nagai, T.; Nakano, H.; Togan, Y.; Takayanagi, M.; Takahashi, K.; Kobayashi, K.; Yoshida, S.; Maeda, K.; Takuma, K.; Nabeshima, T.; Yamada, K. Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol. Psychiatry, 2006, 59(1), 75-84.
[http://dx.doi.org/10.1016/j.biopsych.2005.06.006] [PMID: 16139811]
[183]
Levkovitz, Y.; Levi, U.; Braw, Y.; Cohen, H. Minocycline, a second-generation tetracycline, as a neuroprotective agent in an animal model of schizophrenia. Brain Res., 2007, 1154, 154-162.
[http://dx.doi.org/10.1016/j.brainres.2007.03.080] [PMID: 17488642]
[184]
Fujita, Y.; Ishima, T.; Kunitachi, S.; Hagiwara, H.; Zhang, L.; Iyo, M.; Hashimoto, K. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(2), 336-339.
[http://dx.doi.org/10.1016/j.pnpbp.2007.08.031] [PMID: 17884273]
[185]
Tsuji, M.; Wilson, M.A.; Lange, M.S.; Johnston, M.V. Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp. Neurol., 2004, 189(1), 58-65.
[http://dx.doi.org/10.1016/j.expneurol.2004.01.011] [PMID: 15296836]
[186]
Arnoux, I.; Hoshiko, M.; Sanz Diez, A.; Audinat, E. Paradoxical effects of minocycline in the developing mouse somatosensory cortex. Glia, 2014, 62(3), 399-410.
[http://dx.doi.org/10.1002/glia.22612] [PMID: 24357027]
[187]
Ueno, M.; Fujita, Y.; Tanaka, T.; Nakamura, Y.; Kikuta, J.; Ishii, M.; Yamashita, T. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci., 2013, 16(5), 543-551.
[http://dx.doi.org/10.1038/nn.3358] [PMID: 23525041]
[188]
Inta, D.; Lang, U.E.; Borgwardt, S.; Meyer-Lindenberg, A.; Gass, P. Microglia activation and schizophrenia: Lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr. Bull., 2017, 43(3), 493-496.
[PMID: 27352782]
[189]
Levkovitz, Y.; Mendlovich, S.; Riwkes, S.; Braw, Y.; Levkovitch-Verbin, H.; Gal, G.; Fennig, S.; Treves, I.; Kron, S. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J. Clin. Psychiatry, 2010, 71(2), 138-149.
[http://dx.doi.org/10.4088/JCP.08m04666yel] [PMID: 19895780]
[190]
Chaudhry, I.B.; Hallak, J.; Husain, N.; Minhas, F.; Stirling, J.; Richardson, P.; Dursun, S.; Dunn, G.; Deakin, B. Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J. Psychopharmacol., 2012, 26(9), 1185-1193.
[http://dx.doi.org/10.1177/0269881112444941] [PMID: 22526685]
[191]
Jhamnani, K.; Shivakumar, V.; Kalmady, S.; Rao, N.P.; Venkatasubramanian, G. Successful use of add-on minocycline for treatment of persistent negative symptoms in schizophrenia. J. Neuropsychiatry Clin. Neurosci., 2013, 25(1), E06-E07.
[http://dx.doi.org/10.1176/appi.neuropsych.11120376] [PMID: 23487204]
[192]
Kelly, D.L.; Vyas, G.; Richardson, C.M.; Koola, M.; McMahon, R.P.; Buchanan, R.W.; Wehring, H.J. Adjunct minocycline to clozapine treated patients with persistent schizophrenia symptoms. Schizophr. Res., 2011, 133(1-3), 257-258.
[http://dx.doi.org/10.1016/j.schres.2011.08.005] [PMID: 21872445]
[193]
Miyaoka, T.; Yasukawa, R.; Yasuda, H.; Hayashida, M.; Inagaki, T.; Horiguchi, J. Minocycline as adjunctive therapy for schizophrenia: An open-label study. Clin. Neuropharmacol., 2008, 31(5), 287-292.
[http://dx.doi.org/10.1097/WNF.0b013e3181593d45] [PMID: 18836347]
[194]
Ahuja, N.; Carroll, B.T. Possible anti-catatonic effects of minocycline in patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(4), 968-969.
[http://dx.doi.org/10.1016/j.pnpbp.2007.01.018] [PMID: 17320260]
[195]
Chaves, C.; de Marque, C.R.; Wichert-Ana, L.; Maia-de-Oliveira, J.P.; Itikawa, E.N.; Crippa, J.A.S.; Zuardi, A.W.; Todd, K.G.; Baker, G.B.; Dursun, S.M.; Hallak, J.E.C. Functional neuroimaging of minocycline’s effect in a patient with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(3), 550-552.
[http://dx.doi.org/10.1016/j.pnpbp.2010.01.020] [PMID: 20138948]
[196]
Chen, X.; Xiong, Z.; Li, Z.; Yang, Y.; Zheng, Z.; Li, Y.; Xie, Y.; Li, Z. Minocycline as adjunct therapy for a male patient with deficit schizophrenia. Neuropsychiatr. Dis. Treat., 2018, 14, 2697-2701.
[http://dx.doi.org/10.2147/NDT.S179658] [PMID: 30349268]
[197]
Solmi, M.; Veronese, N.; Thapa, N.; Facchini, S.; Stubbs, B.; Fornaro, M.; Carvalho, A.F.; Correll, C.U. Systematic review and meta-analysis of the efficacy and safety of minocycline in schizophrenia. CNS Spectr., 2017, 22(5), 415-426.
[http://dx.doi.org/10.1017/S1092852916000638] [PMID: 28181901]
[198]
Deakin, B.; Suckling, J.; Barnes, T.R.E.; Byrne, K.; Chaudhry, I.B.; Dazzan, P.; Drake, R.J.; Giordano, A.; Husain, N.; Jones, P.B.; Joyce, E.; Knox, E.; Krynicki, C.; Lawrie, S.M.; Lewis, S.; Lisiecka-Ford, D.M.; Nikkheslat, N.; Pariante, C.M.; Smallman, R.; Watson, A.; Williams, S.C.R.; Upthegrove, R.; Dunn, G. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): A randomised, double-blind, placebo-controlled trial. Lancet Psychiatry, 2018, 5(11), 885-894.
[http://dx.doi.org/10.1016/S2215-0366(18)30345-6] [PMID: 30322824]
[199]
Solmi, M.; Correll, C.U. Adjunctive minocycline in schizophrenia: What one well-conducted study can tell us (and what it can’t). Evid. Based Ment. Health, 2019, 22(1), e3-e3.
[http://dx.doi.org/10.1136/ebmental-2018-300070] [PMID: 30665992]
[200]
Kishimoto, T.; Horigome, T.; Takamiya, A. Minocycline as a treatment for schizophrenia: is the discussion truly finished? Lancet Psychiatry, 2018, 5(11), 856-857.
[http://dx.doi.org/10.1016/S2215-0366(18)30389-4] [PMID: 30322823]
[201]
Jeppesen, R.; Christensen, R.H.B.; Pedersen, E.M.J.; Nordentoft, M.; Hjorthøj, C.; Köhler-Forsberg, O.; Benros, M.E. Efficacy and safety of anti-inflammatory agents in treatment of psychotic disorders: A comprehensive systematic review and meta-analysis. Brain Behav. Immun., 2020, 90, 364-380.
[http://dx.doi.org/10.1016/j.bbi.2020.08.028] [PMID: 32890697]
[202]
Müller, N. COX-2 inhibitors, aspirin, and other potential anti-inflammatory treatments for psychiatric disorders. Front. Psychiatry, 2019, 10, 375.
[http://dx.doi.org/10.3389/fpsyt.2019.00375] [PMID: 31214060]
[203]
Zhang, L.; Zheng, H.; Wu, R.; Zhu, F.; Kosten, T.R.; Zhang, X.Y.; Zhao, J. Minocycline adjunctive treatment to risperidone for negative symptoms in schizophrenia: Association with pro-inflammatory cytokine levels. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 85, 69-76.
[http://dx.doi.org/10.1016/j.pnpbp.2018.04.004] [PMID: 29678772]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy