Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Mini-Review Article

Bioprospecting of Metabolites from Actinomycetes and their Applications

Author(s): Syed Khalida Izhar, Shareen Fatima Rizvi, Uzma Afaq, Faria Fatima* and Saba Siddiqui*

Volume 18, Issue 4, 2024

Published on: 27 November, 2023

Page: [273 - 287] Pages: 15

DOI: 10.2174/0118722083269904231114154017

Price: $65

Abstract

Actinomycetes are present in various terrestrial and aquatic habitats, predominantly in the soil rhizosphere, encompassing marine and freshwater ecosystems. These microorganisms exhibit characteristics that resemble both bacteria and fungi. Numerous actinomycetes exhibit a mycelial existence and undergo significant morphological transformations. These bacteria are widely recognized as biotechnologically significant microorganisms utilized for the production of secondary metabolites. In all, over 45% of all bioactive microbial metabolites are produced by actinomycetes, which are responsible for producing around 10,000 of them. The majority of actinomycetes exhibit substantial saprophytic characteristics in their natural environment, enabling them to effectively decompose a diverse range of plant and animal waste materials during the process of decomposition. Additionally, these organisms possess a sophisticated secondary metabolic system, which enables them to synthesize almost two-thirds of all naturally occurring antibiotics. Moreover, they can create a diverse array of chemical compounds with medical or agricultural applications, including anticancer, antiparasitic, and antibacterial agents. This review aims to provide an overview of the prominent biotechnological domains in which actinobacteria and their metabolites demonstrate noteworthy applicability. The graphical abstract provides a preview of the primary sections covered in this review. This paper presents a comprehensive examination of the biotechnological applications and metabolites of actinobacteria, highlighting their potential for patent innovations.

Graphical Abstract

[1]
Talari VB, Babu KG, Swathi BMP. J Dandin C, Nayaka S. Isolation, identification and characterization of Streptomyces sp. SN-2. Biosci Biotechnol Res Asia 2017; 14(4): 1401-7.
[http://dx.doi.org/10.13005/bbra/2585]
[2]
Jeffrey LS, Sahilah H, Son AM, Tosiah S. Isolation and screening of actinomycetes from Malaysian soil for their enzymatic and antimicrobial activities. J Trop Agric Food Sci 2007; 35: 159.
[3]
Priyadharsini P, Dhanasekaran D. Diversity of soil allelopathic actinobacteria in tiruchirappalli district, Tamilnadu, India. J Saudi Soc Agric Sci 2015; 14(1): 54-60.
[http://dx.doi.org/10.1016/j.jssas.2013.07.001]
[4]
Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 2003; 19(8): 3550-3.
[http://dx.doi.org/10.1021/la026772l]
[5]
Claverías FP, Undabarrena A, González M, Seeger M, Cámara B. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso bay, Chile. Front Microbiol 2015; 6: 737.
[http://dx.doi.org/10.3389/fmicb.2015.00737] [PMID: 26284034]
[6]
George M, Anjumol A, George G, Hatha AM. Distribution and bioactive potential of soil actinomycetes from different ecological habitats. Afr J Microbiol Res 2012; 6(10): 2265-71.
[http://dx.doi.org/10.5897/AJMR11.856]
[7]
Jensen PR, Mincer TJ, Williams PG, Fenical W. Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek 2005; 87(1): 43-8.
[http://dx.doi.org/10.1007/s10482-004-6540-1] [PMID: 15726290]
[8]
Shivlata L, Satyanarayana T. Actinobacteria in agricultural and environmental sustainability In: Agro-Environmental Sustainability Managing Crop Health. 2017; Vol 1: pp. 173-218.
[9]
Tseng M, Yang SF, Hoang KC, Liao HC, Yuan GF, Liao CC. Actinomadura miaoliensis sp. nov., a thermotolerant polyester-degrading actinomycete. Int J Syst Evol Microbiol 2009; 59(3): 517-20.
[http://dx.doi.org/10.1099/ijs.0.001479-0] [PMID: 19244432]
[10]
Nakano M, Kihara M, Iehata S, Tanaka R, Maeda H, Yoshikawa T. Wax ester-like compounds as biosurfactants produced by Dietzia maris from n -alkane as a sole carbon source. J Basic Microbiol 2011; 51(5): 490-8.
[http://dx.doi.org/10.1002/jobm.201000420] [PMID: 21656811]
[11]
Anandan R, Dharumadurai D, Manogaran GP. An introduction to actinobacteria.In: Actinobacteria-basics and biotechnological applications. IntechOpen 2016.
[12]
Niyasom C, Boonmak S, Meesri N. Antimicrobial activity of acidophilic actinomycetes isolated from acidic soil. Curr Appl Sci 2015; 15(2): 62-9.
[13]
Zakalyukina YV, Zenova GM. Antagonistic activity of soil acidophilic actinomycetes. Biol Bull Russ Acad Sci 2007; 34(4): 329-32.
[http://dx.doi.org/10.1134/S1062359007040036]
[14]
Asolkar RN, Kirkland TN, Jensen PR, Fenical W. Arenimycin, an antibiotic effective against rifampin- and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola. J Antibiot 2010; 63(1): 37-9.
[http://dx.doi.org/10.1038/ja.2009.114] [PMID: 19927167]
[15]
Gao X, Lu Y, Xing Y, et al. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 2012; 167(10): 616-22.
[http://dx.doi.org/10.1016/j.micres.2012.02.008] [PMID: 22494896]
[16]
Mohamad OAA, Liu YH, Li L, et al. Synergistic plant-microbe interactions between endophytic actinobacteria and their role in plant growth promotion and biological control of cotton under salt stress. Microorganisms 2022; 10(5): 867.
[http://dx.doi.org/10.3390/microorganisms10050867] [PMID: 35630312]
[17]
Mohan YS, Sirisha B, Haritha R, Ramana T. Selective screening, isolation and characterization of antimicrobial agents from marine actinomycetes. Int J Pharm Pharm Sci 2013; 5: 443-9.
[18]
AbdElgawad H, Saleh AM, Al Jaouni S, et al. Utilization of actinobacteria to enhance the production and quality of date palm (Phoenix dactylifera L.) fruits in a semi-arid environment. Sci Total Environ 2019; 665: 690-7.
[http://dx.doi.org/10.1016/j.scitotenv.2019.02.140]
[19]
Mini PR. Endophytic actinomycetes from Indian medicinal plants as antagonists to some phytopathogenic fungi. Open Access Sci Rep 2012; 1: 259.
[20]
Singh R, Dubey AK. Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharmaceut Sci 2015; 5(2): 106-16.
[http://dx.doi.org/10.35652/IGJPS.2015.11]
[21]
Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 2007; 105(2): 548-54.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.008] [PMID: 22868127]
[22]
Thajuddin N, Muralitharan G, Dhanasekaran D, Muhammad Ilyas MH. Microbial symbionts of plants Plant Biology and Biotechnology. Plant Diversity, Organization. Function and Improvement 2015; Vol I: 281-306.
[23]
Solans M. Discaria trinervis – Frankia symbiosis promotion by Saprophytic actinomycetes. J Basic Microbiol 2007; 47(3): 243-50.
[http://dx.doi.org/10.1002/jobm.200610244] [PMID: 17518417]
[24]
Kurtböke Dİ. French JR, Hayes RA, Quinn RJ Ecotaxonomic insights into actinomycete symbionts of termites for discovery of novel bioactive compounds. Adv Biochem Eng Biotechnol 2015; 147: 111-35.
[25]
Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 2018; 50(5): 421-8.
[http://dx.doi.org/10.1016/j.dld.2018.02.012] [PMID: 29567414]
[26]
Shukla P. Synthetic biology perspectives of microbial enzymes and their innovative applications. Indian J Microbiol 2019; 59(4): 401-9.
[http://dx.doi.org/10.1007/s12088-019-00819-9] [PMID: 31762501]
[27]
Rambold G, Stadler M, Begerow D. Mycology should be recognized as a field in biology at eye level with other major disciplines – a memorandum. Mycol Prog 2013; 12(3): 455-63.
[http://dx.doi.org/10.1007/s11557-013-0902-x]
[28]
Vurukonda SSKP, Giovanardi D, Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 2018; 19(4): 952.
[http://dx.doi.org/10.3390/ijms19040952] [PMID: 29565834]
[29]
Hong CE, Park JM. Endophytic bacteria as biocontrol agents against plant pathogens: Current state-of-the-art. Plant Biotechnol Rep 2016; 10(6): 353-7.
[http://dx.doi.org/10.1007/s11816-016-0423-6]
[30]
Kavusi E, Ansar SKB, Dehghanian Z, et al. Delivery of beneficial microbes via seed coating for medicinal and aromatic plant production: A critical review. J Plant Growth Regul 2023; 42(2): 575-97.
[http://dx.doi.org/10.1007/s00344-022-10597-2]
[31]
Wakelin S, Young S, Gerard E, Mander C, O’Callaghan M. Isolation of root-associated Pseudomonas and Burkholderia spp. with biocontrol and plant growth-promoting traits. Biocontrol Sci Technol 2017; 27(1): 139-43.
[http://dx.doi.org/10.1080/09583157.2016.1248899]
[32]
Alvarez A, Saez JM, Costa JS, et al. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017; 166: 41-62.
[http://dx.doi.org/10.1016/j.chemosphere.2016.09.070] [PMID: 27684437]
[33]
Bahrndorff S, de Jonge N, Skovgård H, Nielsen JL. Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS One 2017; 12(1): e0169753.
[http://dx.doi.org/10.1371/journal.pone.0169753] [PMID: 28081167]
[34]
Gopalakrishnan S, Rajendran V, Arumugam S, et al. Insecticidal activity of a novel fatty acid amide derivative from Streptomyces species against Helicoverpa armigera. Nat Prod Res 2016; 30(24): 2760-9.
[http://dx.doi.org/10.1080/14786419.2016.1154055] [PMID: 26956775]
[35]
Mathivanan A, Ravikumar S, Selvakumar G. Bioprospecting of sponge and its symbionts: New tool for mosquitocidal & insecticidal metabolites. Biocatal Agric Biotechnol 2019; 19: 101158.
[http://dx.doi.org/10.1016/j.bcab.2019.101158]
[36]
Tao H, Zhang Y, Deng Z, Liu T. Strategies for enhancing the yield of the potent insecticide spinosad in actinomycetes. Biotechnol J 2019; 14(1): 1700769.
[http://dx.doi.org/10.1002/biot.201700769] [PMID: 29897659]
[37]
Bhatti AA, Haq S, Bhat RA. Actinomycetes benefaction role in soil and plant health. Microb Pathog 2017; 111: 458-67.
[http://dx.doi.org/10.1016/j.micpath.2017.09.036] [PMID: 28923606]
[38]
Kim YS, Kim JD, Ko YK, Choi JS. Streptomyces sp. KRA329 producing herbicidal metabolites as potential biocontrol agent. DBpia Report 2017; 113.
[39]
Bao Y, Dolfing J, Guo Z, et al. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome 2021; 9(1): 84.
[http://dx.doi.org/10.1186/s40168-021-01032-x] [PMID: 33827695]
[40]
Balakrishnan S, Santhanam P, Srinivasan M. Larvicidal potency of marine actinobacteria isolated from mangrove environment against Aedes aegypti and Anopheles stephensi. J Parasit Dis 2017; 41(2): 387-94.
[http://dx.doi.org/10.1007/s12639-016-0812-3] [PMID: 28615847]
[41]
Janardhan A, Kumar AP, Viswanath B, Saigopal DVR, Narasimha G. Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnol Res Int 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/217030] [PMID: 24790761]
[42]
Passari AK, Chandra P, Mishra VK, et al. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect. Res Microbiol 2016; 167(8): 692-705.
[http://dx.doi.org/10.1016/j.resmic.2016.07.001] [PMID: 27421813]
[43]
Passari AK, Mishra VK, Gupta VK, Yadav MK, Saikia R, Singh BP. In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic actinomycetes associates with medicinal plants. PLoS One 2015; 10(9): e0139468.
[http://dx.doi.org/10.1371/journal.pone.0139468] [PMID: 26422789]
[44]
Passari AK, Upadhyaya K, Singh G, et al. Enhancement of disease resistance, growth potential, and photosynthesis in tomato (Solanum lycopersicum) by inoculation with an endophytic actinobacterium, Streptomyces thermocarboxydus strain BPSAC147. PLoS One 2019; 14(7): e0219014.
[http://dx.doi.org/10.1371/journal.pone.0219014] [PMID: 31269087]
[45]
Abd-Elnaby H, Abo-Elala G, Abdel-Raouf U, Abd-elwahab A, Hamed M. Antibacterial and anticancer activity of marine Streptomyces parvus: Optimization and application. Biotechnol Biotechnol Equip 2016; 30(1): 180-91.
[http://dx.doi.org/10.1080/13102818.2015.1086280]
[46]
Kimura T, Tajima A, Inahashi Y, et al. Mumiamicin: Structure and bioactivity of a new furan fatty acid from Mumia sp. YSP-2-79. J Gen Appl Microbiol 2018; 64(2): 62-7.
[http://dx.doi.org/10.2323/jgam.2017.06.004] [PMID: 29367492]
[47]
Mendes TD, Borges WS, Rodrigues A, et al. Anti-Candida properties of urauchimycins from actinobacteria associated with trachymyrmex ants. BioMed Res Int 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/835081] [PMID: 23586060]
[48]
Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol 2018; 67(3): 259-72.
[http://dx.doi.org/10.21307/pjm-2018-048] [PMID: 30451442]
[49]
Khalil ZG, Salim AA, Vuong D, et al. Amycolatopsins A–C: antimycobacterial glycosylated polyketide macrolides from the Australian soil Amycolatopsis sp. MST-108494. J Antibiot 2017; 70(12): 1097-103.
[http://dx.doi.org/10.1038/ja.2017.119] [PMID: 29066791]
[50]
Raveh A, Delekta PC, Dobry CJ, et al. Discovery of potent broad spectrum antivirals derived from marine actinobacteria. PLoS One 2013; 8(12): e82318.
[http://dx.doi.org/10.1371/journal.pone.0082318] [PMID: 24349254]
[51]
Kamarudheen N, Rao B. An overview of protease inhibitors from Actinobacteria. Res J Biotechnol 2018; 13: 1.
[52]
Nourhan HS, Alaa MH, Mamdouh AM, et al. Targeting 3CLpro and SARS-CoV-2 RdRp by amphimedon sp. metabolites: A computational study. Molecules 2021; 26(12): 3775.
[http://dx.doi.org/10.3390/molecules26123775]
[53]
Busi S, Pattnaik SS. Current Status and Applications of Actinobacteria in the Production of Anticancerous Compounds. In: New and Future Developments in Microbial Biotechnology and Bioengineering Actinobacteria: Diversity and Biotechnological Applications. 2018; pp. 137-53.
[http://dx.doi.org/10.1016/B978-0-444-63994-3.00009-6]
[54]
Hozzein WN. Flavonoids from marine-derived actinomycetes as anticancer drugs. Curr Pharm Des 2021; 27: 505-12.
[http://dx.doi.org/10.2174/1381612826666201216160154] [PMID: 33327903]
[55]
Sarkar S, Saha M, Roy D, et al. Enhanced production of antimicrobial compounds by three salt-tolerant actinobacterial strains isolated from the Sundarbans in a niche-mimic bioreactor. Mar Biotechnol 2008; 10(5): 518-26.
[http://dx.doi.org/10.1007/s10126-008-9090-0] [PMID: 18350335]
[56]
Gong B, Chen S, Lan W, Huang Y, Zhu X. Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei Sea of the southern coast of China. Iran J Pharm Res 2018; 17(4): 1339-46.
[PMID: 30568692]
[57]
Bano N, Siddiqui S, Amir M. House of industrially important bioactive metabolites: A review on actinobacteria. Indian J Biotechnol 2018; 18: 293-304.
[58]
Skóra J, Szponar B, Paściak M, Gutarowska B. Identification of environmental Actinobacteria representing an occupational health risk. Postepy Hig Med Dosw 2013; 67: 1222-34.
[http://dx.doi.org/10.5604/17322693.1079001] [PMID: 24379263]
[59]
Blanco-Enríquez E, Zavala-Díaz de la Serna F, Peralta-Pérez M, et al. Characterization of a microbial consortium for the bioremoval of polycyclic aromatic hydrocarbons (PAHs) in water. Int J Environ Res Public Health 2018; 15(5): 975.
[http://dx.doi.org/10.3390/ijerph15050975] [PMID: 29757264]
[60]
Kubicki S, Bollinger A, Katzke N, Jaeger KE, Loeschcke A, Thies S. Marine biosurfactants: Biosynthesis, structural diversity and biotechnological applications. Mar Drugs 2019; 17(7): 408.
[http://dx.doi.org/10.3390/md17070408] [PMID: 31323998]
[61]
Markande AR, Patel D, Varjani S. A review on biosurfactants: Properties, applications and current developments. Bioresour Technol 2021; 330: 124963.
[http://dx.doi.org/10.1016/j.biortech.2021.124963] [PMID: 33744735]
[62]
Aparicio JD, Raimondo EE, Gil RA, Benimeli CS, Polti MA. Actinobacteria consortium as an efficient biotechnological tool for mixed polluted soil reclamation: Experimental factorial design for bioremediation process optimization. J Hazard Mater 2018; 342: 408-17.
[http://dx.doi.org/10.1016/j.jhazmat.2017.08.041] [PMID: 28854393]
[63]
Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ. Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. Int Biodeterior Biodegradation 2014; 88: 48-55.
[http://dx.doi.org/10.1016/j.ibiod.2013.12.004]
[64]
Polti MA, Atjián MC, Amoroso MJ, Abate CM. Soil chromium bioremediation: Synergic activity of actinobacteria and plants. Int Biodeterior Biodegradation 2011; 65(8): 1175-81.
[http://dx.doi.org/10.1016/j.ibiod.2011.09.008]
[65]
Morou-Bermudez E, Burne RA. Analysis of urease expression in Actinomyces naeslundii WVU45. Infect Immun 2000; 68(12): 6670-6.
[http://dx.doi.org/10.1128/IAI.68.12.6670-6676.2000] [PMID: 11083780]
[66]
Chakraborty I, Redkar P, Munjal M, Kumar SS, Rao KB. Isolation and characterization of pigment producing marine actinobacteria from mangrove soil and applications of bio-pigments. Pharm Lett 2015; 7: 93-100.
[67]
Dahal RH, Shim DS, Kim J. Development of actinobacterial resources for functional cosmetics. J Cosmet Dermatol 2017; 16(2): 243-52.
[http://dx.doi.org/10.1111/jocd.12304] [PMID: 28097821]
[68]
Takano E, Kinoshita H, Mersinias V, et al. A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol Microbiol 2005; 56(2): 465-79.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04543.x] [PMID: 15813737]
[69]
Li L, Liu X, Jiang W, Lu Y. Recent advances in synthetic biology approaches to optimize production of bioactive natural products in Actinomycetes. Front Microbiol 2019; 10: 2467.
[http://dx.doi.org/10.3389/fmicb.2019.02467] [PMID: 31749778]
[70]
Montoya-Porras LM, Omar TC, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop 2018; 178: 327-32.
[http://dx.doi.org/10.1016/j.actatropica.2017.11.004] [PMID: 29154947]
[71a]
Deng Y, Zhang X, Zhang X. Recent advances in genetic modification systems for Actinobacteria. Appl Microbiol Biotechnol 2017; 101(6): 2217-26.
[http://dx.doi.org/10.1007/s00253-017-8156-1] [PMID: 28184986]
[71b]
Raju KR. Genetic modification of microbes for improved nitrate uptake for crops. WO Patent 2023181069A1, 2023.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy